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We use a generalized Brownian motion process to define the generalized Fourier-Feynman
transform, the convolution product, and the first variation. We then examine the various
relationships that exist among the first variation, the generalized Fourier-Feynman trans-
form, and the convolution product for functionals on function space that belong to a
Banach algebra S(L;p[0,T]). These results subsume similar known results obtained by
Park, Skoug, and Storvick (1998) for the standard Wiener process.
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1. Introduction. The concept of L, analytic Fourier-Feynman transform (FFT) was
introduced by Brue in [1]. In [3], Cameron and Storvick introduced an L, analytic FFT.
In [13], Johnson and Skoug developed an L, analytic FFT for 1 < p < 2, which extended
the results in [1, 3] and gave various relationships between the L, and L, theories. In
[10], Huffman et al. defined a convolution product for functionals on Wiener space and
obtained, in [11, 12], various results involving the FFT and the convolution product.

Both the FFT and the convolution product are defined in terms of a Feynman in-
tegral. In this paper, we extend the ideas of [10, 11, 12] from the Wiener process to
more general stochastic process. We note that the Wiener process is free of drift and is
stationary in time. However, the stochastic process considered in this paper is subject
to drift and nonstationary in time.

In Section 2, we consider the function space induced by a generalized Brownian
motion process and define several concepts. In Section 3, we examine all relation-
ships involving exactly two of three concepts of transform, convolution product and
first variation of functionals in S (L, [0, T]). In Section 4, we examine all relationships
involving all three of theses concepts where each concept is used exactly once.

2. Definitions and preliminaries. Let D = [0,T] and let (Q,%,P) be a probability
measure space. A real-valued stochastic process Y on (Q,%,P) and D is called a gen-
eralized Brownian motion processif Y (0,w) =0 a.e.;andforO<to <t; <---<t, <T,
the n-dimensional random vector (Y (t;,w),...,Y (t,,w)) is normally distributed with
the density function

n —-1/2
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where 7 = (n1,...,Nn), No = 0, £ = (t1,...,tn), to = 0, and a(t) is a continuous real-
valued function of bounded variation with a(0) = 0, and b(t) is a strictly increasing,
continuous real-valued function with b(0) = 0.

As explained in [19, pages 18-20], Y induces a probability measure ¢ on the measur-
able space (RP,%BP) where RP is the space of all real-valued functions x(t), t € D, and
AP is the smallest o-algebra of subsets of RP with respect to which all the coordinate
evaluation maps, e; (x) = x(t), defined on R are measurable. The triple (R?, %%, )
is a probability measure space.

We note that, the generalized Brownian motion process Y determined by a(-) and
b(-) is a Gaussian process with mean function a(t) and covariance function r (s,t) =
min{b(s),b(t)}. By [19, Theorem 14.2, page 187], the probability measure u induced
by Y, taking a separable version, is supported by C,;,[0,T] (which is equivalent to
the Banach space of continuous functions x on [0,T] with x(0) = 0 under the sup
norm). Hence (C,p[0,T],B(Cap[0,T]),u) is the function space induced by Y where
B(Cap[0,T]) is the Borel o-algebra of C,,[0,T]. Note that we can also express x in
the form

x(t)=w(b(t))+a(t), 0<t<T, (2.2)

where w(-) is the standard Brownian motion process [6, 7].

Let L, [0, T] be the Hilbert space of functions on [0, T] which are Lebesgue measur-
able and square integrable with respect to the Lebesgue Stieltjes measures on [0, T]
induced by a(-) and b(-), that is,

T T
Lapl0,T] = {v : IO v2(s)db(s) < o and L vi(s)dlal(s) < oo}, (2.3)

where |a| denotes the total variation [6, 7].

A subset B of Cy,[0,T1] is said to be scale-invariant measurable [8, 14] provided that
pB is B(Cap[0,T])-measurable for all p > 0, and a scale-invariant measurable set N
is said to be scale-invariant null set provided that u(pN) = 0 for all p > 0. A property
that holds except on a scale-invariant null set, is said to hold on scale-invariant almost
everywhere (s-a.e.). If two functionals F and G defined on C,,[0,T] are equal s-a.e.,
we write F = G.

