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1. Introduction and preliminaries. In the previous investigation [1] the solution

of one class of homogeneous complex vector functional equations is obtained by the

method of intersections, while in [2] several classes of homogeneous complex vector

functional equations are solved on the basis of the well-known method of elimination

of variables. For the purpose of expanding our investigations, here we will propose a

matrix method suitable for both homogeneous and nonhomogeneous complex vector

functional equations with constant complex coefficients.

Now we will introduce the following notation. Let � be a finite-dimensional complex

vector space and let a mapping f : �n � � exists. Throughout, Zi (1 ≤ i ≤ n) are

vectors in �. We assume that Zi = (zi1(t), . . . ,zin(t))T , where zij(t) (1 ≤ i ≤ n) are

complex functions and O= (0,0, . . . ,0)T is the zero vector in �.

Let A be an n×n matrix. Suppose that by elementary transformations the matrix

A is transformed into A = P1DP2, where P1 and P2 are regular matrices and D is a

diagonal matrix with diagonal entries 0 and 1 such that the number of units is equal

to the rank of the matrix A. The matrix B = P−1
2 DP−1

1 satisfies the equality ABA = A.

This means that the matrix equation AXA=A has at least one solution for X.

If A satisfies the identity

Ar +k1Ar−1+···+kr−1A=O
(
kr−1 ≠ 0

)
, (1.1)

where O is the n×n zero matrix, then the matrix

X =− 1
kr−1

(
Ar−2+k1Ar−3+···+kr−2I

)
, (1.2)

where I is the unit n×n matrix, is also a solution of the equation AXA=A.

Now we will prove the following theorem.

Theorem 1.1. If B satisfies the condition ABA=A, then

(1) AX =O�X = (I−BA)Q, (X and Q are n×m matrices);
(2) XA=O�X =Q(I−AB), (X and Q are m×n matrices);
(3) AXA=A�X = B+Q−BAQAB (X and Q are n×n matrices);
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(4) AX =A�X = I+(I−BA)Q;

(5) XA=A�X = I+Q(I−AB).
Proof. The theorem will be proved only for the case (3), because the other cases

can be proved analogously.

(3) Let X = B+Q−BAQAB. Further it holds that

AXA=ABA+AQA−ABAQABA, ABA=A
�⇒AXA=A+AQA−AQA �⇒AXA=A. (1.3)

Conversely, assume that AXA=A, then it holds that

B+(X−B)−BA(X−B)AB =X−BAXAB+BABAB =X−BAB+BAB =X. (1.4)

Thus

AXA=A �⇒X = B+Q−BAQAB, for Q=X−B. (1.5)

If X is an n×k matrix, according to Theorem 1.1(1) all the solutions of the homo-

geneous system of equations

A




x1

x2

...

xn



=O (1.6)

have the following form




x1

x2

...

xn



= (I−BA)




u1

u2

...

un



, (1.7)

where u1, . . . ,un are arbitrary.

2. Solution of homogeneous functional equations. Now we will prove the follow-

ing results.

Theorem 2.1. The general solution of the basic cyclic complex vector functional

equation with complex constant coefficients

E(f)≡
n∑

i=1

aif
(
Zi,Zi+1, . . . ,Zi+n−1

)=O
(
Zn+i ≡ Zi

)
, (2.1)

where ai (1≤ i≤n) are complex constants, is given by the following formula:




f
(
Z1,Z2, . . . ,Zn

)

f
(
Z2,Z3, . . . ,Z1

)
...

f
(
Zn,Z1, . . . ,Zn−1

)



= B




h
(
Z1,Z2, . . . ,Zn

)

h
(
Z2,Z3, . . . ,Z1

)
...

h
(
Zn,Z1, . . . ,Zn−1

)



, (2.2)
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where

A=




a1 a2 ··· an
an a1 ··· an−1

...

a2 a3 ··· a1



, B =




b1 b2 ··· bn
bn b1 ··· bn−1

...

b2 b3 ··· b1




(2.3)

are nonzero n×n cyclic matrices with complex constant elements such that

AB =O, (2.4)

where O is the n×n zero matrix and h is an arbitrary complex vector function with

values in �.

Proof. If we permute successively the vectors in (2.1), we get

a1f
(
Z1,Z2, . . . ,Zn

)+a2f
(
Z2,Z3, . . . ,Zn,Z1

)+···+anf
(
Zn,Z1, . . . ,Zn−1

)=O,

anf
(
Z1,Z2, . . . ,Zn

)+a1f
(
Z2,Z3, . . . ,Zn,Z1

)+···+an−1f
(
Zn,Z1, . . . ,Zn−1

)=O,

...

a2f
(
Z1,Z2, . . . ,Zn

)+a3f
(
Z2,Z3, . . . ,Zn,Z1

)+···+a1f
(
Zn,Z1, . . . ,Zn−1

)=O,

(2.5)

that is, in a matrix form

AF = �, (2.6)

where A is given by (2.3),

F =




f
(
Z1,Z2, . . . ,Zn

)

f
(
Z2,Z3, . . . ,Z1

)
...

f
(
Zn,Z1, . . . ,Zn−1

)



, �=




O

O
...

O



. (2.7)

We will write f ∈ F to express the first equality of (2.7).

The necessary and sufficient condition for system (2.6) to have a nontrivial solution

is

detA= 0. (2.8)

Let

f
(
Z1,Z2, . . . ,Zn

)=
n∑

i=1

bih
(
Zi,Zi+1, . . . ,Zi+n−1

) (
Zn+i ≡ Zi

)
, (2.9)

where bi (1 ≤ i ≤ n) are complex constants such that the matrix B, defined by (2.3),

satisfies (2.4) and h is an arbitrary complex vector function with values in �.
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By a cyclic permutation of the vectors in (2.9), we obtain

f
(
Z1,Z2, . . . ,Zn

)= b1h
(
Z1,Z2, . . . ,Zn

)+b2h
(
Z2,Z3, . . . ,Z1

)+···+bnh
(
Zn,Z1, . . . ,Zn−1

)
,

f
(
Z2,Z3, . . . ,Z1

)=bnh
(
Z1,Z2, . . . ,Zn

)+b1h
(
Z2,Z3, . . . ,Z1

)+···+bn−1h
(
Zn,Z1, . . . ,Zn−1

)
,

...

f
(
Zn,Z1, . . . ,Zn−1

)=b2h
(
Z1,Z2, . . . ,Zn

)+b3h
(
Z2,Z3, . . . ,Z1

)+···+b1h
(
Zn,Z1, . . . ,Zn−1

)
,

(2.10)

that is, in a matrix form

F = BH, (2.11)

where

H =




h
(
Z1,Z2, . . . ,Zn

)

h
(
Z2,Z3, . . . ,Z1

)
...

h
(
Zn,Z1, . . . ,Zn−1

)




(2.12)

and F is defined in (2.7).

After a multiplication of (2.11) by A, we have

AF =ABH =OH = �, (2.13)

which means that the function f ∈ F satisfies the functional equation (2.1) for any

h∈H.

