
IJMMS 29:3 (2002) 155–166
PII. S0161171202010840

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ON THE LYAPUNOV EQUATION IN BANACH SPACES
AND APPLICATIONS TO CONTROL PROBLEMS

VU NGOC PHAT and TRAN TIN KIET

Received 30 August 2000 and in revised form 5 March 2001

By extending the Lyapunov equation A∗Q+QA=−P to an arbitrary infinite-dimensional
Banach space, we give stability conditions for a class of linear differential systems. Rela-
tionship between stabilizability and exact null-controllability is established. The result is
applied to obtain new sufficient conditions for the stabilizability of a class of nonlinear
control systems in Banach spaces.

2000 Mathematics Subject Classification: 93D20, 34K20, 93B05.

1. Introduction. Consider a linear system described by differential equations of

the form

ẋ(t)=Ax(t), t ≥ 0, x(0)= x0 ∈X, (1.1)

where X is an infinite-dimensional Banach space; A is a linear operator. Over the last

two decades stability problem of differential equations has been extensively studied

by many researchers in qualitative theory of dynamical systems, see, for example,

[2, 11, 17] and the references therein. The classical Lyapunov theorem, which claims

that the zero solution of linear system (1.1) is exponentially stable if and only if for

every symmetric positive definite matrix P the matrix equation

A∗Q+QA=−P, (1.2)

has a symmetric positive definite matrix solutionQ. This theorem plays an important

role in the stability theory and there are several results and extensions of the Lyapunov

theorem, which are closely related to the stability and Lyapunov equation (1.2), see,

for example, [1, 4, 6, 14]. Moreover, the study of existence of solution of Lyapunov

equation (1.2) allows us to obtain useful applications in obtaining stabilizability and

controllability conditions for control systems. Among the well-known results related

to these applications we mention the references [3, 7, 8, 9, 10, 13, 16].

The purpose of this paper is twofold. Firstly, we establish equivalence between

solvability of the Lyapunov equation and exponential stability of linear system (1.1) in

a Banach space. Secondly, based on the Lyapunov theorem we establish a relationship

between stabilizability and exact null-controllability of linear control systems and

then give some applications to the exponential stabilizability of a class of nonlinear

control systems in Banach spaces. The results of this paper can be considered as a

further development of the results obtained earlier in [8, 10].
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The paper is organized as follows. In Section 2, we present the main notation, defi-

nitions and some auxiliary propositions needed later. Equivalence between solvability

of the Lyapunov equation and exponential stability is given in Section 3. In Section 4,

we give some applications to the exponential stabilizability of a class of nonlinear

control systems in infinite-dimensional Banach spaces.

2. Preliminaries. Let R be the set of all real numbers, X, U infinite-dimensional

Banach spaces, and X∗ the topological dual space of X. Let 〈y∗,x〉 denote the value

of y∗ ∈X∗ at x ∈X. The domain, the image, the adjoint, and the inverse operator of

an operator A are denoted by �(A), ImA, A∗, and A−1, respectively.

By L(X,U) we denote the Banach space of all linear bounded operators mapping X
into U and by L2([0,T ],X), and L2((0,T ],U)—the Banach space of all L2—integrable

functions on [0,T ] taking values in X, and in U , respectively.

Let Q ∈ L(X,X∗) be a duality operator. We recall that the operator Q is positive

definite in X if 〈Qx,x〉 ≥ 0 for arbitrary x ∈X, and 〈Qx,x〉> 0 for x ≠ 0. In the case

if 〈Qx,x〉 ≥ c‖x‖2 for some c > 0 we say that Q is strongly positive definite. If X
is a reflexive Banach space, we define the adjoint of Q as the operator Q∗ : X → X∗.

In this case, if Q = Q∗ we say that Q is a selfadjoint operator. Throughout, we will

denote by LPD(X,X∗) and LSPD(X,X∗) the set of all linear bounded positive definite

and strongly positive definite operators mapping X into X∗, respectively.

