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1. Consider a planar differential system

ẋ =y+xRn−1(x,y), ẏ =−x+yRn−1(x,y), (1.1)

where Rn−1(x,y) is a polynomial in x,y of degree n−1.

System (1.1) has a unique singular point O(0,0) whose linear part is of center type.

Orbits of (1.1) move around the origin with a constant angular velocity and the

origin is a uniformly isochronous singular point.

In [3], the following problem was proposed.

Problem 1.1. Identify (1.1) of odd degree that are O-symmetric (not necessarily

quasi-homogeneous) having O as a (uniformly isochronous) center.

We solve this problem for n = 5 and derive necessary and sufficient center condi-

tions for the system

ẋ =y+x(ax2+bxy+cy2+dx4+ex3y+fx2y2+gxy3+hy4),
ẏ =−x+y(ax2+bxy+cy2+dx4+ex3y+fx2y2+gxy3+hy4),

a,b,c,d,e,f ,g,h∈R.
(1.2)

Theorem 1.2. The origin is a center of (1.2) if and only if one of the following sets

of conditions is satisfied:

a= b = c = 0, f =−3(d+h); (1.3a)

a= c = d= f = h= 0; (1.3b)

a≠ 0, c =−a, f = 3b(ae−bd)(
2a2

) ,

g =
(
2a2bd+(2a2−b2

)
(bd−ae))(

2a3
) ,

h=
(−2a2d+b(bd−ae))(

2a2
) .

(1.3c)
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Proof

Necessity. To describe the behaviour of trajectories of (1.2) near the origin, we

construct the comparison function (see [6])

F(x,y)=
(
x2+y2

)
2

+f3(x,y)+f4(x,y)+··· , (1.4)

where fk is a homogeneous polynomial of degree k whose derivative is

dF
dt

=D1
(
x4+y4)+D2

(
x6+y6)+D3

(
x8+y8)+··· . (1.5)

The number of the first coefficient Di other than zero defines the multiplicity of a

complex focus and the sign of this coefficient defines stability of a focus; if Di = 0 for

all i, the origin is a center of (1.2). We refer to coefficientsDi as the Poincaré-Lyapunov

constants.

To find the Poincaré-Lyapunov constants of a system ẋ = p(x,y), ẏ = q(x,y) with

a linear center, we used computer algebra and wrote a Mathematica code that rests

on the Poincaré algorithm in [6]; (see [9] for more details)

PLconst[n_] :=

Module[{dF, ff, fF, x, y, pP, qQ, dD},

fF[2] := (xˆ2+yˆ2)/2;

fF[i_] := Sum[ff[i-j, j]*xˆ(i-j)*yˆj, {j, 0, i}];

pP[1] := y;

pP[i_] := Sum[p[i-j, j]*xˆ(i-j)*yˆj, {j, 0, i}];

qQ[1] := -x;

qQ[i_] := Sum[q[i-j, j]*xˆ(i-j)*yˆj, {j, 0, i}];

dF[k_] := (Sum[D[fF[i], x]*pP[k+1-i], {i, 2, k}]+

Sum[D[fF[i], y]*qQ[k+1-i], {i, 2, k}])//Expand;

Do[

Solve[Table[Coefficient[dF[k], xˆ(k-j) yˆj],

{j, 0, k}]

==Table[0, {k+1}],

Table[ff[k-j, j], {j, 0, k}]

]/.Rule->Set;

Solve[Table[Coefficient[dF[k+1], xˆ(k+1-j)*yˆj],

{j, 0, k+1}]

==Flatten[{dD[k], Table[0, {k}], dD[k]}]

&&ff[0, k+1]==0,

Flatten[{Table[ff[k+1-j, j],{j, 0, k+1}], dD[k]}]

]/.Rule->Set,

{k, 3, 2n+1, 2}];

Table[Numerator[Together[dD[k]]],{k, 3, 2n+1, 2}]

]

The procedure PLconst[n] returns a list {D1, . . . ,Dn} of the Poincaré-Lyapunov

constants if we define the coefficients pij,qij (2 ≤ i+j ≤ 2n+1) in the Taylor series

expansion of the functions p(x,y) and q(x,y) beforehand.
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Using this procedure, we found the first four Poincaré-Lyapunov constants of (1.2).

