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We prove that a Riemannian foliation with the flat normal connection on a Riemannian
manifold is harmonic if and only if the geodesic flow on the normal bundle preserves the
Riemannian volume form of the canonical metric defined by the adapted connection.
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1. Introduction. Let (M,gM) be a Riemannian manifold. A foliation � on M is Rie-

mannian and gM bundle-like if all the leaves are locally equi-distant to each other.

Such a foliation is characterized by the property that a geodesic orthogonal to the

foliation at one point is orthogonal everywhere. For a Riemannian foliation, consider-

able efforts have been made to give global characterizations of the property that it is

harmonic, that is, all of its leaves are minimal submanifolds. For examples, a Riemann-

ian foliation is harmonic if and only if either one of the following conditions holds:

(1) it is an extremal of the energy functional for special variations (see [2]); (2) it is

an extremal of the energy of the foliation under certain variations of the Riemannian

metric of the manifold (see [1]). In this paper, we give a dynamical characterization

of the harmonicity of a Riemannian foliation which has the flat normal connection in

the sense of Oshikiri [4].

Let � be a Riemannian foliation of dimension p and codimension q on a Riemannian

manifold M of dimension n (p+q = n) with bundle-like metric gM . Throughout, we

work in the smooth category and the following notations are used:

• TM is the tangent bundle of M .

• L and L⊥ are the tangent bundle and the normal bundle of �, respectively.

• ΓTM , ΓL, and ΓL⊥ are the spaces of sections of TM , L, and L⊥, respectively.

• π : TM → L⊥, π⊥ : TM → L, and P� : L⊥ →M are the canonical projections.

• ∇M is the Levi-Civita connection associated with gM .

Since � is Riemannian, there exists a unique torsion-free metric connection ∇ on

L⊥ which is called adapted and given as follows (see [2]): for Z ∈ ΓL⊥,

∇XZ =

π[X,Z] for X ∈ ΓL,
π
(∇MX Z) for X ∈ ΓL⊥. (1.1)

Associated with the above connection there is a bundle map C� : TL⊥ → L⊥ called the
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connection map associated with � given as follows. For ξ ∈ TZL⊥ with (dP�)(ξ)≠ 0,

C�(ξ)=∇σ̇ (0)Z, (1.2)

where Z is a curve in L⊥ such that d/dt|t=0Z = ξ and σ(t)= P�(Z(t)). This map gives

a metric g̃ on L⊥ defined by

g̃(ξ,η)= gM
((
dP�

)
Z(ξ),

(
dP�

)
Z(η)

)+gM(C�(ξ),C�(η)
)

(1.3)

for ξ,η∈ TZL⊥. We denote the Riemannian volume form on L⊥ associated with g̃ by µ̃.

We define a local flowφt on L⊥, called the normal geodesic flow of � as follows. For

z ∈ L⊥, let γ be a geodesic with initial velocity z. Since � is Riemannian, γ̇(t)∈ L⊥ for

each t in the domain of γ. We put φt(z)= γ̇(t) for z ∈ L⊥ and t in the domain of γ.

A foliation � is said to have the flat normal connection if the normal bundle L⊥ of �

admits an orthonormal frame field {Ep+1, . . . ,En} such that gM(∇MZ Eα,Eβ) = 0 for all

α, β= p+1, . . . ,n and all Z ∈ ΓL⊥.

The purpose of this paper is to prove the following theorem.

Theorem 1.1. Let � be a Riemannian foliation on a Riemannian manifold which

has a flat normal connection and µ̃ the Riemannian volume form on L⊥ corresponding

to g̃. Then � is harmonic if and only if (φt) preserves µ̃.