Consider linear system (1.1), where A is a densely defined generator of the C0-

semigroup S(t). The solution x(t,x0) with the initial condition x(0) = x0 ∈ �(A) is

given by x(t,x0)= S(t)x0.

Definition 2.1. The infinitesimal generator A of the C0-semigroup S(t) is expo-

nentially stable if there exist numbers M > 0 and α> 0, such that

∥∥S(t)∥∥≤Me−αt, ∀t ≥ 0. (2.1)

Definition 2.2. System (1.1) is exponentially stable if for every x0 ∈�(A), there

exist numbers M > 0 and α> 0, such that

∥∥S(t)x0

∥∥≤Me−αt∥∥x0

∥∥, ∀t ≥ 0. (2.2)

Proposition 2.3 (see [17]). Let X be a Banach space, A the generator of the C0-

semigroup S(t). The following conditions are equivalent:

(i) system (1.1) is exponentially stable;

(ii) A is exponentially stable;

(iii) for all x0 ∈�(A) :
∫+∞
0 ‖x(t,x0)‖2dt <+∞.

Associated with system (1.1) we consider the following linear control system:

ẋ =Ax(t)+Bu(t), t ≥ 0,

x(0)= x0, u(t)∈U, x(t)∈X, (2.3)

where A is the generator of the C0-semigroup S(t) on some Banach space X and

B ∈ L(U,X). The class of admissible controls � for system (2.3) is defined by � =
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{u(·) ∈ L2([0,∞),U)}. The classical solution x(t) satisfying initial condition x(0) =
x0 according to some admissible control u(·)∈� is then given by

x
(
t,u,x0

)= S(t)x0+
∫ t

0
S(t−s)Bu(s)ds. (2.4)

Definition 2.4. Control system (2.3) is exponentially stabilizable if there is an

operator K ∈ L(X,U) such that the linear system ẋ(t)= (A+BK)x(t), t ≥ 0, is expo-

nentially stable.

Definition 2.5. Control system (2.3) is exactly null-controllable in time T > 0 if

for every x0 ∈X there is an admissible control u(t)∈� such that

S(T)x0+
∫ T

0
S(T −s)Bu(s)ds = 0. (2.5)

In other words, if we denote by �T the set of null-controllable points in time T of

system (2.3) defined by

CT =
{
x0 ∈X : S(T)x0 =−

∫ T
0
S(T −s)Bu(s)ds :u(·)∈�

}
, (2.6)

the system (2.3) is exactly null-controllable in time T > 0 if �T =X.

In the caseA is the generator of an analytic semigroup S(t), for T > 0, we can define

the operator WT ∈ L(�,X) by

WT(u)=
∫ T

0
S−1(s)Bu(s)ds, ∀u(·)∈�, (2.7)

and we then have CT = ImWT .

Definition 2.6 (see [5]). A Banach space X∗ has the Radon-Nikodym property if

L2
(
[0,T ],X∗

)= (L2
(
[0,T ],X

))∗. (2.8)

In the sequel, we need some well-known null-controllability criteria for control system

(2.3) presented in [3] for reflexive Banach spaces and then in [15] for non-reflexive

Banach spaces having the Radon-Nikodym property.

Proposition 2.7 (see [3, 15]). Let X, U be Banach spaces, S(t) the C0-semigroup of

A. Assume that X∗, U∗ have the Radon-Nykodym property. The following conditions

are equivalent:

(i) control system (2.3) is exactly null-controllable in time T > 0;

(ii) there exists c > 0, for all x∗ ∈X∗ : ‖W∗
T x∗‖ ≥ c‖x∗‖;

(iii) there exists c > 0, for all x∗ ∈X∗ :
∫ T
0 ‖B∗S∗(s)x∗‖2ds ≥ c‖S∗(T)x∗‖2;

