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Inspired by the “two envelopes exchange paradox,” a finitely additive probability mea-
sure m on the natural numbers is introduced. The measure is uniform in the sense that
m({i})=m({j}) for all i,j ∈N. The measure is shown to be translation invariant and has
such desirable properties as m({i∈N | i≡ 0(mod2)})= 1/2. For any r ∈ [0,1], a set A is
constructed such thatm(A)= r ; however,m is not defined on the power set of N. Finally,
a resolution to the two envelopes exchange paradox is presented in terms of m.
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1. Introduction. In recent work on the so-called “two envelopes exchange paradox”

(cf. Broome [1] and Nalebuff [4]), it has been proposed that the commonly used as-

sumption of countable additivity for probability distributions be dropped [5]. The two

envelopes problem is as follows: a random (positive) amount of money is put in an

envelope O. A coin is flipped and if the coin comes up heads, twice the amount of

money in envelope O is put in a second envelope (call it T ) and if the coin comes up

tails, half the amount of money in envelope O is put in envelope T .

The paradox arises by reasoning that if we choose one envelope (no matter which

one) then there is a 50% chance that the other envelope contains one-half the amount

we hold, and there is a 50% chance that the other envelope contains twice the amount

we hold. That is, the other envelope has an expected value of 1.25 times the amount

in the envelope we hold. This expected value is greater, regardless of whether we

hold envelope O or T . Therefore, if we hold envelope O it appears to be to our ad-

vantage to swap envelope O for envelope T (we might even be willing to pay a cer-

tain amount of money to swap). Also, if we should hold envelope T we also have

a desire to swap since we can argue that the expected value in O is 1.25 times the

amount in T . Of course, the “paradox” is resolved if a probability distribution is

given by which the amount of money to be put in envelope O is determined. The

expected amount in O is then the expected value of this distribution and the expected

amount in T is 1.25 times the expected amount in O [3].

Rawling [5] has suggested addressing the paradox by exploring what happens when

the amount in envelope O is based on a natural number n (he chose to put $2n in

envelope O) which is chosen according to a uniform probability distribution on the

natural numbers N. With such a distribution, countable additivity of the probability

measure must be abandoned. Motivated by this approach, we explore the implications

of postulating a uniform probability distribution on N, which satisfies the properties
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of finite additivity and translation invariance. For each real number r such that 0 ≤
r ≤ 1, we construct a subset of N, with measure r . Finally, we propose a method for

calculating expected values for the two envelopes problem which resolves the paradox.

2. The definition and results. We center our discussion around the following def-

inition.

Definition 2.1. Let S ⊂N and n∈N. Then define

cS(n)=
∣∣{x ∈ S | x ≤n}∣∣. (2.1)

For S ⊂N define the (probability) measure of S as

P(S)= lim
n→∞

cS(n)
n

, (2.2)

provided this limit exists.

The probability measure of S, P(S), is occasionally called the asymptotic density of

the set S [2]. This definition is also briefly discussed in [6]. Notice that if A ⊂ B ⊂ N
then cA(n)≤ cB(n) for all n∈N.

Now, we show that P satisfies several desired conditions for the probability measure

of the two envelopes problem.

Theorem 2.2. Probability measure P satisfies: P(∅)= 0, P({n})= P({m})= 0 for

all m,n∈N, P(N)= 1, and P(A)= 0 if |A|<∞.

Proof. This result follows trivially from the definition of P .

Theorem 2.2 includes the idea that P should be determined by a uniform distribu-

tion. Although finite sets have measure zero, the converse of this result does not hold.

Consider, for example, the set

A= {x | x = 10n for some n∈N}. (2.3)

Then since cA(n)≤ log10(n), we have P(A)= 0.

Theorem 2.3. The probability measure P is finitely additive. That is, if P(S1),
P(S2), . . . ,P(Sk) are defined, Si∩Sj =∅ for i ≠ j, and S = S1∪S2∪···∪Sk is defined,

then P(S)= P(S1)+P(S2)+···+P(Sk).
Proof. Notice that for a given n∈N,

cS(n)= cS1(n)+cS2(n)+···+cSk(n). (2.4)

Therefore,

P(S)= lim
n→∞

(
cS(n)
n

)
= lim
n→∞

(cS1(n)+cS2(n)+···+cSk(n)
n

)

= lim
n→∞

(cS1(n)
n

)
+ lim
n→∞

(cS2(n)
n

)
+···+ lim

n→∞

(cSk(n)
n

)

= P(S1
)+P(S2

)+···+P(Sk).

(2.5)
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Notice that, in general, P is not countably additive. This follows from the facts that

N=⋃∞n=1{n}, P({n})= 0 for each n∈N, and P(N)= 1.

We define for S ⊂N and x ∈N,

S+x = {s+x | s ∈ S}. (2.6)

The set S+x is commonly called a translation for S. We have the following theorem.

Theorem 2.4. The probability measure P is translation invariant. That is, P(S +
x)= P(S) for all S ⊂N and for x ∈N.