We denote the function space integral of a B(C,,[0, T])-measurable functional F by

E[F] = J F)dp(x) (2.4)
Capl0,T]

whenever the integral exists.
We are now ready to state the definitions of the generalized analytic Feynman inte-
gral.

DEFINITION 2.1. Let C denote the complex numbers. Let C. = {A € C:ReA > 0}
and C. = {A € C: A = 0and ReA > 0}. Let F: C4p[0,T] — C be such that, for each
A > 0, the function space integral

JA) = j FA"2x)dp(x) @.5)
Capl0,T]
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exists for all A > 0.If there exists a function J* (A) analyticin C. such that J*(A) = J(A)
for all A > 0, then J*(A) is defined to be the analytic function space integral of F over
Cap[0,T] with parameter A, and for A € C; we write

EY[F]=J*(A). (2.6)

Let g # 0 be a real number and let F be a functional such that E4"[F] exists for
all A € C,. If the following limit exists, we call it the generalized analytic Feynman
integral of F with parameter g and we write

Efa[F] = Jim EAAF], (2.7
i

where A approaches —ig through C,.
Next we state the definition of the generalized FFT (GFFT).

DEFINITION 2.2. For A >0 and y € Cy[0,T], let
TA(F)(y) = Ex *[F(y +x)]. (2.8)

In the standard Fourier theory, the integrals involved are often interpreted in the mean;
a similar concept is useful in the FFT theory [13, page 104]. Let p € (1,2] and let p
and p’ be related by 1/p +1/p’ = 1. Let {H,} and H be scale-invariant measurable
functionals such that for each p > 0,

}}g}oE[ |Hn(py)-H(py)| ”'] =0. (2.9)
Then we write
H = l.ni;m.Hn (2.10)

and we call H the scale-invariant limit in the mean of order p’. A similar definition
is understood when n is replaced by the continuously varying parameter A. Let real
q # 0 be given. For 1 < p < 2, we define the L, analytic GFFT, Tép)(F) of F, by the
formula (A € C,)

137 (F) () = LLm Ty (F) () (2.11)

if it exists. We define the L; analytic GFFT, Té” (F) of F, by the formula (A € C,)

L (F)(y) = lim Th(F)(y) (2.12)

if it exists.

We note that for 1 <p <2, Té”) (F) is defined only s-a.e. We also note that if Tq(”) (F)
exists and if F ~ G, then T\"’(G) exists and T." (G) ~ T (F).
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DEFINITION 2.3. Let F and G be functionals on C,,[0,T]. For A € C. we define the
convolution product (if it exists) by

e mF(2 20 )6 (22 ), aec,
(F G (¥) = 7 V2 Jol V2 ) 013

S y+Xx y-Xx )
fg:;[%r] ( N >G<T)dU(X)’ A=—iq.
REMARK 2.4. When A = ~iq, we denote (F % G)y by (F+G)q.

We finish this section by giving the definition of the first variation 6F of the func-
tional F [2, 5].

DEFINITION 2.5. Let F be a B(Cup[0, T])-measurable functional on C,,[0,T] and
let w € C4p[0,T]. Then

O0F(x|w) = 9 F(x+hw)‘ (2.14)

(if it exists) is called the first variation of F.

The following analytic Feynman integration formula is used throughout:

i : S\ 1/2
E™a[exp {i(v,x)}] = exp { - i(v{b) +i(é> (v,a)} (2.15)
for all real g # 0, where v € L,,[0,T], (v,x) denotes the Paley-Wiener-Zygmund
stochastic integral fOT v(s)dx(s), and (v?,b) denotes the Lebesgue Stieltjes integral
Iy v2(s)db(s).

3. Relationships involving exactly two of three concepts of transform, convolu-
tion, and first variation. Let M (L,,[0,T]) be the space of C-valued, countably addi-
tive finite Borel measures on L,,[0, T]. The Banach algebra S(L,,[0,T]) consists of
functionals F on C,3[0, T] expressible in the form

F(x) :J exp {i{u,x)}df(u), (3.1)
Lapl0,T]

for s-a.e. x € Cyp[0,T], where f is an element of M(L,,[0,T]). Further works on
S(L4p[0,T]) show that it contains many functionals of interest in Feynman integration
theory [3, 4, 6, 7, 13, 14, 15, 16, 17].

