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We introduce Szegő projections for Hardy spaces of monogenic functions defined on a
bounded domain Ω in Rn. We use such projections to obtain explicit orthogonal decom-
positions for L2(bΩ). As an application, we obtain an explicit representation of the so-
lution of the Dirichlet problem for balls and half spaces with L2, Clifford algebra-valued,
boundary datum.
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1. Introduction. This note is aimed to a mixed audience of complex analysts and

Clifford analysts. Complex analysts should be interested in the idea that certain fea-

tures of complex function theory in the plane which are lost in higher dimensions

can be recovered by embedding Cn into a Clifford algebra of suitable dimension. We

also hope to attract more Clifford analysts to the study of Szegő projections onto

Hardy spaces of monogenic functions; we expect that this subject will lead to inter-

esting applications in the areas of partial differential equations and boundary value

problems.

The origins of the questions raised in this note go back to earlier work of Bell on

the study of the Szegő projection for a smooth, bounded, simply connected domain in

the complex plane. More precisely, in [3], Bell has produced a new method yielding the

explicit representation plus existence and regularity for the solution of the classical

Dirichlet problem (see Section 2).

The formulas obtained by Bell are very elegant and highly explicit but have the short-

coming of being confined to the two-dimensional setting. This is because a harmonic

function of several complex variables needs not be the real part of a holomorphic

function (not even locally), and very simple examples can be exhibited to this extent

(see [23]).

The question then arises whether this obstacle may be circumvented by embed-

ding Cn into some larger environment, one where the solution of the Dirichlet prob-

lem can be represented in terms of a suitable analog of the Szegő projection. Clifford

algebras appear to be a natural candidate for doing so, as under many respects their

structure resembles the complex plane. For example, it is true that in certain domains

in Rn a (scalar-valued) harmonic function can be expressed as the scalar part of a

two-sided monogenic function taking values in C�(n−1) (see [11, 19]). However, the

noncommutative nature of Clifford algebras raises new obstacles, in particular, the
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striking fact that monogenic functions are no longer an algebra, as the pointwise mul-

tiplication of two monogenic functions needs not be monogenic. Moreover, higher-

dimensional Clifford algebras contain zero divisors, and therefore the problem of

studying the invertibility of a C�n-valued function becomes far more complex than

looking for its zeroes.

Our main concern here is to show that Szegő projections onto Hardy spaces of left

and right monogenic functions may be effectively used to give orthogonal decompo-

sitions for the space L2(bΩ), where Ω ⊂Rn is a domain with reasonably smooth (i.e.,

Lipschitz) boundary. Such decompositions extend well-known results for the plane

proved by Schiffer in the fifties (see [25]), but in our context a new interplay of left

and right operators appears which, in the commutative setting is, of course, unheard

of.

As an application, we obtain a new representation of the solution of the L2-Dirichlet

problem on a ball or a half space in Rn where the boundary datum takes values in

C�(n−1) (R or C can, of course, be embedded in C�(n−1)). The obstacles that one meets

when trying to extend this result to an arbitrary domain in Rn (even under the as-

sumption that the boundary be C∞-smooth) lead to several open questions, here we

just mention the problem of characterizing the domains for which the Szegő kernel

is a (nonvanishing) invertible function with monogenic inverse.

The structure of this note is as follows. In Section 2, we briefly recall the results of

Bell which motivated our work. In Section 3, we review the main properties of Clifford

algebras that are of interest here. In Section 4, we present two orthogonal decomposi-

tions for the space of square-integrable, C�n-valued functions defined on the bound-

ary of a (Lipschitz) domain in Rn+1. Finally, in Section 5, we show how to use such

decompositions to solve the Dirichlet problem for a ball or a half space in Rn+1.