On the other hand, according to Theorem 1.1(1) each solution of (2.6) has the form

F = (I− B̃A)H, (2.14)

where B̃ satisfies AB̃A=A. If we put B = I−B̃A, we have AB =A−AB̃A=O and B ≠O
since detA = 0. Thus (2.11) where B satisfies (2.4) is the general solution of system

(2.6), that is, (2.9) is the general solution of the functional equation (2.1).

Example 2.2. By a cyclic permutation of the variables in the functional equation

f
(
Z1,Z2,Z3,Z4

)−f (Z2,Z3,Z4,Z1
)+f (Z3,Z4,Z1,Z2

)−f (Z4,Z1,Z2,Z3
)=O, (2.15)

we obtain the following system:

f
(
Z1,Z2,Z3,Z4

)−f (Z2,Z3,Z4,Z1
)+f (Z3,Z4,Z1,Z2

)−f (Z4,Z1,Z2,Z3
)=O,

−f (Z1,Z2,Z3,Z4
)+f (Z2,Z3,Z4,Z1

)−f (Z3,Z4,Z1,Z2
)+f (Z4,Z1,Z2,Z3

)=O,

f
(
Z1,Z2,Z3,Z4

)−f (Z2,Z3,Z4,Z1
)+f (Z3,Z4,Z1,Z2

)−f (Z4,Z1,Z2,Z3
)=O,

−f (Z1,Z2,Z3,Z4
)+f (Z2,Z3,Z4,Z1

)−f (Z3,Z4,Z1,Z2
)+f (Z4,Z1,Z2,Z3

)=O.

(2.16)
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The matrix of coefficients of this system is

A=




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1



. (2.17)

Since detA= 0, system (2.16) has a nontrivial solution.

For the matrix A there exists a nonzero 4×4 cyclic matrix B, such that AB = O,

that is,

B =




b1 b2 b3 b1−b2+b3

b1−b2+b3 b1 b2 b3

b3 b1−b2+b3 b1 b2

b2 b3 b1−b2+b3 b1



. (2.18)

Therefore the general solution of the given functional equation is

f
(
Z1,Z2,Z3,Z4

)= b1h
(
Z1,Z2,Z3,Z4

)+b2h
(
Z2,Z3,Z4,Z1

)

+b3h
(
Z3,Z4,Z1,Z2

)+(b1−b2+b3
)
h
(
Z4,Z1,Z2,Z3

)
,

(2.19)

where h is an arbitrary complex vector function with values in �.

Theorem 2.3. If the matrix A satisfies the condition

Am+λ1Am−1+···+λm−1A=O
(
λm−1 ≠ 0

)
, (2.20)

then the general solution of the functional equation (2.1) is given by

F = 1
λm−1

(
Am−1+λ1Am−2+···+λm−1I

)
H, (2.21)

where I is the n×n unit matrix and λi (1≤ i≤m−1) are complex numbers.

Proof. The proof of this theorem is very easy. By multiplication of formula (2.21)

with A, we obtain

AF = 1
λm−1

(
Am+λ1Am−1+···+λm−1A

)
H =OH = �, (2.22)

or in other words, the function f ∈ F satisfies the functional equation (2.1) for any

h∈H.

Conversely, if F is a solution of AF = �, then obviously F satisfies the identity

F = 1
λm−1

(
Am−1+λ1Am−2+···+λm−1I

)
F, (2.23)

that is, F can be represented by formula (2.21) with H = F . Hence we proved that the

function (2.21) is the general solution of (2.1).

Example 2.4. The functional equation

2f
(
Z1,Z2,Z3

)−3f
(
Z2,Z2,Z3

)+f (Z3,Z3,Z3
)=O (2.24)
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has a matrix of coefficients

A=




2 −3 1

0 −1 1

0 0 0


 . (2.25)

The matrix A satisfies the following equation:

A3−A2−2A=O. (2.26)

The required general solution of the above functional equation is



f
(
Z1,Z2,Z3

)

f
(
Z2,Z2,Z3

)

f
(
Z3,Z3,Z3

)


=−

1
2

(
A2−A−2I

)


h
(
Z1,Z2,Z3

)

h
(
Z2,Z2,Z3

)

h
(
Z3,Z3,Z3

)


 , (2.27)

that is,

f
(
Z1,Z2,Z3

)= h(Z3,Z3,Z3
)≡ p(Z3

)
, (2.28)

where p is an arbitrary complex vector function with values in �.

This example shows that Theorem 2.3 can also be applied to equations not of the

form (2.1).

Theorem 2.5. The general solution of the form

f
(
Z1,Z2, . . . ,Zn

)= R(h(Z1,Z2, . . . ,Zn
))

=
n∑

i=1

bih
(
Zi,Zi+1, . . . ,Zi+n−1

) (
Zn+i ≡ Zi

) (2.29)

of the functional equation (2.1) is reproductive (R(R(h)) = R(h)) if and only if the

following condition is satisfied:

E(f)=O �⇒ f = R(f). (2.30)

Proof. Assume that R(h) is the general solution of the equation E(f) = O. Let

R(R(h)) = R(h) hold for every h. Then, from E(f) = O it follows that f = R(h) for

some h, so that for the same h we have f = R(R(h))= R(f).
Conversely, let the condition E(f)=O⇒ f = R(f) be satisfied. Since for every h it

holds that E(R(h))=O, then according to the assumption we obtain R(h)= R(R(h))
for every h.

Example 2.6. We will determine the general reproductive solution for the func-

tional equation given in Example 2.2.

On the basis of the general solution, we obtain

R
(
f
(
Z1,Z2,Z3,Z4

))= b1f
(
Z1,Z2,Z3,Z4

)+b2f
(
Z2,Z3,Z4,Z1

)

+b3f
(
Z3,Z4,Z1,Z2

)+(b1−b2+b3
)
f
(
Z4,Z1,Z2,Z3

)
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= b1f
(
Z1,Z2,Z3,Z4

)+b2f
(
Z2,Z3,Z4,Z1

)+b3f
(
Z3,Z4,Z1,Z2

)

+(b1−b2+b3
)[
f
(
Z1,Z2,Z3,Z4

)−f (Z2,Z3,Z4,Z1
)+f (Z3,Z4,Z1,Z2

)]

= (2b1−b2+b3
)
f
(
Z1,Z2,Z3,Z4

)+(−b1+2b2−b3
)
f
(
Z2,Z3,Z4,Z1

)

+(b1−b2+2b3
)
f
(
Z3,Z4,Z1,Z2

)
.

(2.31)

The condition R(f(Z1,Z2,Z3,Z4))= f(Z1,Z2,Z3,Z4) holds if

2b1−b2+b3 = 1, −b1+2b2−b3 = 0, b1−b2+2b3 = 0, (2.32)

that is,

b1 = 3
4
, b2 = 1

4
, b3 =−1

4
. (2.33)

Therefore, the general reproductive solution of the given functional equation is

f
(
Z1,Z2,Z3,Z4

)= 3
4
h
(
Z1,Z2,Z3,Z4

)+ 1
4
h
(
Z2,Z3,Z4,Z1

)

− 1
4
h
(
Z3,Z4,Z1,Z2

)+ 1
4
h
(
Z4,Z1,Z2,Z3

)
.