Also, let

A={y € Ca[0,T]:y is absolutely continuous on [0, T] with ' € L;,[0,T1}. (3.2)

REMARK 3.1. Throughout, we choose the variance function b(-) which is strictly
increasing such that the function p defined by p(t) = 1/b’(t), p(0) = p(T) =0 is of
bounded variation on [0, T]. For any u € L,[0,T], let

1/2

T
lully = <JO uz(S)O”O(S)) = (u?,b), (3.3)
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then || - ||, is a norm on L,,[0,T] since IOT u2(s)db(s) < c. Hence we have for any
uyv E Lah[olT]l

[ (uv,b)| < llullplivip. (3.4)

This will insure that the first variation, 6F (- | w) of F in S(L4»[0,T]), that arises will
exist for all w € A (see [9]).
Let G in S(Lap[0,T]) be given by

G(x) :J exp {i(v,x)}dg(v) (3.5)

Lap[0,T]
for s-a.e. x € C;,[0,T] where g € M(Ly,[0,T]).

In our first lemma, we obtain a formula for the first variation of functionals in
S(Lap[0,T]).

LEMMA 3.2. Let F € S(Lsp[0,T]) be given by (3.1) with fLab[o,T] lullpldf(u)] < .
Then for eachw € A and s-a.e. v € Cyp[0,T],

6F(y|w)=J

Lab [01T

]i(u,w)exp{i(u,y)}df(u). (3.6)

Furthermore, as a function of v, 6F(y | w) is an element of S(L4,[0,T]).

PROOF. By using the definition of the first variation, we see that

SE(y |w) = 2 [ eplituy)+intuwldfw)
oh \ Jr,,10,1]

h=0 (3.7)
:J i(u,w)exp {(u,y)}df(u)
Lapl0,T]

for s-a.e. y € Cap[0, T1. Next, let ¢y, (E) = [pi{u, w)d f (u) for each set E € B(Lap[0,T]).
But

lbull< | Jitww)|ldfa] <Mllwlly, | ulbldfa)| <, G8)
Lapl0,T] L I

ablY,

where M = sup;c[o 1y p(t). Hence 6F(y | w) = ILab[O,T] exp{i{u,y)}tdg¢y, (1) is an ele-
ment of S(Lyp[0,T1). |

In our next theorem, we obtain the transform of functional in S(L;,[0,T]).

THEOREM 3.3. Let F € S(L,p[0,T]) be given by (3.1) and let p € [1,2] be given.
Then the analytic generalized Fourier-Feynman transform T,;”)(F ) exists for all real
q + 0 and is given by the formula

(p) 3 , i 2 ) +i i\1/2 4 19
Ty (F)(y)—Lab[O’T]exp{l<u,y>—2q(u, )+l(a) (u,a)} S ) (3.9)

for s-a.e. y € Cap[0,T].
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PROOF. By (2.8), the Fubini theorem, and (2.15), we have, for all A > 0,

any
TA(F)(J’):J F(y+x)du(x)

Capl0,T]
:J JA exp {i{u, ) +i(u,x) }du(x)df (u) (3.10)
Lap[0,T]1JCypl0,T]

_ . _L 9 L
- JLab[o,r] eXp{l(u'y) ZA(u b) + ﬁ(”’“)}df(u)

for s-a.e. vy € C;,[0,T]. But the last equation above is analytic throughout C, and is
continuous on C,, since f is a finite Borel measure. Thus (3.9) is established. O

In the following theorem, we obtain the convolution product of functionals in
S(Lap[0,T]).

THEOREM 3.4. Let F € S(L4,[0,T]) be given by (3.1), and let G € S(Ly,[0,T]) be
given by (3.5). Then their convolution product (F x G)4 exists for all real q = 0 and is
given by the formula

R

_ L ST
(F*G)q(y)—L’ih[oj]exp{ﬁ(u+v,y) 4q((u v)°,b)

. 172 (3.11)
+i(£) (u-v,a)|dfadg(v)

for s-a.e. y € Cap[0,T].
PROOF. By using (2.13), the Fubini theorem, and (2.15), we have that for all A > 0,

(FxG)a(y)
Al e

any i i
- Lib[o’ﬂj exp{ﬁm—v,m . ﬁ<u+v,y>}du(X)df(u)dg(v)

Capl0,T]

_ i B ST LI
_JLib[O’ﬂexp{ﬁ<u+v,y> 42\((u v) ,b)+m(u U,a)}df(u)dg(v)
(3.12)

for s-a.e. y € C,p[0, T]. But the last equation above is analytic throughout C,, and is
continuous on C,. Thus we have the desired result. O

Next, we obtain the transform of the convolution product.