(iv) if U is a Hilbert space, the operator
∫ T
0 S−1(s)BB∗S∗−1(s) ds is strongly positive

definite.
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3. The Lyapunov equation. Let X be an arbitrary Banach space, A the infinitesimal

generator of the C0-semigroup S(t) and let P ∈ L(X,X∗). The operator Q ∈ L(X,X∗)
is called a solution of the operator equation (1.2) if the following conditions hold:

〈QAx,x〉+〈Qx,Ax〉 = −〈Px,x〉, ∀x ∈�(A). (3.1)

Note that if A is bounded, then the above equations has the standard form

A∗Qx+QAx =−Px, ∀x ∈X, (3.2)

and it was shown in [4] that if A is exponentially stable in a Hilbert space then the

Lyapunov equation has a solution. In Theorem 3.1 below we give the equivalence

between the solvability of the Lyapunov equation and the exponential stability of the

linear system (1.1).

Theorem 3.1. If for some P ∈ LSPD(X,X∗), Q ∈ LPD(X,X∗), the Lyapunov equa-

tion holds, then the operator A is exponentially stable. Conversely, if the generator A is

exponentially stable, then for any P ∈ LSPD(X,X∗), there is a solution Q∈ LPD(X,X∗)
of Lyapunov equation (1.2).

Proof. Assume thatQ∈LPD(X,X∗) is a solution of (1.2) for some P∈LSPD(X,X∗).
Let x0 ∈ �(A) and x(t,x0) be a solution of system (1.1) with the initial condition

x(0)= x0. For every t ≥ 0, we consider the following function:

V
(
x
(
t,x0

))= 〈Qx(t,x0
)
,x
(
t,x0

)〉
. (3.3)

We have

d
dt
V(x)= 〈Qẋ,x〉+〈Qx,ẋ〉 = 〈QAx,x〉+〈Qx,Ax〉 = −〈Px,x〉. (3.4)

Since P is strongly positive definite, there exists a number c > 0 such that

〈Px,x〉 ≥ c‖x‖2, (3.5)

and hence,

d
dt
V(x)≤−c‖x‖2. (3.6)

Integrating both sides of (3.6) over [0, t], we have

∫ t
0

d
ds
V
(
x
(
s,x0

))
ds ≤−c

∫ t
0

∥∥x(s,x0
)∥∥2ds, (3.7)

and hence

V
(
x
(
t,x0

))−V(x0
)≤−c∫ t

0

∥∥x(s,x0
)∥∥2ds. (3.8)

Since V(x)≥ 0, we have

c
∫ t

0

∥∥x(s,x0
)∥∥2ds ≤ V(x0

)
, ∀t ≥ 0. (3.9)
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Letting t→∞ we obtain ∫ +∞
0

∥∥x(s,x0
)∥∥2ds <+∞, (3.10)

which, by Proposition 2.3, implies the exponential stability of operator A.

Conversely, assume that the operator A is exponentially stable. Take any P ∈
LSPD(X,X∗). For each x0 ∈ �(A) and t ≥ 0 we consider the operator Qt ∈ L(X,X∗)
defined by

Qtx =
∫ t

0
S∗(s)PS(s)x0ds. (3.11)

We have

〈
QtAx0,x0

〉+〈Qtx0,Ax0
〉= ∫ t

0

[〈
S∗(s)PS(s)Ax0,x0

〉+〈S∗(s)PS(s)x0,Ax0
〉]
ds

=
∫ t

0

[〈
PS(s)Ax0,S(s)x0

〉+〈PS(s)x0,S(s)Ax0
〉]
ds.

(3.12)

Note that

S(s)A=AS(s), S(s)x0 = x
(
s,x0

)
, (3.13)

where x(t,x0) is the solution of system (1.1) with x(0)= x0, we then have

〈
QtAx0,x0

〉+〈Qtx0,Ax0
〉= ∫ t

0

[〈
PAx

(
s,x0

)
,x
(
s,x0

)〉+〈Px(s,x0
)
,Ax

(
s,x0

)〉]
ds

=
∫ t

0

d
ds
〈
Px(s),x(s)

〉= 〈Px(t,x0
)
,x
(
t,x0

)〉−〈Px0,x0
〉
.