(2.34)

Next we will give a procedure by which for every functional equation (2.1) in the

case n= 3 we may determine the canonical equation which is equivalent to it.

For every canonical equation we will determine the general and reproductive

solution.

Now we will consider the equation

a1f
(
Z1,Z2,Z3

)+a2f
(
Z2,Z3,Z1

)+a3f
(
Z3,Z1,Z2

)=O. (2.35)

From (2.35) by a cyclic permutation of the variables we obtain the following system:

a1f
(
Z1,Z2,Z3

)+a2f
(
Z2,Z3,Z1

)+a3f
(
Z3,Z1,Z2

)=O,

a3f
(
Z1,Z2,Z3

)+a1f
(
Z2,Z3,Z1

)+a2f
(
Z3,Z1,Z2

)=O,

a2f
(
Z1,Z2,Z3

)+a3f
(
Z2,Z3,Z1

)+a1f
(
Z3,Z1,Z2

)=O.

(2.36)

The determinant of system (2.36) is

∆= 1
2

(
a1+a2+a3

)[(
a1−a2

)2+(a2−a3
)2+(a3−a1)2

]
. (2.37)

There are four possible cases:

(a) a1+a2+a3 ≠ 0 and (a1−a2)2+(a2−a3)2+(a3−a1)2 ≠ 0,

(b) a1+a2+a3 ≠ 0 and (a1−a2)2+(a2−a3)2+(a3−a1)2 = 0,

(c) a1+a2+a3 = 0 and (a1−a2)2+(a2−a3)2+(a3−a1)2 ≠ 0,

(d) a1+a2+a3 = 0 and (a1−a2)2+(a2−a3)2+(a3−a1)2 = 0.

In the case (a), system (2.36) is obviously equivalent to equation

f
(
Z1,Z2,Z3

)=O. (2.38)
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In the case (b), we have

a2
3−
(
a1+a2

)
a3+a2

1−a1a2+a2
2 = 0 (2.39)

or

a3 =
[
a1+a2±i

(
a1−a2

)√
3
]

2
. (2.40)

If a2 = a1, then also a3 = a1 and a1+a2+a3 ≠ 0 implies a1 ≠ 0. Thus system (2.36)

is equivalent to the equation

f
(
Z1,Z2,Z3

)+f (Z2,Z3,Z1
)+f (Z3,Z1,Z2

)=O. (2.41)

In the general case, we can write

a3 = 1±i√3
2

a1+ 1∓i√3
2

a2 (2.42)

or, ifω6 andω−1
6 are the primitive 6th roots of 1, then a3 = a1ω6+a2ω−1

6 . Now (2.35)

takes the form

a1f
(
Z1,Z2,Z3

)+a2f
(
Z2,Z3,Z1

)+(a1ω6+a2ω−1
6

)
f
(
Z3,Z1,Z2

)=O. (2.43)

If a3 = 0, we have a1+a2 ≠ 0, a1ω2
6+a2 = 0 and the equation takes the form

f
(
Z1,Z2,Z3

)−ω3f
(
Z2,Z3,Z1

)=O, (2.44)

where ω3 is a primitive third root of 1 (we assume ω3 =ω2
6).

If a2 = 0 or a1 = 0, we obtain, respectively, the equations

f
(
Z1,Z2,Z3

)+ω6f
(
Z3,Z1,Z2

)=O,

f
(
Z2,Z3,Z1

)+ω−1
6 f

(
Z3,Z1,Z2

)=O,
(2.45)

which can be reduced to (2.44) by a cyclic permutation of the vectors.

We will see that (2.43) can always be reduced to (2.41) or (2.44). To this end we will

use the following lemma.

Lemma 2.7. Suppose that (2.35) can be written in the form

α1
[
c1f

(
Z1,Z2,Z3

)+c2f
(
Z2,Z3,Z1

)]+α2
[
c1f

(
Z2,Z3,Z1

)+c2f
(
Z3,Z1,Z2

)]

+α3
[
c1f

(
Z3,Z1,Z2

)+c2f
(
Z1,Z2,Z3

)]=O,
(2.46)

where
∣∣∣∣∣∣∣

α1 α2 α3

α3 α1 α2

α2 α3 α1

∣∣∣∣∣∣∣
≠ 0. (2.47)

Then (2.35) is equivalent to

c1f
(
Z1,Z2,Z3

)+c2f
(
Z2,Z3,Z1

)=O. (2.48)
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Proof. By a cyclic permutation of (2.46) we derive the following system:

α1
[
c1f

(
Z1,Z2,Z3

)+c2f
(
Z2,Z3,Z1

)]+α2
[
c1f

(
Z2,Z3,Z1

)+c2f
(
Z3,Z1,Z2

)]

+α3
[
c1f

(
Z3,Z1,Z2

)+c2f
(
Z1,Z2,Z3

)]=O,

α3
[
c1f

(
Z1,Z2,Z3

)+c2f
(
Z2,Z3,Z1

)]+α1
[
c1f

(
Z2,Z3,Z1

)+c2f
(
Z3,Z1,Z2

)]

+α2
[
c1f

(
Z3,Z1,Z2

)+c2f
(
Z1,Z2,Z3

)]=O,

α2
[
c1f

(
Z1,Z2,Z3

)+c2f
(
Z2,Z3,Z1

)]+α3
[
c1f

(
Z2,Z3,Z1

)+c2f
(
Z3,Z1,Z2

)]

+α1
[
c1f

(
Z3,Z1,Z2

)+c2f
(
Z1,Z2,Z3

)]=O.

(2.49)

The determinant of this system is

∣∣∣∣∣∣∣

α1 α2 α3

α3 α1 α2

α2 α3 α1

∣∣∣∣∣∣∣
≠ 0, (2.50)

thus we deduce (2.48).

We see that (2.43) can be written in the form (2.46)

0
[
f
(
Z1,Z2,Z3

)−ω3f
(
Z2,Z3,Z1

)]+a2
[
f
(
Z2,Z3,Z1

)−ω3f
(
Z3,Z1,Z2

)]

+a1ω6
[
f
(
Z3,Z1,Z2

)−ω3f
(
Z1,Z2,Z3

)]=O.
(2.51)

The determinant in condition (2.47) is
∣∣∣∣∣∣∣

0 a2 a1ω6

a1ω6 0 a2

a2 a1ω6 0

∣∣∣∣∣∣∣
= a3

2−a3
1. (2.52)

If a3
2 ≠ a

3
1, then by Lemma 2.7, (2.43) is equivalent to (2.44). If a2 = a1, then it is

equivalent to (2.41). If a3
2 = a3

1, but a2 ≠ a1, then a2 = a1ω2
6 or a2 = a1ω4

6. In the

latter case we have

a1+a2+a3 = a1+a1ω4
6+a1ω6+a1ω3

6 = a1−a1ω6+a1ω6−a1 = 0 (2.53)

which is a contradiction. Suppose that a2 = a1ω2
6. Then a3 = 2a1ω6 and (2.43) be-

comes

f
(
Z1,Z2,Z3

)+ω2
6f
(
Z2,Z3,Z1

)+2ω6f
(
Z3,Z1,Z2

)=O (2.54)

or

f
(
Z1,Z2,Z3

)−ω3f
(
Z2,Z3,Z1

)+2ω3
[
f
(
Z2,Z3,Z1

)−ω3f
(
Z3,Z1,Z2

)]