THEOREM 3.5. Let F and G be given as in Theorem 3.4 and p € [1,2]. Then for all
real q + 0, Tq(”) ((F % G)g) exists and is given by the formula

T (F%G)g) (v) = Té’”(ﬂ)(%)r;w(cl) (%) (3.13)

for s-a.e. vy € Cap[0,T], where Fy and G, are given by (3.15) below.
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PROOF. letp €[1,2] and g € R—{0}. Using (2.15), (3.9), and (3.11), we see that
T (F%G)g) ()

anfy
:J (FxG)g(y+2)du(z)
Cab[OvT]

oo (T F o

unfq l l
J exp{ﬁ(u+v,z)+ﬁ(u+v,y)}du(z)df(u)dg(v)

Cab [O,T]

Jduta)du(z)

i i\ 1/2 ) (3.14)
= Y u—v)? (1 3 i )
_Lih[oﬂexp{ 4q((u v) ,b)+l<2q> (u-v,a) 401((u+v) ,b)

) l 1/2 l
+1<£> (u+v,a)+ T(u+v,y)}df(u)dg(v)

:Labme {fmy) q(u b)ﬂ(;)m(u,a)}dfl(u)

-JLah[O’T]exp{\/»(v y)- —(v b)+1(;)1/2(v,a)}dg1(v)

2q
=T$”)(F1)<%>T§”)(G )<%>

for s-a.e. v € C4p[0,T], where

Fi(y) = J exp {i(u, ) }dfi (),
La,b[O,T]

(3.15)
Gl<y>:j el dg ),

Lapl0,

fi(E) = Lexp{—i(é)l/z(u,u)+2i(£)1/2(u,a)}df(u),

a1 (E) :Lexp{—i(é)m(v,a)}dmv),

for every E € B(Lap[0,T]), and so [If1ll < IfIl and llg:ll < llgll. |

(3.16)

In our next theorem, we have the convolution product of transforms of F and G in
S(Lap[0,T]).

THEOREM 3.6. Let F, G, and p be given as in Theorem 3.5. Then for all real q + 0,
(TP (F) % TP (G)) _q () exists and is given by the formula

(1" ®*16)) ) =1 (R 55 )62( 55) ) o (3.17)

for s-a.e. y € Cap[0,T] where F> and G, are given by (3.19) below.
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PROOF. By using (3.9), (3.11), and the Fubini theorem, we have, for s-a.e. y €

Cab[ou T]l

(" () 1" () ()

[ ) 2 s

. . L\ 1/2

_ i i > > (1) }

= e —(u+v,y)——(u+vs,b)+i| — u+v,
JLﬁb[O,T] Xp{\/?< ») Zq( )+i q ( @)

.U‘m‘f—q ex {imw x>}d (x)]df(u)d )
Capl0,T] P12 ’ H g

. . 2\ 1/2
_ i i, 5 5 (1)
= exp] —=(u+v,y)——(wu+v-,b)+i| — u+v,a
Libm p{ 5 v -5 )+i2) weva

*J {L( S0 (wrv)? b)+'(i>l/2( +v,a)
= Lﬁb[o,T]eXp \/?u v,y 1 u+v)“, i 24 u+v,a

_i(i)m(u+v,a)+i(—£)1/2(u—v,a)

) l 1/2
+l(a) (u+v,a)}df(u)dg(v)
exp{%(u+v,y)—£((u+v)2,b)

+i(i>1/2(u+v,a)}dfz(u)dgz(v)

- (e e

i~

where
BO)=| expliwy))dfw),
Lapl0,T]

Ga(y) = Labm] exp{i(v, ) }dgs (v),
Fo(E) = Lexp{i(— (5)”2 +(- é)w ¥ (é)m) (u,a)}dfm),
92(E) = Lexp{i( (%)”2 -(- i)m ¥ (;)”2) (v,m}dg(v),

for every E € B(Lap[0,T]), and so || f21l < | fIl and [|g21l < lIg]l.