2. The proof. Let ζ be a vector field on L⊥ generated by the geodesic flow. It suffices

to show that � is harmonic if and only if (Θζµ̃)(z)= 0 at any given point z ∈ L⊥, where

Θζ denotes the Lie derivative. Let {e1, . . . ,en} be an orthonormal basis of the tangent

space of M at the point m = P�(z) such that ei ∈ Lm for i = 1, . . . ,p and eα ∈ L⊥m for

α= p+1, . . . ,n. In a neighborhood ofm, we may choose a frame {Eα :α= p+1, . . . ,n}
of L⊥, called an adapted frame, satisfying the following properties: Eα(m) = eα, α =
p+1, . . . ,n,∇eαEβ =π(∇MeαEβ)= 0 and∇XEα =π([X,Eα])= 0 for any smooth section

X of L on U (see [3]). Since � has the flat normal connection, we may choose Eα so

that∇EαEβ = 0 for α, β= p+1, . . . ,n. Completing this frame by an orthonormal frame

{Ei : i= 1, . . . ,p} of L with Ei(m)= ei, we get a local orthonormal frame {E1, . . . ,En} of

TM on a neighborhood U ofmwith EA(m)= eA forA= 1, . . . ,n. Let EHA forA= 1, . . . ,n
be the horizontal lift of EA to TL⊥, that is, the unique vector field on a neighborhood

of z in L⊥ such that dP�(EHA ) = EA and C�(EHA ) = 0, and EVα for α = p+1, . . . ,n the

vertical lift of Eα on TL⊥, that is, the vector field on a neighborhood of z such that

dP(EVα)= 0 and C�(EVα)= Eα. We put EHA (z)= eHA and EVα(z)= eVα . Now we compute

[(
Θζµ̃

)
(z)

](
eH1 , . . . ,e

H
n ,e

V
p+1, . . . ,e

V
n
)

=−
p∑
i=1

µ̃
(
eH1 , . . . ,

[
ζ,EHi

]
(z), . . . ,eHp ,e

H
p+1, . . . ,e

H
n ,e

V
p+1, . . . ,e

V
n
)

−
n∑

α=p+1

µ̃
(
eH1 , . . . ,e

H
p ,e

H
p+1, . . . ,

[
ζ,EHα

]
(z), . . . ,eHn ,e

V
p+1, . . . ,e

V
n
)

−
n∑

α=p+1

µ̃
(
eH1 , . . . ,e

H
n ,e

V
p+1, . . . ,

[
ζ,EVα

]
(z), . . . ,eVn

)
.

(2.1)



A CHARACTERIZATION OF HARMONIC FOLIATIONS . . . 575

But,

µ̃
(
eH1 , . . . ,

[
ζ,EHi

]
(z), . . . ,eHp ,e

H
p+1, . . . ,e

H
n ,e

V
p+1, . . . ,e

V
n
)

= g̃([ζ,EHi ](z),eHi )= gM((dP�

)[
ζ,EHi

]
(m),ei

)
,

µ̃
(
eH1 , . . . ,e

H
p ,e

H
p+1, . . . ,

[
ζ,EHα

]
(z), . . . ,eHn ,e

V
p+1, . . . ,e

V
n
)

= gM
((
dP�

)([
ζ,EHα

]
(z)

)
,eα

)
,

(2.2)

where m= P�(z) and α is the second fundamental form of � (see [2]).

Let Wi be any vector field on M satisfying Wi(ϕi
tm)= ϕ̃i

tz for the local flows (ϕi
t)

of Ei and (ϕ̃i
t) of EHi . From dP� ◦EHi = Ei ◦P�, we have P� ◦ ϕ̃i

t = ϕi
t ◦P� for any t.

Therefore,

dP�

([
ζ,EHi

]
(z)

)= d
dt
|t=0

(
dP� ◦dϕ̃i

−t
)(
ζ
(
ϕ̃i
t(z)

))

= d
dt
|t=0

(
dϕi

−t ◦dP�

)(
ζ
(
ϕ̃i
t(z)

))

= d
dt
|t=0

(
dϕi

−t ◦ϕ̃i
t
)
(z)

= d
dt
|t=0

(
dϕi

−t
)(
Wi
(
ϕi
t(m)

))
= [Wi,Ei](m).

(2.3)

Hence we have

gM
(
dP�

([
ζ,EHi

]
(z)

)
,Ei(z)

)= gM([Wi,Ei],Ei)(m)
= gM

(
Wi,∇MEiEi

)
(m)

= gM
(
Wi(m),α

(
Ei,Ei

)
(m)

)
= gM

(
z,α

(
Ei(m),Ei(m)

))
.