+0
[
f
(
Z3,Z1,Z2

)−ω3f
(
Z1,Z2,Z3

)]=O.
(2.55)

The determinant
∣∣∣∣∣∣∣

1 2ω3 0

0 1 2ω3

2ω3 0 1

∣∣∣∣∣∣∣
= 1+8ω3

3 = 9≠ 0, (2.56)

thus by Lemma 2.7, (2.43) is equivalent to (2.44).
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In the case (c), a1 +a2 +a3 = 0 and at least one of the inequalities a1 −a2 ≠ 0,

a2−a3 ≠ 0 and a3−a1 ≠ 0 is valid. Suppose, for the sake of definiteness, that a1−a2 ≠
0. In view of a3 =−a1−a2 we have

a1f
(
Z1,Z2,Z3

)+a2f
(
Z2,Z3,Z1

)+(−a1−a2
)
f
(
Z3,Z1,Z2

)=O, (2.57)

or the form (2.46)

0
[
f
(
Z1,Z2,Z3

)−f (Z2,Z3,Z1
)]+a2

[
f
(
Z2,Z3,Z1

)−f (Z3,Z1,Z2
)]

−a1
[
f
(
Z3,Z1,Z2

)−f (Z1,Z2,Z3
)]=O.

(2.58)

The determinant in (2.47) is
∣∣∣∣∣∣∣

0 a2 −a1

−a1 0 a2

a2 −a1 0

∣∣∣∣∣∣∣
= a3

2−a3
1. (2.59)

Since a1 −a2 ≠ 0, the equality a3
2 −a3

1 = 0 is possible only for a2 = a1ω3 (ω3 a

primitive third root of 1), then a3 = −a1(1+ω3) and we are led to a contradiction

with (a1−a2)2+(a2−a3)2+(a3−a1)2 ≠ 0. Thus, in this case (2.35) is equivalent to

the equation

f
(
Z1,Z2,Z3

)−f (Z2,Z3,Z1
)=O. (2.60)

If a1−a2 = 0, then at least one of the differences a2−a3 and a3−a1 is not 0 and

we come to the same conclusion.

In the case (d), we have a3 = −a1−a2, a2
1+a1a2+a2

2 = 0, that is, either a1 = a2 =
a3 = 0 and (2.35) reduces to the identity

O=O, (2.61)

or a2 = a1ω3, a3 = a1ω2
3, where ω3 is as above. Now (2.35) reduces to

f
(
Z1,Z2,Z3

)+ω3f
(
Z2,Z3,Z1

)+ω2
3f
(
Z3,Z1,Z2

)=O. (2.62)

On the basis of the exposition we conclude that the following lemma holds.

Lemma 2.8. The functional equation (2.35) is equivalent to the following equations:

(I) f(Z1,Z2,Z3)=O if

a1+a2+a3 ≠ 0,
(
a1−a2

)2+(a2−a3
)2+(a3−a1

)2
≠ 0; (2.63)

(II) (2.41) or (2.44) if

a1+a2+a3 ≠ 0,
(
a1−a2

)2+(a2−a3
)2+(a3−a1

)2 = 0; (2.64)

(III) (2.60) if

a1+a2+a3 = 0,
(
a1−a2

)2+(a2−a3
)2+(a3−a1

)2
≠ 0; (2.65)

(IV) O=O or (2.62) if

a1+a2+a3 = 0,
(
a1−a2

)2+(a2−a3
)2+(a3−a1

)2 = 0. (2.66)

For any of the above equations, we give formulas for the general solutions and

formulas for the general reproductive solutions of these equations.
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Proposition 2.9. The equation

f
(
Z1,Z2,Z3

)+f (Z2,Z3,Z1
)+f (Z3,Z1,Z2

)=O (2.67)

has a general solution given by

f
(
Z1,Z2,Z3

)= b1h
(
Z1,Z2,Z3

)+b2h
(
Z2,Z3,Z1

)−(b1+b2
)
h
(
Z3,Z1,Z2

)
, (2.68)

where h is an arbitrary complex vector function with values in � and b1, b2 are arbi-

trary complex constants.

Proof. From the given equation we obtain the system

f
(
Z1,Z2,Z3

)+f (Z2,Z3,Z1
)+f (Z3,Z1,Z2

)=O,

f
(
Z1,Z2,Z3

)+f (Z2,Z3,Z1
)+f (Z3,Z1,Z2

)=O,

f
(
Z1,Z2,Z3

)+f (Z2,Z3,Z1
)+f (Z3,Z1,Z2

)=O,

(2.69)

with matrix of coefficients

A=




1 1 1

1 1 1

1 1 1


 . (2.70)

The general solution of this system, according to (2.9) is given by


f
(
Z1,Z2,Z3

)

f
(
Z2,Z3,Z1

)

f
(
Z3,Z1,Z2

)


= B



h
(
Z1,Z2,Z3

)

h
(
Z2,Z3,Z1

)

h
(
Z3,Z1,Z2

)


 , (2.71)

where B is a general cyclic 3×3 matrix which satisfies the condition AB =O.

On the basis of formula (2.9), we may write

f
(
Z1,Z2,Z3

)= b1h
(
Z1,Z2,Z3

)+b2h
(
Z2,Z3,Z1

)−(b1+b2
)
h
(
Z3,Z1,Z2

)
, (2.72)

which proves the proposition.

Proposition 2.10. The reproductive solution of (2.67) is

f
(
Z1,Z2,Z3

)= 2
3
h
(
Z1,Z2,Z3

)− 1
3
h
(
Z2,Z3,Z1

)− 1
3
h
(
Z3,Z1,Z2

)
, (2.73)

where h is an arbitrary complex vector function with values in �.

Proof. This statement will be proved in the following way. From the general so-

lution (2.68) we obtain

R
(
f
(
Z1,Z2,Z3

))= b1f
(
Z1,Z2,Z3

)+b2f
(
Z2,Z3,Z1

)−(b1+b2
)
f
(
Z3,Z1,Z2

)

= b1f
(
Z1,Z2,Z3

)+b2f
(
Z2,Z3,Z1

)

+(b1+b2
)[
f
(
Z1,Z2,Z3

)+f (Z2,Z3,Z1
)]

= (2b1+b2
)
f
(
Z1,Z2,Z3

)+(b1+2b2
)
f
(
Z2,Z3,Z1

)
.

(2.74)

The condition R(f(Z1,Z2,Z3))= f(Z1,Z2,Z3) is satisfied if

b1 = 2
3
, b2 =−1

3
. (2.75)
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Thus

f
(
Z1,Z2,Z3

)= 2
3
h
(
Z1,Z2,Z3

)− 1
3
h
(
Z2,Z3,Z1

)− 1
3
h
(
Z3,Z1,Z2

)
(2.76)

is a reproductive solution of (2.67).

In a similar way, we can prove that (2.44) has a general solution given by

f
(
Z1,Z2,Z3

)= b[h(Z1,Z2,Z3
)+ω3h

(
Z2,Z3,Z1

)+ω2
3h
(
Z3,Z1,Z2

)]
, (2.77)

where b is a complex constant and h is an arbitrary complex vector function with

values in �.