2. Bell’s theorems for the plane. All the facts and results that are about to be

stated in this section are taken from [3] (see also [1, 2]). Let Ω⊂ C denote a bounded,

simply connected domain with C∞-smooth boundary. We define the Hardy space

H2(bΩ) as the (boundary values of the) L2(bΩ)-closure of the space of functions

which are analytic in Ω and of class C∞ up to the boundary. The Hardy space is thus

a closed subspace of a Hilbert space and, as such, it has an orthogonal projection

P : L2(bΩ)→ H2(bΩ) which is known as the Szegő projection. Such projection has a

singular integral representation in terms of the Szegő kernel function Sa(z) := S(z,a),
z ∈ Ω̄, a ∈ Ω. The orthogonal complement of the Szegő projection also has a singu-

lar integral representation whose kernel is known as the Garabedian kernel, La. The

properties of Sa and La are strictly connected to the smoothness of the domain. In

particular, if the domain is of class C∞, Sa is an analytic function of class C∞ up to

the boundary, and Sa(z) ≠ 0 for any z ∈ Ω̄. The Garabedian kernel La is also never-

vanishing in Ω̄; it is analytic in Ω\{a} and its singularity at {a} is precisely 1/(z−a).
Moreover, La is of class C∞ in Ω̄\{a}.

The Szegő projection and the Szegő and Garabedian kernels may be used to solve

the classical Dirichlet problem.

Theorem 2.1 (see [3]). Let Ω ⊂ C denote a bounded, simply connected domain with

C∞-smooth boundary. Let a ∈ Ω be a point fixed arbitrarily and let ϕ ∈ C∞(bΩ) be
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given. Then, the classical Dirichlet problem

∆u(z)= 0, z ∈Ω,
u(z)=ϕ(z), z ∈ bΩ (2.1)

has the unique solution

u= h+H̄, (2.2)

where h and H are two analytic functions of class C∞ up to the boundary of Ω, which

can be explicitly represented as follows:

h= P
(
Saϕ

)
Sa

, H = P
(
Laϕ̄

)
La

. (2.3)

3. Clifford algebras: background information. We briefly review some basic defini-

tions and properties of quaternionic function theory. A more exhaustive introduction

can be found in the excellent books [5, 9] where the reader can find a study of the

function theory corresponding to the Dirac operator (and related special functions),

as well as a treatment of residual theory. For a point of view closer to harmonic analy-

sis we refer to [10]. A summary of developments in Clifford and quaternionic analysis

and its relations to physics (plus some numerical analysis) is contained in [12]. We con-

clude this list by mentioning that both [11, 15] emphasize applications to problems

in physics, the latter in greater detail.

Let Rn denote the Euclidean space. The real Clifford Algebra associated with Rn,

denoted C�n, is defined as the minimal enlargement of Rn to a unitary algebra not

generated by any proper subspace of Rn, with the property that x2 = −|x|2 for any

x ∈Rn. This implies that

ejek+ekej =−2δjk, j,k≥ 1, (3.1)

where {ej}nj=1 denote the generating elements of C�n, which are usually identified

with the standard orthonormal basis in Rn.

If we let e0 = 1 denote the unit element of the algebra, it is then clear that any

element a∈ C�n can be uniquely represented as

a=
n∑
l=0

∑
|I|=l

aIeI , aI ∈R, (3.2)

where eI = ei1ei2 ···eil , 1 ≤ i1 < i2 < ···il ≤ n, I = (i1, i2, . . . , in). This means that

the algebra C�n is a 2n-dimensional vector space and a basis is given by all possible

(ordered) products of the generating elements.

The Clifford conjugation on C�n is defined as the unique (real-) linear involution on

C�n with ēIeI = eI ēI = 1, for all I. Thus

ā=
n∑
l=0

∑
|I|=l

aI ēI , ēI = (−1)(l(l+1))/2eI, |I| = l. (3.3)

We define the scalar part of a, denoted Sc(a), by

Sc(a)= a0e0. (3.4)
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It is customary to view Rn+1 as embedded into C�n. Then, for x ∈ Rn+1, a Clifford-

valued function f(x) is defined as

f(x)=
n∑
l=0

∑
|I|=l

fI(x)eI, (3.5)

where fI are given scalar-valued functions, that is, fI :Ω→R, whereΩ denotes an open

subset in Rn+1. Properties such as continuity, differentiability, and so forth which are

ascribed to f(x) have to be possessed by all components fI(x).
Next, we introduce the Dirac operator

D :=
n∑
j=0

ej
∂
∂xj

. (3.6)

A (Clifford algebra-valued) function f is called left-monogenic in a domainΩ ⊂Rn+1

if and only if

Df =
n∑
j=0

n∑
l=0

∑
|I|=l

∂fI
∂xj

(x)ejeI = 0, x ∈Ω, (3.7)

and right-monogenic if and only if

fD =
n∑
j=0

n∑
l=0

∑
|I|=l

∂fI
∂xj

(x)eIej = 0, x ∈Ω. (3.8)

Due to the noncommutative structure of C�n (n≥ 2), a left-monogenic function need

not be right monogenic and vice versa. For example, inC�2, it can be easily verified that

the functionw(x0,x1,x2) := x0e0+(x0+x2)e2+x1e12 is left but not right monogenic.