Proof. First, notice that cS(n)≤ cS+x(n)+x. Therefore,

P(S)= lim
n→∞

cS(n)
n

≤ lim
n→∞

cS+x(n)+x
n

= lim
n→∞

(
cS+x(n)
n

+ x
n

)
= lim
n→∞

(
cS+x(n)
n

)
= P(S+x).

(2.7)

Similarly, since cS(n)≥ cS+x(n), we have P(S)≥ P(S+x). Therefore, P(S)= P(S+x).

3. Sets of given measures. In this section, for any r ∈ [0,1], we construct a set

A⊂N such that P(A)= r . First, we define

Ai,j =
{
x ∈N | x ≡ i (modj)

}
(3.1)

for i≤ j in N.

Theorem 3.1. Let p,q ∈N with p ≤ q. Then there exists A⊂N with P(A)= p/q.

Proof. Notice that for all p,q ∈N, p ≤ q we have

n
q
−1< cAp/q (n) <

n
q
+1. (3.2)

Therefore, P(Ap/q)= limn→∞(cAp/q (n)/n)= 1/q by the Sandwich theorem. By Theorem

2.3,

P


 p⋃
i=1

Ai,q


= p

q
. (3.3)

We now use the decimal expansion of irrational numbers to construct sets of irra-

tional measure.

Theorem 3.2. For any irrational r ∈ [0,1], there exists a set A with P(A)= r .

Proof. Let the decimal expansion of r be 0.d1d2d3 ··· (i.e., r = ∑∞
i=1di×10−i).

For k≥ 1, define

Ak =
dk⋃
i=1

Ai×10k−1/10k , (3.4)
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where Ai×10k−1/10k is constructed as in Theorem 3.1. Therefore P(Ak) = dk × 10−k.
Notice that Ai ∩Aj = ∅ if i ≠ j. Let A = ⋃∞i=1Ai and let ε > 0 be given. Then for

some M ∈ N, r −ε < 0.d1d2 ···dM < r . Let BM =
⋃M
i=1Ai. Then BM ⊂ A and P(BM) =

0.d1d2 ···dM . Now for a given n, cBM (n)≤ cA(n). Therefore, cBM /n≤ cA(n)/n and

r −ε < 0.d1d2 ···dM = P
(
BM
)= lim

n→∞
cBM (n)
n

≤ liminf
n→∞

cA(n)
n

. (3.5)

Similarly, there exists N ∈N with

r < 0.d1d2 ···
(
dN+1

)
< r +ε. (3.6)

With

BN =

N−1⋃
i=1

Ai


∪


dN+1⋃

i=1

Ai×10N−1/10N


 (3.7)

we have A ⊂ BN and P(BN) = 0.d1d2 ···(dN+1). For given n, cA(n) ≤ cBN (n) and so

cA(n)/n≤ cBN (n)/n and

limsup
n→∞

cA(n)
n

≤ lim
n→∞

cBN (n)
n

= 0.d1d2 ···
(
dN+1

)
< r +ε. (3.8)

Therefore, for arbitrary ε > 0 we have

r −ε < liminf
n→∞

(
cA(n)
n

)
≤ limsup

n→∞

(
cA(n)
n

)
< r +ε. (3.9)

Hence

liminf
n→∞

(
cA(n)
n

)
= limsup

n→∞

(
cA(n)
n

)
= lim
n→∞

cA(n)
n

= P(A)= r . (3.10)

4. Discussion. Unfortunately, it is fairly easy to construct subsets of N which are

not measurable under our definition. We simply alternate the inclusion and exclusion

of larger and larger numbers of natural numbers. For example, define Ai = {102i−2+1,
102i−2 + 2, . . . ,102i−1} for i ∈ N, and define A = ⋃∞i=1Ai. Then for n = 10k where k
is odd, cA(n) = 9×∑(k+1)/2

i=1 102i−2 and for n = 10k where k is even, cA(n) = 9×∑k/2
i=1 102i−2. If we restrict n to values in the set {n | n = 10k where k is odd}, then

limn→∞(cA(n)/n)= 10/11. If we restrict n to values in the set {n |n= 10k where k is

even}, then limn→∞(cA(n)/n)= 1/11. Therefore P(A) is not defined.

We would now like to return to the two envelopes problem and draw some conclu-

sions from the properties we have developed. We associate a value of n with set {n}.
If we calculate the expected value in envelope O using infinite sums, then we get

∞∑
i=1

iP
({i})=

∞∑
i=1

0= 0. (4.1)

It is not surprising that we get this absurdity when taking an infinite sum, since we

have calculated probabilities without having the property of countable additivity. An
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alternative approach is to calculate a “cumulative expected value” and then take a

limit. That is, we can argue that the expected amount in envelope O is

lim
n→∞


 n∑
i=1

C{i}(n)
n

×i

= lim

n→∞


 n∑
i=1

i
n


= lim

n→∞

(
n(n+1)

2n

)
=∞. (4.2)

In this way, we calculate a limit of finite sums and never directly deal with an infi-

nite sum. Notice that this gives an infinite expected value for the contents of both

envelopes O and T , and the paradox is resolved. We therefore propose that, in the

setting of the two envelopes problem, probabilities and expected values be computed

as above.
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