Of course, in the last equality we can put b = 1, including the arbitrary constant

in the function h. Also, if we put b1 = b, b2 = bω3, then by virtue of the equality

1+ω3+ω2
3 = 0 we see that the general solution of (2.44) is of the form (2.68).

On the other hand, it is sometimes convenient to keep this factor. For instance, we

see that the reproductive solution of (2.44) is obtained for b = 1/3, that is,

f
(
Z1,Z2,Z3

)= 1
3

[
h
(
Z1,Z2,Z3

)+ω3h
(
Z2,Z3,Z1

)+ω2
3h
(
Z3,Z1,Z2

)]
. (2.78)

Similarly, (2.60) has a general solution given by

f
(
Z1,Z2,Z3

)= h(Z1,Z2,Z3
)+h(Z2,Z3,Z1

)+h(Z3,Z1,Z2
)

(2.79)

and a reproductive solution given by

f
(
Z1,Z2,Z3

)= 1
3

[
h
(
Z1,Z2,Z3

)+h(Z2,Z3,Z1
)+h(Z3,Z1,Z2

)]
, (2.80)

and (2.62) has a general solution given by

f
(
Z1,Z2,Z3

)= b1h
(
Z1,Z2,Z3

)+b2h
(
Z2,Z3,Z1

)−(ω2
3b1+ω3b2

)
h
(
Z3,Z1,Z2

)
(2.81)

and a reproductive solution given by

f
(
Z1,Z2,Z3

)= 2
3
h
(
Z1,Z2,Z3

)−ω3

3
h
(
Z2,Z3,Z1

)−ω
2
3

3
h
(
Z3,Z1,Z2

)
. (2.82)

On the basis of the previous results the following two theorems hold.

Theorem 2.11. The general solution of the equation

a1f
(
Z1,Z2,Z3

)+a2f
(
Z2,Z3,Z1

)+a3f
(
Z3,Z1,Z2

)=O (2.83)

is given by the following formulas:

(1) f(Z1,Z2,Z3)≡O if a1+a2+a3 ≠ 0 and (a1−a2)2+(a2−a3)2+(a3−a1)2 ≠ 0;

(2) f(Z1,Z2,Z3)= b1h(Z1,Z2,Z3)+b2h(Z2,Z3,Z1)−(b1+b2)h(Z3,Z1,Z2) ifa1+a2+
a3 ≠ 0 and (a1 − a2)2 + (a2 − a3)2 + (a3 − a1)2 = 0, (in particular,

f(Z1,Z2,Z3) = h(Z1,Z2,Z3)+ω3h(Z2,Z3,Z1)+ω2
3h(Z3,Z1,Z2) if a1,a2,a3 are

distinct nonzero numbers);
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(3) f(Z1,Z2,Z3) = h(Z1,Z2,Z3) + h(Z2,Z3,Z1) + h(Z3,Z1,Z2); if a1 + a2 + a3 = 0

and (a1−a2)2+(a2−a3)2+(a3−a1)2 ≠ 0,

(4) if a1+a2+a3 = 0 and (a1−a2)2+(a2−a3)2+(a3−a1)2 = 0, then

(a) f(Z1,Z2,Z3)= h(Z1,Z2,Z3) if a1 = a2 = a3 = 0;

(b) f(Z1,Z2,Z3)=b1h(Z1,Z2,Z3)+b2h(Z2,Z3,Z1)−(ω2
3b1+ω3b2)h(Z3,Z1,Z2)

if a2 = a1ω3, a3 = a1ω2
3, a1 ≠ 0, whereh is an arbitrary complex vector function

with values in �.

Theorem 2.12. Under the assumptions of the previous theorem denoted by (1)–(4),

the general reproductive solutions are given by the following formulas:

(1) f(Z1,Z2,Z3)≡O;

(2) (a) f(Z1,Z2,Z3) = (2/3)h(Z1,Z2,Z3)− (1/3)h(Z2,Z3,Z1)− (1/3)h(Z3,Z1,Z2) if

a1 = a2 = a3 ≠ 0;

(b) f(Z1,Z2,Z3)=(2/3)h(Z1,Z2,Z3)−(ω3/3)h(Z2,Z3,Z1)−(ω2
3/3)h(Z3,Z1,Z2) if

a1, a2,a3 are distinct;

(3) f(Z1,Z2,Z3)= (1/3)[h(Z1,Z2,Z3)+h(Z2,Z3,Z1)+h(Z3,Z1,Z2)];
(4) (a) f(Z1,Z2,Z3)= h(Z1,Z2,Z3);

(b) f(Z1,Z2,Z3)=(2/3)h(Z1,Z2,Z3)−(ω3/3)h(Z2,Z3,Z1)−(ω2
3/3)h(Z3,Z1,Z2).

3. Solution of nonhomogeneous functional equations. Next we will give the fol-

lowing results.

Theorem 3.1. The basic cyclic complex vector nonhomogeneous functional equa-

tion with complex constant coefficients

E(f)≡
n∑

i=1

aif
(
Zi,Zi+1, . . . ,Zi+n−1

)= g(Z1,Z2, . . . ,Zn
) (

Zn+i ≡ Zi
)
, (3.1)

where ai (1 ≤ i ≤ n) are complex constants, has a solution if the right-hand side g
satisfies

(AC+I)




g
(
Z1,Z2, . . . ,Zn

)

g
(
Z2,Z3, . . . ,Z1

)
...

g
(
Zn,Z1, . . . ,Zn−1

)



= �, (3.2)

where A is given by (2.3), C is any nonzero n×n cyclic matrix with complex constant

entries satisfying ACA+A = O, O is the n×n zero matrix, I is the n×n unit matrix

and � is defined as in (2.7).

If (3.2) holds for some C , then the general solution of (3.1) is given by the following

formula




f
(
Z1,Z2, . . . ,Zn

)

f
(
Z2,Z3, . . . ,Z1

)
...

f
(
Zn,Z1, . . . ,Zn−1

)



= B




h
(
Z1,Z2, . . . ,Zn

)

h
(
Z2,Z3, . . . ,Z1

)
...

h
(
Zn,Z1, . . . ,Zn−1

)



−C




g
(
Z1,Z2, . . . ,Zn

)

g
(
Z2,Z3, . . . ,Z1

)
...

g
(
Zn,Z1, . . . ,Zn−1

)



, (3.3)
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where the nonzero n×n cyclic matrix B given by (2.3) satisfies the condition

AB =O (3.4)

and h is an arbitrary complex vector function with values in �.