D1 = 2(a+c),
D2 =−4ab−4bc+3d+f +3h,

D3 = 2
(−85a3+15ab2−67a2c+15b2c+61ac2+43c3−24bd−34ae

−22ce−12bf −50ag−38cg−48bh
)
,

D4 = 44600a3b+2736ab3+84696a2bc+2736b3c+47688abc2+7592bc3

−37120a2d−1782b2d−32552acd−2704c2d+2364abe+1284bce

−2673de−6120a2f −234b2f −3384acf +792c2f −891ef

+6876abg+5076bcg−3807dg−1269fg+4720a2h+1098b2h

+31448ach+19456c2h−2673eh−3807gh.

(1.6)

It is easy to verify that the equalities Di = 0; i = 1,2,3,4, are equivalent to the

following relations:

a+c = 0, 3d+f +3h= 0,

3ce−bf +3cg−6bh= 0, 2c2f −3bcg+3b2h= 0.
(1.7)

If a = 0 then our simultaneous polynomial equations have two sets of solutions

indicated in (1.3a) and (1.3b). If a≠ 0 then, in view of the condition c =−a, we see that

the other three equations constitute a nondegenerate linear system for determining

the variables f , g, h. The solution is given by (1.3c).

The necessity part of the theorem is proved.

Sufficiency

Case 1. System (1.2) now takes the form

ẋ =y+x(dx4+ex3y+fx2y2+gxy3+hy4)≡y+xp4(x,y),

ẏ =−x+y(dx4+ex3y+fx2y2+gxy3+hy4)≡ x+yp4(x,y).
(1.8)

This is a quasi-homogeneous system of degree 5 whose coefficients satisfy the

equality f = −3(d+h), that is, the necessary and sufficient center condition in the

case we study (see [2]).

Case 2. System (1.2) now takes the form

ẋ =y+x2y
(
b+ex2+gy2),

ẏ =−x+xy2(b+ex2+gy2). (1.9)

The planar differential system

ẋ = p(x,y), ẏ = q(x,y) (1.10)

is said to be reversible (in the sense of Żola̧dek), if its orbits are symmetric with respect

to a line passing through the origin.

System (1.10) is reversible if there is a linear transformation S : R2 → R2, sending

a point (x,y) to the point (x′,y ′) symmetric to (x,y) with respect to the line αx+
βy = 0 and satisfying the condition S(p(x,y),q(x,y))=−(p(S(x,y)),q(S(x,y))).
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A more general condition of reversibility is as follows:

2αβ
(
p(x,y)p

(
x′,y ′

)−q(x,y)q(x′,y ′))
+(β2−α2)(p(x,y)q(x′,y ′)+p(x′,y ′)q(x,y))= 0.

(1.11)

It is well known that if (1.10) is reversible and has a linear center at the origin then

the origin is a center of this system (cf. [6]).

Obviously, system (1.9) is reversible because its trajectories are symmetric with

respect to both coordinate axes. So, the origin is a center for (1.9).

Case 3. System (1.2) now takes the form

(
2a3)ẋ = (2a3)y+x(ax2+bxy−ay2)

×(2a3+2a2dx2−2abdxy+2a2exy+2a2dy2−b2dy2+abey2),(
2a3)ẏ =−(2a3)x+y(ax2+bxy−ay2)

×(2a3+2a2dx2−2abdxy+2a2exy+2a2dy2−b2dy2+abey2).
(1.12)

It turns out that system (1.12) is reversible. Its trajectories are symmetric with respect

to each of the two perpendicular lines defined by the equation ax2+bxy−ay2 = 0.

The appropriate linear transformation S is given by each of the two matrices

S1,2 =±
(
4a2+b2)−1/2

(−b 2a
2a b

)
. (1.13)

This fact is confirmed by straight calculations. We used Mathematica here.