Functions that are both left and right monogenic are called two-sided monogenic.

A classical example of an element in this class is given by the Cauchy-kernel in Rn+1,

namely

e(x)= 1
σn

x̄
|x|n+1

, x ≠ 0. (3.9)

Here, σn denotes the surface measure of the unit sphere in Rn+1. The Cauchy kernel

is a fundamental solution of D and it may be used to define several integral operators

(see Section 4).

For a C�n-valued function u(x)=∑n
l=0

∑
|I|=l uI(x)eI , the Laplacian of u, denoted

∆u, is the C�n-valued function

∆u(x) :=
n∑
l=0

∑
|I|=l

∆uI(x)eI, ∆uI(x)=
n∑
j=1

∂2uI
∂x2

j
(x). (3.10)

Thus, u is harmonic if and only if all its components so are.

The Dirac operator and the Laplacian are directly connected to one another via the

formula

D̄D =DD̄ =∆, (3.11)

which shows that monogenic functions are harmonic.
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In what follows, we need to be able to connect the behavior of a function inside the

domain with the values attained on the boundary. This can be achieved via the Stokes’

formula (see [9])

∫
bΩ
u(x)n(x)v(x)dσ(x)=

∫∫
Ω
(uD)(x)v(x)dx+

∫∫
Ω
u(x)(Dv)(x)dx, (3.12)

where dσ denotes surface measure for bΩ, dx denotes volume measure for Ω, and n
denotes the outward normal unit vector.

The Clifford algebra C�n and the Dirac operator D can be interpreted as higher-

dimensional analogs of the complex numbers and the ∂̄-operator, respectively. In this

sense monogenic functions are the analog of analytic functions in the complex plane.

Indeed, in the case n= 1 the algebra C�1 coincides with the complex numbers via the

obvious identifications e0 := 1 and e1 := i.
However, in higher dimensions the noncommutative structure of the algebras in-

duces fundamental differences with the complex case; in particular, monogenic func-

tions are no longer closed under pointwise Clifford multiplication, and it is very

easy to produce examples to this end: the two functions u(x0,x1,x2) := x1e2+x2e1;

v(x0,x1,x2) := x1e1−x2e2 are two-sided monogenic but their pointwise multiplica-

tion is neither left nor right monogenic. The function v in the example above may also

be used to show that neither the square nor the inverse of an (invertible) monogenic

function need be monogenic.

Another feature that makes a higher-dimensional Clifford algebra into a quite dif-

ferent environment from the complex space is the existence of zero divisors (n≥ 3);
for instance, for the two nonzero elementsw1 := 1+e1e2e3,w2 := 1−e1e2e3 ∈ C�3 we

have w1w2 = 0, as is easily verified. The problem of deciding whether a C�n-valued

function has a multiplicative inverse is therefore more involved than just checking

that the function is nonvanishing. Nonetheless, if u is a paravector in C�n, that is,

u=∑n
j=0ujej , then u is invertible if and only if

uū= ūu≠ 0, (3.13)

and the equality uū = Sc(uū) = Sc(ūu) = ∑n
j=0u

2
j may be used to show that the

inverse element is given by

u−1 = ū
ūu

. (3.14)

In particular, we have that the Cauchy kernel e(x), x ≠ 0, is an invertible paravector-

valued function.

4. Orthogonal decompositions for spaces of C�n-valued functions. Let Ω ⊂Rn+1

denote an open set with Lipschitz boundary. The space of C�n-valued, square-

integrable functions on bΩ, denoted L2(bΩ), is defined as follows:

L2(bΩ)=
{
f | f : bΩ �→ C�n,

∫
bΩ

∣∣f(x)∣∣2dσ(x) <+∞
}
, (4.1)
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where f(x) =∑n
l=0

∑
|I|=l fI(x)eI , |f(x)|2 = Sc(f (x)f(x)) =∑n

l=0

∑
|I|=l |fI(x)|2. The

space L2(bΩ) is endowed with an inner product

〈u,v〉 := Sc
(∫

bΩ
ū(x)v(x)dσ(x)

)
= Sc

(∫
bΩ
u(x)v̄(x)dσ(x)

)
. (4.2)

Two important subspaces of L2(bΩ) are the so-called left and right Hardy spaces of

monogenic functions, namely

H2
l (bΩ) := {f+ | f left monogenic in Ω, f∗ ∈ L2(bΩ)

}
,

H2
r (bΩ) := {g+ | g right monogenic in Ω, g∗ ∈ L2(bΩ)

}
.