Proof. By a cyclic permutation of the vectors in (3.1), we get

a1f
(
Z1,Z2, . . . ,Zn

)+a2f
(
Z2,Z3, . . . ,Z1

)+···+anf
(
Zn,Z1, . . . ,Zn−1

)

= g(Z1,Z2, . . . ,Zn
)
,

anf(Z1,Z2, . . . ,Zn
)+a1f

(
Z2,Z3, . . . ,Z1

)+···+an−1f
(
Zn,Z1, . . . ,Zn−1

)

= g(Z2,Z3, . . . ,Z1
)
,

...

a2f
(
Z1,Z2, . . . ,Zn

)+a3f
(
Z2,Z3, . . . ,Z1

)+···+a1f
(
Zn,Z1, . . . ,Zn−1

)

= g(Zn,Z1, . . . ,Zn−1
)
,

(3.5)

that is, in a matrix form

AF =G, (3.6)

where

F =




f
(
Z1,Z2, . . . ,Zn

)

f
(
Z2,Z3, . . . ,Z1

)
...

f
(
Zn,Z1, . . . ,Zn−1

)



, G =




g
(
Z1,Z2, . . . ,Zn

)

g
(
Z2,Z3, . . . ,Z1

)
...

g
(
Zn,Z1, . . . ,Zn−1

)



. (3.7)

Suppose that (3.6) has a solution F and that C satisfies ACA+A=O. Then

(AC+I)G = (AC+I)AF = (ACA+A)F = �, (3.8)

that is, (3.2) must be satisfied. Conversely, let (3.2) hold for some cyclic matrix C . Then

−CG is easily seen to be a solution of (3.6)

A(−CG)=−(AC+I)G+IG = IG =G. (3.9)

Now we prove that (3.3) is the general solution of (3.1).

Let f be a solution of (3.1), which we will write in the form

E(f)= g. (3.10)

We denote by fh the general solution of the equation E(f)=O, and by fp we denote

a particular solution of (3.10).

Then f = fh+fp is the general solution of (3.10). Indeed,

E
(
fh+fp

)= E(fh
)+E(fp

)= g. (3.11)

On the other hand, let f be an arbitrary solution of (3.10). Then

E
(
f −fp

)= E(f)−E(fp
)= g−g =O, (3.12)
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that is, f −fp is a solution of the associated homogeneous equation. So there exists a

specialization f̄h of the expression fh such that

f −fp = f̄h, that is, f = f̄h+fp. (3.13)

Thus fh+fp includes all solutions of (3.10).

The general solution of the homogeneous equation E(f) = O given in a matrix

form according to Theorem 2.1 is BH, where B and H are defined by (2.3) and (2.12),

respectively, and a particular solution of the equation E(f) = g in a matrix form is

−CG, then F = BH−CG includes all solutions of the nonhomogeneous equation.

On the other hand, every function of the form (3.3) satisfies the functional equation

(3.1).

Next we will consider the functional equation

a1f
(
Z1,Z2,Z3

)+a2f
(
Z2,Z3,Z1

)+a3f
(
Z3,Z1,Z2

)= g(Z1,Z2,Z3
)
. (3.14)

By a similar procedure as in Section 2 one can prove the following lemma.

Lemma 3.2. The functional equation (3.14) is equivalent to

(I) f(Z1,Z2,Z3)= (1/∆)[(a2
1−a2a3)g(Z1,Z2,Z3)+(a2

3−a1a2)g(Z2,Z3,Z1)+(a2
2−

a1a3)g(Z3,Z1,Z2)] if a1 + a2 + a3 ≠ 0, and (a1 − a2)2 + (a2 − a3)2 + (a3 −
a1)2 ≠ 0;

(II) f(Z1,Z2,Z3) + f(Z2,Z3,Z1) + f(Z3,Z1,Z2) = (1/a1)g(Z1,Z2,Z3) if a1 = a2 =
a3 ≠ 0 or

f
(
Z1,Z2,Z3

)−ω3f
(
Z2,Z3,Z1

)

=




−a1a2ω6g
(
Z1,Z2,Z3

)+a2
1ω

2
6g
(
Z2,Z3,Z1

)+a2
2g
(
Z3,Z1,Z2

)

a3
2−a3

1

if a3
2 ≠ a

3
1,

g
(
Z1,Z2,Z3

)−2ω3g
(
Z2,Z3,Z1

)+4ω2
3g
(
Z3,Z1,Z2

)

9a1
if a2 = a1ω3

(3.15)

if a1+a2+a3 ≠ 0, and (a1−a2)2+(a2−a3)2+(a3−a1)2 = 0;

(III) f(Z1,Z2,Z3)−f(Z2,Z3,Z1)=(1/(a3
2−a3

1))[a1a2g(Z1,Z2,Z3)+a2
1g(Z2,Z3,Z1)+

a2
2g(Z3,Z1,Z2)] if a1+a2+a3 = 0, and (a1−a2)2+(a2−a3)2+(a3−a1)2 ≠ 0;

(IV) O = g(Z1,Z2,Z3) or f(Z1,Z2,Z3)+ω3f(Z2,Z3,Z1)+ω2
3f(Z3,Z1,Z2) = (1/a1)×

g(Z1,Z2,Z3) if a1+a2+a3 = 0, and (a1−a2)2+(a2−a3)2+(a3−a1)2 = 0.

For each of the above equations we will determine the conditions which must be

satisfied by the function g so that the equation should have a solution.

Proposition 3.3. Equation (3.14) whose coefficients satisfy the conditions

a1 = a2 = a3 ≠ 0 (3.16)

has a solution if and only if the function g satisfies the condition

g
(
Z1,Z2,Z3

)−g(Z2,Z3,Z1
)=O. (3.17)

Proof. In this case the equation considered is equivalent to the equation

a1
[
f
(
Z1,Z2,Z3

)+f (Z2,Z3,Z1
)+f (Z3,Z1,Z2

)]= g(Z1,Z2,Z3
)
. (3.18)
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Since

A= a1




1 1 1

1 1 1

1 1 1


 , (3.19)

then A2 = 3a1A, that is, A(−I/3a1)A+A = O, and hence we obtain C = −I/3a1. The

condition ACG+G = � reduces to

2
3
g
(
Z1,Z2,Z3

)− 1
3
g
(
Z2,Z3,Z1

)− 1
3
g
(
Z3,Z1,Z2

)=O (3.20)

and (see Lemma 2.7) eventually to (3.17).

In a similar way, we obtain the necessary and sufficient conditions for solvability of

the other equations. Thus, we obtain the following result.

Theorem 3.4. The functional equation (3.14) has a solution if and only if the func-

tion g satisfies the following conditions

(1) g(Z1,Z2,Z3) is arbitrary if a1 + a2 + a3 ≠ 0, (a1 − a2)2 + (a2 − a3)2 + (a3 −
a1)2 ≠ 0;

(2) g(Z1,Z2,Z3) − g(Z2,Z3,Z1) = O or g(Z1,Z2,Z3) + ω3g(Z2,Z3,Z1) + ω2
3g(Z3,

Z1,Z2)=O if a1+a2+a3 ≠ 0, and (a1−a2)2+(a2−a3)2+(a3−a1)2 = 0;

(3) g(Z1,Z2,Z3)+g(Z2,Z3,Z1)+g(Z3,Z1,Z2) = O if a1+a2+a3 = 0, (a1−a2)2+
(a2−a3)2+(a3−a1)2 ≠ 0;

(4) g =O or g(Z1,Z2,Z3)−ω3g(Z2,Z3,Z1)=O if a1+a2+a3 = 0, (a1−a2)2+(a2−
a3)2+(a3−a1)2 = 0.