With the coordinate change x � x cosϕ+y sinϕ, y � −x sinϕ+y cosϕ, where

the angle ϕ is defined from the condition atan2ϕ+b tanϕ−a = 0, system (1.12)

becomes as follows:

ẋ =y+x2y
(
b1+e1x2+g1y2),

ẏ =−x+xy2(b1+e1x2+g1y2). (1.14)

Hence the origin is a center for (1.2) in this case once again.

The theorem is proved.

2. It is known that isochronism of a center of a planar polynomial system is equiva-

lent to the existence of an analytic transversal system commuting with a given system

in a neighborhood of a center [7]; observe that an arbitrary polynomial system with

isochronous center does not necessarily commute with a polynomial system [4, 8].

It is proved in [1] that if the systems

ẋ = p(x,y), ẏ = q(x,y),
ẋ = r(x,y), ẏ = s(x,y) (2.1)

commute, then µ(x,y)= 1/(p(x,y)s(x,y)−q(x,y)r(x,y)) is an integrating factor

of both systems.
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Thereby, if both commuting systems are polynomial then we can find the integrating

Darboux factor for the given system and integrate the latter, (about the method of

Darboux and the relevant definitions see, for example, [5]).

We now state the following fact that will be useful later.

Considering (2.1), assume that

p(x,y)=y+xR(x,y), q(x,y)=−x+yR(x,y),
r(x,y)= xQ(x,y), s(x,y)=yQ(x,y), (2.2)

where R(x,y),Q(x,y) are polynomials in x,y . Then the algebraic curves x2+y2 = 0,

Q(x,y)= 0 are invariants for each of these systems.

Indeed, it is immediately obvious that x2+y2 = 0 is an invariant of both systems

with the cofactor 2R(x,y) and 2Q(x,y), respectively. The curve Q(x,y) = 0 is an

invariant of the second system with the cofactor xQx(x,y)+yQy(x,y).
Because our systems commute, the Lie bracket of vector fields (p,q) and (r ,s)

vanishes and we have

px(x,y)r(x,y)+py(x,y)s(x,y)−rx(x,y)p(x,y)−ry(x,y)q(x,y)= 0,

xQ(x,y)
(
R(x,y)+xRx(x,y)

)+yQ(x,y)(1+xRy(x,y))
−p(x,y)(Q(x,y)+xQx(x,y))−xq(x,y)Qy(x,y)= 0,

(2.3)

or

x
(
Qx(x,y)p(x,y)+Qy(x,y)q(x,y)

)
= (R(x,y)+xRx(x,y))xQ(x,y)+(1+xRy(x,y))yQ(x,y)−Q(x,y)p(x,y)
= (R(x,y)+xRx(x,y))xQ(x,y)+(1+xRy(x,y))yQ(x,y)
−Q(x,y)(y+xR(x,y))

= x(xRx(x,y)+yRy(x,y))Q(x,y).
(2.4)

We see that the curve Q(x,y) = 0 is an invariant with the cofactor xRx(x,y) +
yRy(x,y).

In this case, µ(x,y)= 1/(Q(x,y)(x2+y2)) is an integrating Darboux factor.

3. In each of the three cases, we have found a nontrivial polynomial system com-

muting with the respective system.

In Case 1 such a system is

ẋ = x(1+ex4−4dx3y+4hxy3−gy4)≡ x(1+q4(x,y)
)
,

ẏ =y(1+ex4−4dx3y+4hxy3−gy4)≡y(1+q4(x,y)
)
.

(3.1)

The function

µ(x,y)= 1(
x2+y2

)(
1+q4(x,y)

) (3.2)
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is the integrating Darboux factor of (1.8) and the function

H(x,y)=
(
x2+y2

)2

1+q4(x,y)
(3.3)

is the first rational integral of (1.8).

The algebraic curves x2+y2 = 0 and 1+q4(x,y)= 0 are invariant curves for (1.8).