(3.18)

(3.19)

(3.20)

|

In the next theorem, we obtain that the transform with respect to the first argument

of the variation equals the variation of the transform.
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THEOREM 3.7. Let F be given as in Lemma 3.2, p € [1,2],q € R—{0}, and w € A
be given. Then

TS (SF(- |w)) (¥) = 6T (F) (v | w) (3.21)

for s-a.e. y € Cap[0,T].
Also, both expressions in (3.21) are given by the expression

i 1/2
JLab[o,T]lW w)exp{l(u y)- Z(u ,b) +l<q) (u, a)}df(u) (3.22)

PROOF. By using (3.6), the Fubini theorem, (2.15), and (3.9), we have that

T (SF(- | w)) ()

anfy

=J SF(y+x | w)du(x)
Capl0,T]

anf,
J ’ J i{u,w)exp {i{u,y +x)}df(u)du(x)
Capl0,T1 JLyp[0,T]

anf
:J 1<u,w>exp{i<u,y>}U ’ eXp{i<u,x)}du(x)}df(u)
Lapl0,T Capl0,T]
(3.23)
=J i(u, w)exp{l(u y)—i(u b)+l<l>l/2(u a)}df(u)
Lapl0.T] 2q a '
0 i i\!/?
= J Lo 3 (exp {z(u y+hw)- 24 (u? b)+1<q) (u,a)}) .h:odf(u)
= o, (1”7 (F)(J/Jrhw))‘ .
=5T" (F) (v | w)
for s-a.e. v € C4p[0,T] as desired. |

In the next theorem, we obtain the transform with respect to the second argument
of the variation.

THEOREM 3.8. LetF, p, q, and w be given as in Theorem 3.7. Then, for s-a.e. y €
Cab[ou T]y

2\ 1/2
T (5F(y | ) (w) = 6F(y | w) +i<1) J (w,a)exp {i(u, v)}df(w). (3.24)
q Lapl0,T]

PROOF. Using (2.11) and (3.6), we obtain

anf

Tq(p)(5F(y|-))(W)=J ! SF(y | w+x)du(x)

Capl0,T]

anf
:J qJ i(u,w+x)exp liu,y)}df (w)du(x)
Capl0,T1JLyp[0,T]



600 S. J. CHANG AND J. G. CHOI

anfy
=iJ eXp{i<u,y>}U (u,w +x>du(X)}df(u)
Lap[0,T] ]

CaplO,T

= iLab[o,T] ((u,w) + (é)l/z(u,a)> exp {i{u,y)}df(u)

i\1/2
=5F(y|w)+i(—) J (u,a)exp {i{u,y)}df(u)
q Lap[0,T]

(3.25)
for s-a.e. v € C4p[0,T]. In particular, if a € A then (u,a) = (u,a) and so
P i\'?
T (SF(y | ) (w) = SF(y | w) + <E> SE(y | a). (3.26)
O

In our next theorem, we obtain the first variation of convolution product of func-
tionals F and G in S(L,,[0,T]).

THEOREM 3.9. Let F, p, q, and w be given as in Theorem 3.7 and let G be given
by (3.5) with ILM[O,T] lvlipldg(v)| < co. Then for s-a.e. y € Cap[0,T], we obtain the
formula

O(F*G)g(yw)

_ i i 2
_Libw’ﬂ\/?(quv,w)exp{\/?(quv,y) 4q((u v)4,b) (3.27)

i\1/2
+i(5) (u-v.a)|dfaadg(v)
for s-a.e. vy € Cyp[0,T].
PROOF. The proof of (3.27) can be obtained by using (3.6) and (3.11). O

In our next theorem, we obtain the convolution product of the first variation with
respect to the first argument.