(3.14)

Letting t→+∞ in the above relation and noting that x(t,x0)→ 0, we have

〈
QAx0,x0

〉+〈Qx0,Ax0
〉=−〈Px0,x0

〉
, (3.15)

where the operator

Q=
∫ +∞

0
S∗(s)PS(s)ds (3.16)

is well defined due to the exponential stability assumption of A. Therefore, from the

relation (3.15) it follows thatQ satisfies the Lyapunov equation (1.2). To complete the

proof, we need to show that Q is positive definite. For this, we consider

〈
Qx,x

〉= ∫∞
0

〈
S∗(s)PS(s)x,x

〉
ds =

∫∞
0

〈
PS(s)x,S(s)x

〉
ds. (3.17)

Since P ∈ LSPD(X,X∗), S(t) is nonsingular, we have Q ∈ LPD(X,X∗). The proof is

complete.

Remark 3.2. Note that if X is reflexive, P is selfadjoint then Q is also selfadjoint.
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4. Controllability and stabilizability. Consider the linear control system (2.3),

where x(t) ∈ X, u(t) ∈ U . Throughout this section, we assume that X is a Banach

space and X∗ has the Radon-Nykodym property, U is a Hilbert space and the operator

A generates an analytic semigroup S(t).
A considerable development has taken place in the problem of controllability and

stabilizability of linear control system (2.3), see, for example [8, 10, 13, 16, 17, 15]. In

particular, the relationship between controllability and stabilizability was presented in

[8, 16] for systems in finite-dimensional spaces and it was shown that the exact null-

controllability implies exponential stabilizability. It is obvious that all exactly null-

controllable systems in finite-dimensional spaces are exponentially stabilizable, how-

ever the exponentially stabilizable system is, in general, not exactly null-controllable.

For this, we need stronger notion of stabilizability in a sense of [14, 16].

Definition 4.1. Linear control system (2.3), where X, U are finite-dimensional, is

completely stabilizable if for an arbitrary δ > 0 there is a matrixK such that the matrix

A+BK is exponentially stable, that is,∥∥SK(t)∥∥≤Me−δt, ∀t ≥ 0, (4.1)

for some M > 0. It is well known that if a finite-dimensional linear control system

is completely stabilizable in the above sense, then it is exactly null-controllable. The

same definition is applied to infinite-dimensional control system (2.3) and a natural

question is: to what extent does the complete stabilizability imply the exact null-

controllability for infinite-dimensional control systems? In the infinite-dimensional

control theory characterizations of controllability and stabilizability are complicated

and therefore their relationships are much more complicated and require more so-

phisticated methods.

By a result of [8], if the linear control system (2.3), where X, U are Hilbert spaces,

is completely stabilizable then it is exactly null-controllable in some finite time. In

the spirit of [8] using the null-controllability results, Proposition 2.7, we improve the

result of [8] by the following theorem.

Theorem 4.2. If linear control system (2.3) is completely stabilizable then it is exactly

null-controllable in some finite time.

Proof. By [12, Proposition 8.3.1] we have∥∥S(−t)∥∥≤Meαt, t ≥ 0, (4.2)

for someM > 0 andα> 0. Assume that the system (2.3) is completely stabilizable, that

is, for δ > α, there is a feedback control operator K : X → U such that the semigroup

SK(t) generated by (A+BK), satisfies the condition∥∥SK(t)∥∥≤Ne−δt, t ≥ 0, (4.3)

for some N > 0. For every x0 ∈ X and admissible control u(t) ∈ �, the solution

x(t,x0,u) of system (2.3) is given by

x
(
t,x0,u

)= S(t)x0+
∫ t

0
S(t−s)Bu(s)ds, (4.4)
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and by the feedback control u(t)=Kx(t) this solution is also given by

x
(
t,x0,u

)= SK(t)x0. (4.5)