(2.4)

Thus, we have

−
p∑
i=1

µ̃
(
eH1 , . . . ,

[
ζ,EHi

]
(z), . . . ,eHp ,e

H
p+1, . . . ,e

H
n ,e

V
p+1, . . . ,e

V
n
)

=−gM
(
z,

p∑
i=1

α
(
Ei(m),Ei(m)

))

=−gM
(
z,τ(m)

)
,

(2.5)

where τ(m) is the mean curvature vector of � at m (see [2]).

On the other hand, we have

gM
((
dP�

[
ζ,EHα

])
(m),eα

)= gM([Wα,Eα](m),eα), (2.6)
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whereWα is any vector field onM satisfyingWα(ϕα
t m)= ϕ̃α

t z for the local flowsϕα
t of

Eα and ϕ̃α
t of EHα , α= p+1, . . . ,n. Since Wα(ϕα

t m) is an integral curve of EHα , we have

π(∇MEαWα)= C�(EHα )= 0. Moreover, by the choice of {Eα}, we haveπ(∇MWαEα)(m)= 0.

Therefore,

gM
((
dP�

[
ζ,EHα

])
(m),eα

)= gM((∇MWαEα)(m)−(∇MEαWα)(m),eα)= 0. (2.7)

Thus, to complete the proof, it suffices to show that

µ̃
(
eH1 , . . . ,e

H
n ,e

V
p+1, . . . ,

[
ζ,EVα

]
(z), . . . ,eVn

)= 0, (2.8)

that is,

gM
(
C�

([
ζ,EVα

]
(z)

)
,eα

)= 0. (2.9)

For this purpose, we introduce a local coordinate system around a point z ∈ L⊥ as

follows: let (xA)A=1,...,n :U →Rn be a distinguished chart on a neighborhood U ofm∈
M . To z ∈ P−1

� (U) with P�(z)=m, we assign (x1(m),. . . ,xn(m),zp+1(m),. . . ,zn(m))
as its coordinates, where z =∑n

α=p+1zα(m)Eα(m). Let γ be a geodesic orthogonal to

the leaves of � and (xA(t) :A= 1, . . . ,n) its local coordinates.

Write

γ̇(t)=
n∑

α=p+1

zα(t)Eα
(
γ(t)

)
. (2.10)

By the choice of {Eα}, we get

d
dt
zα = 0 (2.11)

for α = p+1, . . . ,n. Moreover, if we express Eα as Eα =
∑n
A=1fAα (∂/∂xA), where fAα is

a smooth function on U , we have

n∑
A=1

(
d
dt
xA
)
∂
∂xA

= γ̇ =
n∑

α=p+1

zαEα =
n∑

α=p+1

n∑
A=1

zαfAα
∂
∂xA

. (2.12)

Equations (2.10) and (2.11) imply that (xA(t),zα(t)) satisfy

d
dt
xA =

n∑
α=p+1

zαfAα ,
d
dt
zα = 0. (2.13)

It follows that ζ can be locally expressed as

ζ =
∑
α,A
zαfAα

∂
∂xA

. (2.14)

A simple computation using the above expression of ζ gives

[
ζ,EVα

]=−∑
A

(
fAα +

∑
β
zβEα

(
fAβ
)) ∂
∂xA

. (2.15)
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It is easy to show that for a vector field ξ =∑AξA(∂/∂xA)+
∑
α ξ̃α(∂/∂zα), C�(ξ)

is given by

C�(ξ)=
∑
α

(
ξ̃α+

∑
β,A
ΓαβAz

βξA
)
Eα, (2.16)

where z =∑αzαEα and ∇∂AEα =
∑n
γ=p+1 Γ

γ
αAEγ . Therefore,

C�

([
ζ,EVα

])=− ∑
δ,σ ,A

{
fAα +

∑
β
zβEα

(
fAβ
)}
ΓδσAz

σEδ. (2.17)

But ΓδσA=0 onU forA=1, . . . ,n and δ,σ =p+1, . . . ,n by the choice of the frame {EA}.
Hence C�([ζ,EVα])= 0 and the proof is complete.
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