THEOREM 3.10. Let F, G, p, q, and w be given as in Theorem 3.9. Then for s-a.e.
¥ €CaplO,T], (OF (- |w)*6G(- | w))4(y) exists and is given by the formula
(OF(- [w) *0G (- [w)),(»)
i

_ 2
= Lﬁb[o‘ﬂ(u,w)(v,w)exp{\/E(u+v,y) 4q((u v)4,b) (3.28)

+i<i)l/z(u—v,a)}df(u)dg(v).

PROOF. By using (2.13), (3.6), the Fubini theorem, and (2.15), we have

(BF(- | w) % 6G(- | w)), ()

anfq VX V-x
oo (577 [w)26(3 77 | w)d
Jcah[O,T] 2 Y N o
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- J:ZZT] Lab[o,ﬂ M, wr) exp {i<u’ %> }df(u)

anfy
:—J J (u,w){v,w)
12,,10,T1JCypl0,T]

-exp{%(ufv,x) + \%(u+v,y>}du(x)df(u)dg(v)

= - L vy
= Lib[oﬂ(u,w)(v,w)exp{ﬁ(u+v,y) 4q((u v)2,b)

+i(i)]/Z(u—v,a)}df(u)dg(v)

(3.29)
for s-a.e. vy € Cp[0,T]. O

In our next theorem, we obtain the convolution product of the first variation with
respect to the second argument.

THEOREM 3.11. LetF, G, p, q, and w be given as in Theorem 3.9. Then

(SF(y ) *8G(y | -))g(w)
_
-5

o B a2) S (0 et taro)
i

(50| 25) (2] (o omtinsan)

for s-a.e. y € Cap[0,T].

JLZ [oT](uv’b)EXp{i<u+U=J’>}df(u)dg(v)
ab™

(3.30)

PROOF. For each u,v € L,;,[0,T], we have

anf ) .
J Y X)) dp(x) = Lu,a)(v,a) + = (uv, b). (3.31)
Capl0,T] qa a

But, by using (2.13), (3.6), the Fubini theorem, and (3.31), we have
(SF(y | ) %8Gy | ), (w)
anfq w+x w-x
e P[5 )06 ([ 45)a
Jcah[O,T] Y2 Y12 H)

anf,
- , J Y ww +x) (v, w - x)exp {i(u+v, ) }du(x)df (w)dg(v)
2 )12, 10,11 )Capl0,11
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= _%LZ o) [((é)l/z(u,aﬂ (u,w)) ((v,w) - (é)l/z(v,a)) - é(uv,b)]
2,10,

cexp{i{u+v,y)ldf(u)dg(v)

) Labm] % <<”‘w> i (é)l/z(”’“)) exp {i(u, ) }df ()

1

" E Lgh[o;](uv’b)EXp{l(u+U,y)}df(u)dg(v)

(o0 ) ) (0 v cutar)

w iNY? a
(00| ) 4(0) o, (v ) et
i .
+EL‘Zlbmm(uv,b)exp{1(u+v,y)}df(u)dg(v)
(3.32)
for s-a.e. ¥ € Cyp[0,T]. In particular, if a € A then (u,a/v2) = (u,a/~/2) and (v,
a//2) = (v,a/~/2) and so we have

(SF(y | ) %8Gy | ), (w)

= (or(| ) i) orle ) o6l | F5)1(5) o6 )

i

+—J, (uv,b)exp {i{u+v,y)}df(u)dg(v).
2q Ji3, 01
(3.33)
Also, by using (3.24), the alternative expression in (3.30) is given by
-1 (or (v | 5) Jorri (o6 (v ] 7)) -
a 63/\/? (w)Tq <‘5Gy\/E (—w)
; (3.34)
+—J (uv,b)exp{i{u+v,y)}df(u)dg(v).
2q Ji2,10,1)
Thus we have the desired result. O

4. Relationships involving three concepts. In this section, we look at all the rela-
tionships involving the transform, the convolution, and the first variation where each
operation is used exactly once.