Therefore, we have

S(t)x0 = SK(t)x0−
∫ t

0
S(t−s)BKSK(s)ds, t ≥ 0. (4.6)

Since the above relation holds for every x0 ∈X and using the equality (4.3), for every

x∗ ∈X∗, the following estimate holds:

∥∥S∗(t)x∗∥∥≤ ∥∥S∗K (t)x∗∥∥+
∫ t

0

∥∥S∗K (s)K∗B∗S∗(t−s)∥∥ds, (4.7)

and hence

∥∥S∗(t)x∗∥∥≤Ne−δt∥∥x∗∥∥+N∥∥K∗∥∥∫ t
0
e−δs

∥∥B∗S∗(s)∥∥ds
≤Ne−δt∥∥x∗∥∥+∥∥K∗∥∥N(∫ t

0
e−2δsds

)1/2(∫ t
0

∥∥B∗S∗(s)∥∥2ds
)1/2

.
(4.8)

Setting

β(t)=
(∫ t

0
e−2δsds

)1/2
, (4.9)

we see that

β(t)=
(

1
2δ
− 1

2δ
e−2δt

)1/2
(4.10)

and then β(t)→ (1/√2δ) when t→∞.

To establish the exact null-controllability of system (2.3), we assume to the contrary

that the system is not null-controllable at any time t ≥ 0. We take any ε∈ (0,1), and set

c <
(
(1−ε)√2δ
N
∥∥K∗∥∥

)2

. (4.11)

Since system (2.3) is not exactly null-controllable at any time t ≥ 0, by Proposition

2.7(iii), for that chosen number c > 0, there is x∗ ∈X∗ such that

∫ t
0

∥∥B∗S(s)x∗∥∥ds < c∥∥S∗(t)x∗∥∥2. (4.12)

From the above inequality, it follows that x∗ ≠ 0 and we can consider ‖x∗‖ = 1. On

the other hand, in view of (4.8), we have the following estimate:

∥∥S∗(t)x∗∥∥<Ne−δt+√cNβ(t)∥∥K∗∥∥∥∥S∗(t)x∗∥∥, (4.13)

or equivalently

1<
Ne−δt∥∥S∗(t)x∗∥∥ +

√
cN

∥∥K∗∥∥β(t). (4.14)



162 V. N. PHAT AND T. T. KIET

Since

1= ∥∥S∗(−t)S∗(t)x∗∥∥≤ ∥∥S∗(−t)∥∥∥∥S∗(t)x∗∥∥ (4.15)

and using (4.2), we have

1∥∥S∗(t)x∗∥∥ ≤
∥∥S∗(−t)∥∥≤Meαt. (4.16)

Combining (4.11), (4.14), and (4.16) gives

1−√cNβ(t)∥∥K∗∥∥<NMe−(δ−α)t, ∀t ≥ 0. (4.17)

Letting t→+∞, and noting δ >α, the right-hand side goes to zero and we then have

ε≤ 1−√cN 1√
2δ
∥∥K∗∥∥< 0. (4.18)

The last inequality contradicts the choice of numbers ε, c by (4.11). The system is

exactly null-controllable.

In the sequel, we prove that if linear control system (2.3) is null-controllable then it

is exponentially stabilizable by some linear feedback control K :X →U .

Theorem 4.3. If control system (2.3) is exactly null-controllable in some finite time,

then the system is exponentially stabilizable.

Proof. Assume that the system is exactly null-controllable in T > 0. The operator

Q∈ L(X∗,X) given by

Qx∗ =
∫ T

0
S−1(s)BB∗S∗

−1
(s)x∗ds, (4.19)

is, by Proposition 2.7(iv), well defined and strictly positive definite. Therefore, the

inverse operator Q−1 : X → X∗ is also well defined. We will prove that the control

system (2.3) is exponentially stabilizable by the feedback control

u(t)=Kx(t)=−B∗Q−1x(t). (4.20)