(4.3)

Here, h+ and h∗ denote, respectively, the nontangential limit and the nontangential

maximal function of h (see [13]). It is well known that both H2
l (bΩ) and H2

r (bΩ) are

closed subspaces of L2(bΩ) (see [16]). A complete characterization of these spaces

may be found in [20].

Next, we introduce a few projection operators of L2(bΩ) onto the Hardy spaces

which will be of central interest to us. In what follows, we let the symbol e(x−y)
denote the kernel given in (3.9). Any function denoted by either u or v is assumed to

be in L2(bΩ).
We begin by recalling the classical left and right Cauchy integral operators

Clv(x) :=
∫
bΩ
e(x−y)n(y)v(y)dσ(y),

Crv(x) :=
∫
bΩ
v(y)n(y)e(x−y)dσ(y),

(4.4)

where x ∈Ω.

Left Cauchy integrals are left monogenic in Ω, and right Cauchy integrals are right

monogenic. Two versions of the Cauchy integral formula, one for right monogenic

functions and another for left monogenic functions are known to be valid in this

setting, namely (see [20])

f(x)= (Clf )(x), x ∈Ω, f ∈ C(Ω̄), Df = 0,

g(x)= (Crg)(x), x ∈Ω, g ∈ C(Ω̄), gD = 0.
(4.5)

The principal values of the Cauchy integrals give rise to two boundary operators,

denoted Kl and Kr , respectively, which are closely related to the Hilbert transform

Klv(x) := 2 p.v.
∫
bΩ
e(x−y)n(y)v(y)dσ(y), a.e. x ∈ bΩ,

Krv(x) := 2 p.v.
∫
bΩ
v(y)n(y)e(x−y)dσ(y), a.e. x ∈ bΩ,

(4.6)

where p.v. denotes principal value.

It is a classical result that if the boundary of Ω is a smooth surface then both Kl
and Kr are well-defined, bounded operators on L2(bΩ) (see [5, 9, 10, 11, 12, 20]). In

fact, in the early eighties, Coifman, McIntosh, and Meyer were able to prove that Kl
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and Kr are well defined and bounded even when the smoothness of bΩ is reduced to

Lipschitz (see [8] and, for Clifford algebras, [17, 18, 20]). We define the left and right

Cauchy transforms, denoted, respectively, C+l and C+r , as the two boundary operators

given by the nontangential limits of the left and right Cauchy integrals. The classical

Plemelj formula can be applied to obtain the following explicit representations for the

Cauchy transforms (see [20]):

C+l u(x)=
1
2

[(
I+Kl

)
u
]
(x), C+r u(x)=

1
2

[(
I+Kr

)
u
]
(x), a.e. x ∈ bΩ, (4.7)

where I denotes the identity on L2(bΩ). The L2(bΩ)-boundedness of the operators Kl
and Kr together with the monogenicity of the Cauchy integrals imply at once that C+l
and C+r are bounded projections acting among the following spaces:

C+l : L2(bΩ) �→H2
l (bΩ), C+r : L2(bΩ) �→H2

r (bΩ). (4.8)

Following [3], we now produce explicit representations for the L2(bΩ)-adjoints of

these operators.

Lemma 4.1. With the notations and assumptions above, for any v ∈ L2(bΩ) and for

a.e. x ∈ bΩ, the following representation formulas hold:

(
C+l
)∗v(x)= 1

2

[
v(x)−n̄(x)Kr

(
nv

)
(x)

]
,

(
C+r
)∗v(x)= 1

2

[
v(x)−Kl

(
vn

)
(x)n̄(x)

]
.

(4.9)

Proof. We show how to prove the formula for (C+l )∗, the proof for (C+r )∗ being

similar. Because of the Plemelj formula (4.7) it is clear that all we need to show is the

equality K∗l v(x)=−n̄(x)Kr (nv)(x). In this regard, we have

〈
Klu,v

〉= Sc
(∫

bΩ
Klu(x)v(x)dσ(x)

)

= Sc

(∫
bΩ

2 p.v.