In our next theorem, we obtain the formula for transform with respect to the first
argument of the variation of the convolution product which equals the variation of
the transform of the convolution product.
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THEOREM 4.1. Let F, G, p, q, and w be given as in Theorem 3.9. Then for s-a.e.
v € Capl0,T], Tq(p)(é(F* G)q(- |w))(y) exists and is given by the formula

T (S(F % G) (- | w)) (v) = T;m(za)(%)rq(w(acl(. ’ %))(%)

1)
1 (o1 (- | 75)) (55) 187 €0 (35),
where F, and G, are given by (3.15).
PROOF. By using (3.21) we have
T (5(F % G)q (- |w) (v) = 6T ((F % G)g) (v | w). 4.2)
Also, using (3.6) and (3.13), we obtain
ST ((F%G)g) (v | )
= (1 (5 )1 @0 (7)),
Z%[JLM,[O,T]QXD{\/_(M y+hw)—£(u b)+l(;)1/2(u,a)}df1(u)
.Lah[oﬂexp{\/_(v y+hw)—£(v b)+l(;>1/2(v,a)}dg1(v)] .
- exp L (u,y)— (u ,b) +1 L 1/z(u,a) dfi(u)
Lab[o,r] SL V2 2q <q)
Lah[”]\f(v w>eXp5L[<v v - q(v b)+l(;)”2(v,a)}dy1(v)
Labmﬂfm wyexp{ - (u,7) - 5o (u, b)ﬂ(;)m(u,a)}df](u)
. exp L (v,y)— i(vz,b)ﬂ' i l/z(v,a) dgi(v)
Lab[o,n {ﬂ 2q <q) }
0 (5o 60 (5| ) +ori e (35 | )T 60 ()
i) () (56 (- | 7)) ()
er (o (- | 7)) (F) @0 ()
(4.3)
for s-a.e. vy € Cyp[0,T1. O

In our next theorem, we obtain the transform with respect to the second argument
of the variation of the convolution product.
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THEOREM 4.2. Let F, G, p, q, and w be given as in Theorem 4.1. Then for s-a.e.
y e Cab[olT]y

T (S(F* Gy | ) (w)

zé P [OT][(u+v,w)+<é>”2(u+v,a)]
ab™

i i ) i\ Y2
-exp{\/—ﬁ(u+v,y)—g((u—v) ,b)+l<£> (u—v,a)}df(u)dg(v)

i (i)\'?
=0(F*G)g(y | w)+ﬁ<a)

i((u—v)z,b)

i
-Lib[O’T](u+v,a)exp{ﬁ(uﬂj,y) - iq

1\ V2
+l<2q) (ufv,a)}df(u)dg(v).
4.4)

PROOF. By using (3.11), (3.24), and (3.27), we obtain (4.4) above. In particular, if
a e A, then (u+v,a) ={(u+v,a) and hence we have

2\ 1/2
TV (8(F%G) (v | ))(w) = §(F%G)g(y | w) + (é) S(F%Gg(yla). (45
[l

Now we obtain formulas for the transforms of the convolution product with respect
to the first argument of the variations.

THEOREM 4.3. Let F, G, p, q, and w be given as in Theorem 4.1. Then, for s-a.e.
y € Ctlb[ol T]y

TS ((SF(- | w) %8G (- | w)),) ()
(p) Y\ . Y

=5T\ (R <\/_’w>6’[q(p G1) (\/_'w)

where Fy and G, are given by (3.15) and

anf,
J T O(SF( lw+x) %8G (- | w X))y (3)dp(x)
Capl0,T]

ZLzor] 17 (5 (V55| )i (s6(2 57 |- ) ) wiamio)
_éjLz [0 T](uv,b)exp{\%erv,y) - ﬁ((u—v)z,b)
ab'™

(4.7)

+i(i)m(u—v,a)}df(u)dg(u).



RELATIONSHIPS OF CONVOLUTION PRODUCTS ... 605

PROOF. Byusing (3.13) and (3.21), we obtain (4.6) above. To establish (4.7), we note
that, by the use of (2.15), (3.24), (3.28), and (3.31),

anf,
[0 (6P T+ %66 (- | w+x)), (M du(x)
Capl0,T]

anfy
:—J J (U, w+x){(v,w+x)
Capl0,T1JL2,10,T]

-exp{%(bwv,y)—é((u—v)z,b)

; 1/2
+i(é) (u_v’a)}df(u)dg(v)du(x)

-, (0,11 [(w+ (ai)l/z(”’m) (w.w)+ (é)l/z(v,a)) " é(uv,b)]
2,00,

i i ) i\
-exp{ﬁ(u+v,y)—ﬁ((u—v) ,h)+l(ﬁ> (u—v,a)}»df(u)dg(v)