Now we will find the general solution for any equation of Lemma 3.2. We will illus-

trate this only for the second equation.

Proposition 3.5. The general solution of the equation

f
(
Z1,Z2,Z3

)+f (Z2,Z3,Z1
)+f (Z3,Z1,Z2

)= 1
a1
g
(
Z1,Z2,Z3

)
(3.21)

is given by

f
(
Z1,Z2,Z3

)= b1h
(
Z1,Z2,Z3

)+b2h
(
Z2,Z3,Z1

)

−(b1+b2
)
h
(
Z3,Z1,Z2

)+ 1
3a1

g
(
Z1,Z2,Z3

)
,

(3.22)

where h is an arbitrary complex vector function with values in �.

Proof. The general solution of the corresponding homogeneous equation is

f
(
Z1,Z2,Z3

)= b1h
(
Z1,Z2,Z3

)+b2h
(
Z2,Z3,Z1

)−(b1+b2
)
h
(
Z3,Z1,Z2

)
. (3.23)

The particular solution of the considered nonhomogeneous equation is

f
(
Z1,Z2,Z3

)= 1
3a1

g
(
Z1,Z2,Z3

)
. (3.24)
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Thus, the general solution of the given nonhomogeneous equation is

f
(
Z1,Z2,Z3

)= b1h
(
Z1,Z2,Z3

)+b2h
(
Z2,Z3,Z1

)

−(b1+b2
)
h
(
Z3,Z1,Z2

)+ 1
3a1

g
(
Z1,Z2,Z3

)
.

(3.25)

Theorem 3.6. The general solution of (3.14) in the cases given in Theorem 3.4 is

(1) f(Z1,Z2,Z3) = (1/∆)[(a2
1−a2a3)g(Z1,Z2,Z3)+ (a2

3−a1a2)g(Z2,Z3,Z1)+ (a2
2−

a1a3)g(Z3,Z1,Z2)] ifa1+a2+a3≠0, and (a1−a2)2+(a2−a3)2+(a3−a1)2 ≠ 0;

(2) f(Z1,Z2,Z3) = b1h(Z1,Z2,Z3) + b2h(Z2,Z3,Z1) − (b1 + b2)h(Z3,Z1,Z2) +
(1/3a1)g(Z1,Z2,Z3)if a1 = a2 = a3 ≠ 0 or

f
(
Z1,Z2,Z3

)

= h(Z1,Z2,Z3
)+ω3h

(
Z2,Z3,Z1

)+ω2
3h
(
Z3,Z1,Z2

)

+




(
a2

1−2a1a2ω6−a2
2ω

2
6

)
g
(
Z1,Z2,Z3

)+ω3
(
a2

1−a1a2ω6−2a2
2ω

2
6

)
g
(
Z2,Z3,Z1

)

3
(
a3

2−a3
1

)

if a3
2 ≠ a

3
1,

−ω3

3a1
g
(
Z2,Z3,Z1

)
if a2 = a1ω3

(3.26)

if a1+a2+a3 ≠ 0, and (a1−a2)2+(a2−a3)2+(a3−a1)2 = 0;

(3) f(Z1,Z2,Z3) = b1[h(Z1,Z2,Z3)+h(Z2,Z3,Z1)+h(Z3,Z1,Z2)]+ ((a2 −a1)g(Z1,
Z2,Z3)+(a1+2a2)g(Z2,Z3,Z1))/3(a2

1+a1a2+a2
2) if a1+a2+a3 = 0, and (a1−

a2)2+(a2−a3)2+(a3−a1)2 ≠ 0;

(4) f(Z1,Z2,Z3) = h(Z1,Z2,Z3) or f(Z1,Z2,Z3) = b1h(Z1,Z2,Z3)+b2h(Z2,Z3,Z1)−
(ω2

3b1+ω3b2)h(Z3,Z1,Z2)+(1/3a1)g(Z1,Z2,Z3) if a1+a2+a3 = 0, and (a1−
a2
)2+(a2−a3)2+(a3−a1)2 = 0.

4. Solution of paracyclic functional equations. Let � be a complex vector space

with complex dimension n, and let the complex vectors Xi, Yj ∈ � (1 ≤ i,j ≤ n) be

given as above. Throughout this section, �i are constant complex vectors in � and let

f : �n+k��.

Now we will consider the following paracyclic complex vector functional equation

of the first kind

n∑

i=1

aif
(
Xi,Xi+1, . . . ,Xi+n−1,Yi,Yi+1, . . . ,Yi+k−1

)=O
(
Xn+i ≡ Xi, Yn+i ≡ Yi

)
, (4.1)

where ai (1≤ i≤n) are complex constants.

First, we will consider two particular cases for k= 1 (n > 1) and k=n.

We determine the general solution of the equation

n∑

i=1

aif
(
Xi,Xi+1, . . . ,Xi+n−1,Yi

)=O. (4.2)

By a cyclic permutation of the vectors in (4.2), we obtain the matrix system

AF = �, (4.3)
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where

A=




a1 a2 ··· an
an a1 ··· an−1

...

a2 a3 ··· a1



, F =




f
(
X1, . . . ,Xn,Y1

)

f
(
X2, . . . ,X1,Y2

)
...

f
(
Xn, . . . ,Xn−1,Yn

)



, �=




O

O
...

O



. (4.4)

For system (4.3) the following theorem holds.

Theorem 4.1. The general solution of the functional equation (4.2) is given by for-

mula

F = BH, (4.5)

if AB = O, where A and B are nonzero n×n cyclic matrices given by (2.3), O is the

n×n zero matrix and

H =




h
(
X1,X2, . . . ,Xn

)

h
(
X2,X3, . . . ,X1

)
...

h
(
Xn,X1, . . . ,Xn−1

)



, (4.6)

where h is an arbitrary complex vector function with values in �.

Proof. If not all coefficients ai (1≤ i≤n) are 0, we can suppose, without loss of

generality, that a1 ≠ 0. Then (4.2) is equivalent to the equation

f
(
X1, . . . ,Xn,Y1

)=−a2

a1
f
(
X2, . . . ,Xn,X1,Y2

)−···− an
a1
f
(
Xn,X1, . . . ,Xn−1,Yn

)
. (4.7)

By putting Yi = �i (2 ≤ i ≤ n), where �i are arbitrary complex constant vectors

from �, we obtain

f
(
X1, . . . ,Xn,Y1

)=−a2

a1
f
(
X2, . . . ,Xn,X1,�2

)−···− an
a1
f
(
Xn,X1, . . . ,Xn−1,�n

)
. (4.8)

The right-hand side of the last equation depends on X1, . . . ,Xn only. Denote this

expression by h(X1, . . . ,Xn).
Therefore, (4.8) obtains the following form:

f
(
X1, . . . ,Xn,Y1

)= h(X1, . . . ,Xn
)
. (4.9)

Formula (4.9) is the general solution of (4.2) if and only if it holds that

n∑

i=1

aih
(
Xi,Xi+1, . . . ,Xi+n−1

)=O. (4.10)

The above equation is equivalent to the functional equation (2.1), and therefore

Theorem 2.1 holds. Thus (4.5) is true.
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Now, we will solve the functional equation (4.1) if k=n.