(∫
bΩ
e(x−y)n(y)u(y)dσ(y)

)
v(x)dσ(x)

)

= Sc
(∫

bΩ
ū(y)n̄(y)2 p.v.

∫
bΩ
e(x−y)n̄(x)(n(x)v(x))dσ(x)dσ(y))

= Sc

(∫
bΩ
ū(y)n̄(y)

[
2 p.v.

∫
bΩ

(
n(x)v(x)

)
n(x)e(x−y)dσ(x)

]
dσ(y)

)

=−Sc

(∫
bΩ
ū(y)n̄(y)

[
2 p.v.

∫
bΩ

(
n(x)v(x)

)
n(x)e(y−x)dσ(x)

]
dσ(y)

)

=
〈
u,−n̄Kr

(
nv

)〉
.

(4.10)

The proof is concluded.



620 S. BERNSTEIN AND L. LANZANI

Lemma 4.1 may be used to characterize the orthogonal complements of the spaces

H2
l (bΩ) and H2

r (bΩ), as follows.

Lemma 4.2. Let v ∈ L2(bΩ). Then v ∈ (H2
l (bΩ))⊥ if and only if v = Hn for some

H ∈H2
r (bΩ), where n denotes the outward normal unit vector.

Proof. We begin by showing that functions of the form Hn, with H ∈H2
r (bΩ) are

orthogonal to the space H2
l (bΩ). In fact, for any given u∈H2

l (bΩ) and H ∈H2
r (bΩ),

Stokes’ formula (3.12) readily implies that

〈
Hn,u

〉= Sc
(∫

bΩ
H(x)n(x)u(x)dσ(x)

)
= 0. (4.11)

On the other hand, for v ∈ (H2
l (bΩ))⊥ and u ∈ L2(bΩ) we have 0 = 〈C+l u,v〉 =

〈u,(C+l )∗v〉, so that (C+l )∗v = 0. By applying Lemma 4.1 it thus follows that

v = n̄Kr
(
nv

)=Kr (nv)n= (2C+r (nv)−nv)n= (2(C+r (nv))n− v̄) (4.12)

and we obtain v =Hn with H := C+r (nv). The proof is concluded.

The following similar result holds for the orthogonal complement of the right Hardy

space.

Lemma 4.3. Let v ∈ L2(bΩ). Then v ∈ (H2
r (bΩ))⊥ if and only if, v = nh for some

h∈H2
l (bΩ), where n denotes the outward normal unit vector.

From the formulas in Lemma 4.1 it is clear that, in general, Cauchy transforms are

not selfadjoint projections (see also [14]). Because H2
l (bΩ) and H2

r (bΩ) are closed

subspaces of L2(bΩ) the classical theory of Hilbert spaces grants the existence of

orthogonal (i.e., selfadjoint) projections onto such subspaces. We call such projections

the left and right Szegő projections for L2(bΩ), denoted Pl and Pr . In short, we have

Pl : L2(bΩ) �→H2
l (bΩ), Pr : L2(bΩ) �→H2

r (bΩ),∥∥Pr∥∥= 1= ∥∥Pl∥∥, that is, Pr = P∗r , Pl = P∗l .
(4.13)

Here, the symbol ‖·‖ denotes operator norm.

Any function u ∈ L2(bΩ) admits orthogonal decompositions in terms of Pr , Pl,
and their orthogonal complements. These formulas can be made explicit by applying

Lemmas 4.2 and 4.3, as follows.

Theorem 4.4. With the same notations and assumptions as above, any function

u∈ L2(bΩ) has the following unique orthogonal decomposition in L2(bΩ):

Plu+Pr
(
nu

)
n=u= Pru+nPl

(
un

)
. (4.14)

Proof. It is enough to show the first equality. We haveu= Plu+(P⊥l u)= Plu+Hn,

for some H ∈H2
r (bΩ) (see Lemma 4.3). Hence, ū= Plu+Hn, so that ūn̄= Plun̄+H,

that is, nu = nPlu+H, with H ∈ H2
r (bΩ) and nPlu ∈ H2

r (bΩ)⊥. The uniqueness

property of orthogonal decompositions may now be applied to obtain H = Pr (nu).
The proof is concluded.
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We conclude this section by introducing the so-called Kerzman-Stein equations for

Pl and Pr . Let Al and Ar denote, respectively, the left and right Kerzman-Stein opera-

tors, that is,

Al := (C+l )∗−C+l = 1
2

(
K∗l −Kl

)
, Ar := (C+r )∗−C+r = 1

2

(
K∗r −Kr

)
. (4.15)

The two Kerzman-Stein operators are L2(bΩ)-bounded and skew-adjoint (see [14]); in

particular, we have (see [16] and, for a related result in a different context, [26]).