0t (2) o 25
'Lab[o,ﬂ i((v,w) + (é’)l/%l},&l)) exp{i<v, %>}dg(v)du(x)

i i a2
Lib[oyﬂ(uv,b)exp{ﬁ<u+v,y) ((u—-v)2,b)

q 4q

+i(i)l/z(u—v,a)}df(u)dg(v)

- J;ZZT] Tém<6F<y\;L?X ’ '>>(w)T‘;p)(5G(% '))(W)du(x)

i i )2
qLib[oﬂ(uv,b)exp{\/?(u+v,y) 4q((u v)4,b)

+i(%)Uz(ufv,a)}df(u)dg(v)

(4.8)

for s-a.e. y € C4p[0,T]. O

In our next theorem, we obtain the transforms of the convolution product with
respect to the second argument of the variations.

THEOREM 4.4. Let F, G, p, q, and w be given as in Theorem 4.1. Then for s-a.e.
y S Cub[olT]y

T ((SF (v | ) %8G (3 | )),) (w)

-1 (o8(v | 55 )56 (v | 55) )@
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O CLES) T A CEN S

+i(é>1/2T,§”) <6G<y ‘ ﬁ» (w) Labm‘ﬂ (u, %) exp{i(u,y)}df(u)
i

2 JZ [(u,a)(v,a) + (uv,b)]exp{ilu+v,y)}df(u)dg ),
a Jiz, o1

anf
[0 (R 15860 +x 1) (w)dux)
Capl0,T]

- (o )oc(-| %))
() e ) e ) (05 ()
) )0 5) ) )]

i i\'?
-exp{i(u+v,y) —z((u+v)z,b) +i<a> (u+v,a)}df(u)dg(v).

(4.9)
PROOF. By using (2.11) and (3.30), we obtain (4.9). ]
Next, we obtain the variation of the convolution product of transforms.
THEOREM 4.5. LetF, G, p, q, and w be given as in Theorem 4.1. Then
(1" (F)*137(6)) (v 1w)
“on () ))
)\ 5 (»)
(u+v,w
J 2,10,1] \/— : (4.10)

-exp{\/_(u+v Yy - q((u+v)2 b)

+i<2_—;)1/2(u—v,a) +i(é)l/z(u+v,a)}»df(u)dg(v)

for s-a.e. v € Cap[0,T] where F> and G, are given by (3.19).

PROOF. By using (3.17) and the same calculation in the proof of Theorem 3.6, we
obtain (4.10). O

Now, we obtain the formulas for convolution product of the variation of the trans-
form. There are two cases; namely, we can take the convolution with respect to the
first argument or the second argument of the variation.
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THEOREM 4.6. Let F, G, p, q, and w be given as in Theorem 4.1. Then, for s-a.e.
y e Cab[ou T]y

(672" () | w)+ 6T (G) (- |w))_ () =T (6&(% \ w)éGz(ﬁ |u)))<y>'
(4.11)

where F, and G, are given by (3.19); and if a € A, then

(672" (F) (v | ) %617 (G) (v 1) (w)

(orls )+ (1) "o 5)

(b ) ol 8) e
N é Lﬁh[o,r](uv'b)eXp{ierv'y) N ﬁ(uz vhb)
+i(£)1/2(u+v a)}df(u)d
p , g).

PROOF. By using (3.22), (3.24), and the same calculation in the proof of Theorem
3.6, we obtain (4.11). Further, proceeding as in the proof of Theorem 3.8 and using
(3.33) and (3.22), we have (4.12). O

THEOREM 4.7. LetF, G, p, q, and w be given as in Theorem 4.1 and let a € A. Then,
for s-a.e. vy € Cap[0,T],

(L7 BF ([ 9)* 13" (6G (v ), (w)

— (BF(y | ) %8Gy | ), (w) - (é)wéF(y 1 (56(y | 55)) -w)

(N 56101 (58 (v | == ) w)+ LF(r | @156 (v | a).
q V2 a

(4.13)

PROOF. By using (3.24) and a direct calculation, we obtain (4.13). O
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