It is enough to show that the operator Q satisfies the Lyapunov equation (1.2) in the

dual space X∗ with �= (A+BK)∗ for some P ∈ LSPD(X∗,X) and by Theorem 3.1, �

and then (�)∗ =A+BK is exponentially stable. For this, we have to prove that

�∗Qx∗+Q�x∗ = −Px∗, ∀x∗ ∈X∗. (4.21)

Indeed, we consider

QA∗+AQ=A
∫ T

0
S−1(s)BB∗S∗

−1
(s)ds+

∫ T
0
S−1(s)BB∗S∗

−1
(s)A∗ds. (4.22)

Since
d
dt
S−1(t)=−AS−1(t),

d
dt
S∗

−1
(t)=−S∗−1

(t)A∗, (4.23)
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we have

QA∗+AQ=−
∫ T

0

d
ds
[
S−1(s)BB∗S∗

−1
(s)
]
ds = BB∗−S−1(T)BB∗S∗

−1
(T). (4.24)

Consider the relation Q�+�∗Q. Since Q is a selfadjoint operator, we see that

Q�+�∗Q=Q(A−BB∗Q−1)∗+(A−BB∗Q−1)Q=QA∗+AQ−2BB∗. (4.25)

From (4.24), it follows that

Q�+�∗Q=−P, (4.26)

where

P := [BB∗+S−1(T)BB∗S∗
−1
(T)

]
. (4.27)

Therefore, for every x∗ ∈X∗, we have

�∗Qx∗+Q�x∗ = −Px∗, (4.28)

as desired. To complete the proof, we show that P is strictly positive definite. This

follows from the following relations〈
Px∗,x∗

〉= 〈BB∗x∗,x∗〉+〈S−1(T)BB∗S∗
−1
(T)x∗,x∗

〉
= ∥∥B∗x∗∥∥2+∥∥B∗S∗−1

(T)x∗
∥∥2, ∀x∗ ∈X∗.

(4.29)

Since (
W∗
T x∗

)
(s)= B∗S∗−1(s)x∗, ∀s ∈ [0,T ], (4.30)

and using Proposition 2.7(ii), we have〈
Px∗,x∗

〉≥ ∥∥B∗S∗−1
(T)x∗

∥∥2 = ∥∥(W∗
T x∗

)
(T)

∥∥2 ≥ c1

∥∥x∗∥∥2, (4.31)

for some positive number c1 > 0. The proof is complete.

Remark 4.4. It is worth noting that Theorem 4.2 was presented in [17] for the case

X is a Hilbert space and the proof therein is based on the linear regulator optimization

problem so that it is quite different from ours.

Example 4.5. Consider a control system of the form

ẋ(t)=Ax(t)+Bu(t), t ∈R+,
x(t)∈X = l2, u(t)∈U = l2, (4.32)

where l2 is the space of all sequences β= β1,β2, . . . , with the norm

‖β‖ =
( ∞∑
i=1

∣∣βi∣∣2

)1/2

<+∞, (4.33)

and the operators A, B are given by

A :
(
β1,β2, . . .

)∈ l2 �→ (
β2, . . .

)∈ l2,
B :
(
β1,β2, . . .

)∈ l2 �→
(

0,0, . . .︸︷︷︸
N

,β1,β2, . . .
)
∈ l2, N > 0. (4.34)
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Since ANBU = l2, the system is exactly null-controllable and hence the system is

stabilizable.

5. Stabilizability of nonlinear control systems. As an application, we study stabi-

lizability problem of a nonlinear control system of the form

ẋ =Ax+Bu+f(x,u), t ≥ 0. (5.1)

In this section, we also assume that X is a Banach space and X∗ has the Radon-

Nykodym property, U is a Hilbert space, f(x,u) : X×U → X is some given nonlinear

function satisfying the following comparable condition∥∥f(x,u)∥∥≤ a‖x‖+b‖u‖, ∀(x,u)∈ (X×U), (5.2)

for some a> 0, b > 0. We recall that control system (5.1) is stabilizable by a feedback

control u(t) = Kx(t), K ∈ L(X,U) if the uncontrolled system ẋ(t) = (Ax+KB)x+
f(x,Kx) is asymptotically stable in Lyapunov sense.