Lemma 4.5. Let Ω ⊂Rn+1 denote a bounded domain with Lipschitz boundary. With

the same notations as above, I−Al and I−Ar are invertible on L2(bΩ) (here, I denotes

the identity on L2(bΩ)).

Lemma 4.5 is the key ingredient for proving the equations of Kerzman and Stein

for Pl and Pr .

Theorem 4.6. With the same notations and assumptions as above,

Pl = C+l
(
I−Al

)−1, Pr = C+r
(
I−Ar

)−1. (4.16)

Proof. As usual, it suffices to give a proof for just one of the two equations, say

the one for Pl. Let v denote an arbitrary element of L2(bΩ). We have

[
I−Al

]
v =

[
I− 1

2

(
K∗l −Kl

)]
v = 1

2

(
v−K∗l v

)+ 1
2

(
v+Klv

)

= 1
2

(
v+n̄Kr

(
nv

))+ 1
2

(
v+Klv

)= n̄1
2

(
nv+Kr

(
nv

))+C+l v
= n̄1

2

((
nv

)+Kr (nv))+C+l v = n̄C+l (nv)+C+l v = C+l v+C+r (nv)n,
(4.17)

and C+r (nv) is orthogonal to H2
l (bΩ) (see Lemma 4.2). The conclusion follows by

applying Pl to the very first and the very last terms in the sequel of the equalities

above.

Just as in the case of the plane, the importance of the equations of Kerzman and

Stein rests on the fact that they provide a quite explicit representation for the Szegő

projections, which are defined only in an abstract way, in terms of the Cauchy trans-

forms which are, instead, completely explicit operators (see (4.6) and (4.7)). But this is

not all, as even deeper applications may be obtained by regarding the Kerzman-Stein

equations as vehicles to deduce new properties of the Szegő projections from known

properties of the corresponding Cauchy transforms, and vice versa (see [1, 3]). This

well-known subject eludes our current purposes and we will not discuss it in detail.

We just wish to mention that in the case when the domain has C∞-smooth boundary,

exactly the same arguments as those given in [14] for the case of the plane may be

applied to show that both Al and Ar are smoothing operators. It thus follows that Pl
(resp., Pr ) and C+l (resp., C+r ) have the same type of regularity, that is, they both map

the space C∞(bΩ) to the space C∞(Ω̄) (see [3, 20]).
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5. One application. We finally show in this section how to use Theorem 4.4 to ob-

tain a higher-dimensional generalization of Theorem 2.1 in the case of balls or half

spaces. We have the following theorem.

Theorem 5.1. Let Ω = {x ∈ Rn+1 | |x − a|2 < R2} and let ϕ : bΩ → C�n, ϕ ∈
L2(bΩ), be given. Using the notations introduced in the previous sections, the Dirichlet

problem

∆u= 0 in Ω, u∗ ∈ L2(bΩ), u+ =ϕ on bΩ, (5.1)

has the unique solution

u(x)= (Plϕ)(x)+
[
Pr

((
x−a
R

)
ϕ
)]
(x)

(
x−a
R

)
. (5.2)

Here, u∗ and u+ denote, respectively, the nontangential maximal function and the

nontangential limit of u (see [13]).

Proof. To simplify the notations we assume that Ω is the unit ball centered at the

origin, that is, a= 0 and R = 1. In such a case the outward normal unit vector n(x) is

equal to x, x ∈ bΩ, and the orthogonal decomposition (4.14) for the boundary datum

ϕ yields

ϕ(x)= (Plϕ)(x)+Pr (xϕ)x, a.e. x ∈ bΩ. (5.3)

At this point we observe that the right-hand side of the equality above is the sum

of two functions well defined in the whole of Ω which are, indeed, harmonic. In fact,

we have

∆
(
Pr
(
xϕ

)
x
)
=∆

(
xPr

(
xϕ

))

= (∆(x))Pr (xϕ)+x(∆(Pr (xϕ)))+2
n∑
j=0

(
∂
∂xj

x
)(

∂
∂xj

Pr
(
xϕ

))

= 2
n∑
j=0

ēj

(
∂
∂xj

Pr
(
xϕ

))= 2D̄
(
Pr
(
xϕ

))= 2Pr
(
xϕ

)
D = 0.