According to [2], system (1.1) has a center of type Bk, 1 ≤ k ≤ n−1, whose bound-

ary is a finite union of k unbounded open trajectories. Using (3.3), in Case 1 we can

describe this boundary explicitly:

�= 1(
c0−q4(cosϕ,sinϕ)

)1/4 , (3.4)

where c0 =max[0,2π] q4(cosϕ,sinϕ), x = �cosϕ, y = �sinϕ.

A straight analysis of this expression allows us to conclude that in our case a center

may be of type B2 or B4 only.

In Case 2, (1.9) commutes with the system

ẋ = (e−g)x+x(ex2+gy2)(b+ex2+gy2),
ẏ = (e−g)y+y(ex2+gy2)(b+ex2+gy2). (3.5)

This permits us to find an integrating Darboux factor

µ(x,y)= 1(
x2+y2

)(
e−g+(ex2+gy2

)(
b+ex2+gy2

)) . (3.6)

The algebraic curves x2+y2 = 0, e−g+ (ex2+gy2)(b+ ex2+gy2) = 0 are the

invariant ones for (1.9).

If b = 0, then (1.9) is a system of the form (1.8) for which the condition f =−3(d+h)
is obviously fulfilled. Then its first integral is

H(x,y)=
(
x2+y2

)2

1+ex4−gy4
. (3.7)

If b ≠ 0 then we may suppose that b = 1. The general case reduces to this by the

change of variables x → x/
√
b, y → y/

√
b for b > 0 or x → y/

√−b, y → x/
√−b,

t→−t for b < 0.

Then our system takes the form

ẋ =y+x2y
(
1+ex2+gy2)≡X1(x,y),

ẏ =−x+xy2(1+ex2+gy2)≡ Y1(x,y).
(3.8)

The function µ1(x,y), which is equal to µ(x,y) from (3.6) for b = 1, is an integrating

factor of (3.8). The first integral H1(x,y) of (3.8) associated to the integrating factor

µ1(x,y) can be computed via the integral

H1(x,y)=
∫
µ1(x,y)Y1(x,y)dx+m(y) (3.9)

imposing the condition ∂H1(x,y)/∂y =−µ1(x,y)X1(x,y).
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B2 B4

Figure 3.1

We have

H1(x,y)= 1
2(e−g)

(
1
2

ln
(
e−g+(ex2+gy2)(1+ex2+gy2))

− ln
(
x2+y2)+ 1√

4(e−g)−1
arctan

1+2ex2+2gy2√
4(e−g)−1

)
.

(3.10)

We used Mathematica here.

Then the function H(x,y) = exp(−4(e−g)H1(x,y)) is the first integral of (3.8)

also. It has the form

H(x,y)=
(
x2+y2

)2

e−g+(ex2+gy2
)(

1+ex2+gy2
)

×exp
(
− 2√

4(e−g)−1
arctan

1+2ex2+2gy2√
4(e−g)−1

)
.

(3.11)

Since (3.8) has a unique finite singular point at the origin, the phase portraits are

obtained by studying the points at infinity. A standard inspection of the location and

types of such points on the equator of the Poincaré sphere allows us to conclude that

(3.8) has phase portraits of two types only: a center is of type B2 when eg ≥ 0 or of

type B4 when eg < 0.

The relevant phase portraits are presented in Figure 3.1. These portraits are fairly

typical (cf. [5]) and we do not supply explanations for them.

In Case 3, a commuting system and integrating Darboux factor and first integral

may be found on considering that (1.12) is equivalent to (3.8).

Observe that for d = e = 0, (1.12) is a quasi-homogeneous O-symmetric cubic sys-

tem of the form

ẋ =y+x(ax2+bxy−ay2),
ẏ =−x+y(ax2+bxy−ay2). (3.12)

It commutes with the system

ẋ = x+x(bx2−2axy
)
,

ẏ =y+y(bx2−2axy
)
,

(3.13)
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and has the first integral

H(x,y)= x2+y2

1+bx2−2axy
. (3.14)

Summarizing, we conclude that Figure 3.1 presents all possible phase portraits of

(1.2) having the origin as a center.
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