The following theorem gives a sufficient condition for stabilizability of nonlinear

control system (5.1) in the case A is a stable operator.

Theorem 5.1. Assume that A is exponentially stable and the condition (5.2) is sat-

isfied. Let P,Q ∈ LPD(X,X∗) be the operators satisfying the Lyapunov equation (1.2),

whereQ=Q∗ and 〈Px,x〉 ≥α‖x‖2, for all x ∈X, α> 0. The nonlinear control system

(5.1) is stabilizable by the feedback control u(t)=−βB∗Qx(t) if

0< β<
α−2a‖Q‖
2b‖B‖‖Q‖2

. (5.3)

Proof. Let x(t,x0) be any solution of system (5.1). Let Q∈ LPD(X,X∗) be a solu-

tion of the Lyapunov equation (1.2). We consider the following function of the form

V
(
x
(
t,x0

))= 〈Qx(t,x0
)
,x
(
t,x0

)〉
. (5.4)

and we prove that this function is a Lyapunov function for the system (5.1). Indeed,

we have

d
dt
V(x)= 〈Qẋ,x〉+〈Qx,ẋ〉

= 〈Q(Ax−βBB∗Qx+f(x,u)),x〉+〈Qx,Ax−βBB∗Q+f(x,u)〉
=−〈Px,x〉−β〈QBB∗Qx,x〉−β〈Qx,BB∗Qx〉
+〈Qf(x,u),x〉+〈Qx,f(x,u)〉.

(5.5)

Since Q is selfadjoint, by conditions (5.2) and (5.3), we obtain the following estimate

d
dt
V(x)≤−α‖x‖2−2β

∥∥B∗Qx∥∥2+2‖Q‖(a‖x‖+bβ∥∥B∗∥∥‖Q‖‖x‖)‖x‖
≤ −(α−2bβ‖Q‖2‖B‖−2a‖Q‖)‖x‖2 ≤−δ‖x‖2, (5.6)

where

δ=α−2bβ‖Q‖2‖B‖−2a‖Q‖> 0, (5.7)

as desired.
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In Theorem 5.2, we give another sufficient condition for the stabilizability of system

(5.1) in the case A is not stable, but the associated linear control system (2.3) is exactly

null-controllable and the nonlinear perturbation f(·) is small enough.

Theorem 5.2. Assume that the linear control system (2.3) is exactly null-controllable.

The system (5.1) is stabilizable for some appropriate numbers a > 0, b > 0 satisfying

the condition (5.2).

Proof. By Theorem 4.3, the linear control system (2.3) is stabilizable and then

there is an operator D ∈ L(X,U) such that the operator � = A+BD is exponentially

stable. Let P,Q∈ LPD(X,X∗) be a solution pair of the Lyapunov equation with respect

to �, where 〈Px,x〉 ≤ α‖x‖2, Q = Q∗. Consider the Lyapunov function V(t,x) =
〈Qx,x〉, for the nonlinear control system (5.1). By the same arguments used in the

proof of Theorem 5.1, we have

d
dt
V(t,x)≤−α‖x‖2+2

〈
Qf(x,Dx),x

〉
≤−[α−2

(
a‖Q‖+b‖D‖)]‖x‖2 =−δ‖x‖2,

(5.8)

where δ=α−2(a‖Q‖+b‖D‖). We now choose a,b > 0 such that δ > 0, that is,

a‖Q‖+b‖D‖< α
2
. (5.9)

Then the nonlinear system (5.1) is stabilizable. The proof is complete.

6. Conclusions. In this paper an extension of the Lyapunov equation in Banach

spaces was studied. A relationship between stabilizability and exact null-controlla-

bility of linear systems in Banach spaces was established. Some applications to sta-

bilizability problem of a class of nonlinear control systems in infinite-dimensional

Banach spaces were also given.
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