(5.4)

The square-integrability of the nontangential maximal function of the harmonic func-

tion obtained by adding Plϕ and the conjugate of Pr (xϕ)x is a consequence of the

Kerzman-Stein equations (4.16) and Lemma 4.5 (it is well known that the nontangen-

tial maximal function of a Cauchy transform is square integrable, see [8, 16]). Finally,

we observe that the condition on the nontangential limit in (5.1) follows at once from

the very definitions of Hardy spaces and of Szegő projections. The proof is concluded.

The case when Ω is a half space is even easier to treat. For example, for Ω=Rn+1+ :=
{x0 > 0}, the same arguments as in Theorem 5.1 yield

u= Plϕ+Pr
(
ϕ̄
)

:= h+H̄, (5.5)

and a formula for arbitrary half spaces can also be derived in a similar fashion. We ob-

serve that the two functions h andH in the decomposition above are, respectively, left
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and right monogenic. It is not clear whether the second term in the decomposition

(5.2) for a ball is indeed (the conjugate of) a right monogenic function (the classi-

cal Leibniz rule does not extend to monogenic functions). Even though balls and half

spaces are known to be conformally equivalent, we do not yet know whether the point-

wise multiplication of a Szegő projection by the outward normal unit vector satisfies

some type of conformal invariance (see [7, 22] and, for the conformal invariance of

Cauchy integrals on manifold, [6, 24]). Indeed, we believe this would be an interesting

problem to be studied.

To treat the case of an arbitrary bounded (smooth) domain in Rn+1, we need to

overcome the obstacle of not knowing the explicit form of the outward normal unit

vector. This can be achieved, for example, by looking at the Szegő and Garabedian

kernels associated to the domain. Using the same notations as in Section 2, it is very

easy to show that, also for the case of C�n-valued functions, we have

La = San̄ a.e. on bΩ. (5.6)

A formal orthogonal decomposition for the boundary datum ϕ would involve the

pointwise multiplication by the inverses of the kernels, namely

ϕ = S−1
a Pl

(
Saϕ

)+Pr (ϕ̄La)(La)−1. (5.7)

In order to make formula (5.7) meaningful, we need therefore to study the highly non-

trivial problem of characterizing those domains for which the Szegő and Garabedian

kernels are nonvanishing and invertible (see [4, 21] and related comments in the in-

troduction). Moreover, in order to apply formula (5.7) to the solution of the Dirichlet

problem, a further question needs to be settled, namely characterizing those domains

for which the two functions in the right-hand side of (5.7) are harmonic. This might

involve the study of the monogenicity of the inverses of the Szegő and the Garabedian

kernels (see again the comments in the introduction).
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ping function, Math. Ann. 236 (1978), no. 1, 85–93.

[15] V. V. Kravchenko and M. V. Shapiro, Integral Representations for Spatial Models of Math-
ematical Physics, Longman, Harlow, 1996.

[16] L. Lanzani, Cauchy transform and Hardy spaces for rough planar domains, Analysis,
Geometry, Number Theory: The Mathematics of Leon Ehrenpreis (Philadelphia, PA,
1998), American Mathematical Society, Rhode Island, 2000, pp. 409–428.

[17] C. Li, A. McIntosh, and T. Qian, Clifford algebras, Fourier transforms and singular convo-
lution operators on Lipschitz surfaces, Rev. Mat. Iberoamericana 10 (1994), no. 3,
665–721.

[18] C. Li, A. McIntosh, and S. Semmes, Convolution singular integrals on Lipschitz surfaces,
J. Amer. Math. Soc. 5 (1992), no. 3, 455–481.

[19] M. Mitrea, personal communication.
[20] , Clifford Wavelets, Singular Integrals, and Hardy Spaces, Lecture Notes in Mathe-

matics, vol. 1575, Springer-Verlag, Berlin, 1994.
[21] A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger, Estimates for the Bergman and Szegő
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