By denoting the pairs (Xi,Yi) = Zi (1 ≤ i ≤ n), the functional equation (4.1) takes

the form (2.1), then Theorem 2.1 holds, that is, the general solution is given by F = BH,

where

F =




f
(
Z1,Z2, . . . ,Zn

)

f
(
Z2,Z3, . . . ,Z1

)
...

f
(
Zn,Z1, . . . ,Zn−1

)



=




f
(
X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn

)

f
(
X2,X3, . . . ,X1,Y2,Y3, . . . ,Y1

)
...

f
(
Xn,X1, . . . ,Xn−1,Yn,Y1, . . . ,Yn−1

)



,

H =




h
(
X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn

)

h
(
X2,X3, . . . ,X1,Y2,Y3, . . . ,Y1

)
...

h(Xn,X1, . . . ,Xn−1,Yn,Y1, . . . ,Yn−1
)



,

(4.11)

and B is given by (2.3).

Next, we will consider the case 1 < k < n. To this end, instead of (4.1) we will

consider the equation

a1f
(
X1, . . . ,Xn,Y1, . . . ,Yk,Yk+1, . . . ,Yn

)

+a2f
(
X2, . . . ,Xn,X1,Y2, . . . ,Yk,Yk+1, . . . ,Yn,Y1

)+···
+anf

(
Xn,X1, . . . ,Xn−1,Yn,Y1, . . . ,Yn+k−1,Yn+k, . . . ,Yn−1

)=O.

(4.12)

By a cyclic permutation of the vectors in the last equation, we obtain the matrix

system (4.3), where

F =




f
(
X1, . . . ,Xn,Y1, . . . ,Yk,Yk+1, . . . ,Yn

)

f
(
X2, . . . ,Xn,X1,Y2, . . . ,Yk,Yk+1, . . . ,Yn,Y1

)
...

f
(
Xn,X1, . . . ,Xn−1,Yn,Y1, . . . ,Yn+k−1,Yn+k, . . . ,Yn−1

)



, (4.13)

A and � are as in (4.4).

The necessary and sufficient condition for system (4.3) with (4.13) to have nontrivial

solution is detA= 0. Since detA is cyclic, then its value is

detA=
n−1∏

i=0

E
(
εi
)
, (4.14)

where εi (0≤ i≤n−1) are distinct roots of the binomial equation

b(x)≡ 1−xn = 0. (4.15)

Therefore, (4.12) has nontrivial solutions if and only if the characteristic equation

E(x) ≡ a1+a2x+···+anxn−1 = 0 has common roots with the binomial equation

b(x) ≡ 1−xn = 0. If this is so, we can write E(x) = P(x)D(x), b(x) = D(x)F(x),
where D(x) is the greatest common divisor of the polynomials E(x) and b(x).
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The general solution of (4.12) is given by formula

f
(
X1, . . . ,Xn,Y1, . . . ,Yk,Yk+1, . . . ,Yn

)

= b1h
(
X1, . . . ,Xn,Y1, . . . ,Ym,Ym+1, . . . ,Yn

)

+b2h
(
X2, . . . ,Xn,X1,Y2, . . . ,Ym,Ym+1, . . . ,Yn,Y1

)+···
+bs+1h

(
Xs+1, . . . ,Xn,X1, . . . ,Xs ,Ys+1, . . . ,Ym+s ,Ym+s+1, . . . ,Yn,Y1, . . . ,Ys

)
,

(4.16)

where the complex numbers bi (1≤ i≤ s+1) are coefficients of the polynomial

b1+b2x+···+bs+1xs = F(x). (4.17)

The functional equation (4.1) will be called reduced equation of (4.12). Now we will

prove the following result.

Theorem 4.2. Every function f given by

f
(
X1, . . . ,Xn,Y1, . . . ,Yn

)= b1h
(
X1, . . . ,Xn,Y1, . . . ,Ym

)

+b2h
(
X2, . . . ,Xn,X1,Y2, . . . ,Ym+1

)

+···+bs+1h
(
Xs+1, . . . ,Xn,X1, . . . ,Xs ,Ys+1, . . . ,Ym+s

)
,

(4.18)

satisfies (4.1), wherem= k−s for k > s,h(X1, . . . ,Xn,Ys , . . . ,Ym) is an arbitrary complex

vector function with values in � and if k−s ≤ 0, then h is an arbitrary complex vector

function only of X1, . . . ,Xn with values in the same space �.

Proof. We should prove that f = F(h) is a solution of (4.1), where h is an arbitrary

complex vector function with values in �.

Indeed, we have

D(f)=D(F(h))= b(h)= 0, (4.19)

from where it follows that E(f)=P(D(f))=O, which we were required to prove.

Next, we will solve the functional equation

a1f
(
X1,X2,X3,Y1,Y2

)+a2f
(
X2,X3,X1,Y2,Y3

)+a3f
(
X3,X1,X2,Y3,Y1

)=O. (4.20)

By a procedure similar to that in the first section, we may prove the following lemma.

Lemma 4.3. The functional equation (4.20) is equivalent to the equation

(I) f(X1,X2,X3,Y1,Y2) = O if a1 + a2 + a3 ≠ 0, (a1 − a2)2 + (a2 − a3)2 + (a3 −
a1)2 ≠ 0;

(II) f(X1,X2,X3,Y1,Y2) + f(X2,X3,X1,Y2,Y3) + f(X3,X1,X2,Y3,Y1) = O or

f(X1,X2X3,Y1,Y2)−ω3f(X2,X3,X1,Y2,Y3) = O if a1+a2+a3 ≠ 0, and (a1−
a2)2+(a2−a3)2+(a3−a1)2 = 0;

(III) f(X1,X2,X3,Y1,Y2)−f(X2,X3,X1,Y2,Y3) = O if a1+a2+a3 = 0, (a1−a2)2+
(a2−a3)2+(a3−a1)2 ≠ 0;

(IV) O = O or f(X1,X2,X3,Y1,Y2)+ω3f(X2,X3,X1,Y2,Y3)+ω2
3f(X3,X1,X2,Y3,Y1)

=O if a1+a2+a3 = 0, and (a1−a2)2+(a2−a3)2+(a3−a1)2 = 0.
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Proposition 4.4. The functional equation

f
(
X1,X2,X3,Y1,Y2

)−f (X2,X3,X1,Y2,Y3
)=O (4.21)

has a general solution

f
(
X1,X2,X3,Y1,Y2

)= h(X1,X2,X3
)+h(X2,X3,X1

)+h(X3,X1,X2
)
, (4.22)

where h is an arbitrary complex vector function of the variables X1, X2, X3 with values

in �.

Proof. The given equation may be written in the following form:

f
(
X1,X2,X3,Y1,Y2

)= f (X2,X3,X1,Y2,Y3
)
. (4.23)

The left-hand side of the equation is independent of Y3 and the right-hand side is

independent of Y1, so we have

f
(
X1,X2,X3,Y1,Y2

)= F(X1,X2,X3,Y2
)
, (4.24)

f
(
X2,X3,X1,Y2,Y3

)= F(X1,X2,X3,Y2
)
. (4.25)

On the other hand, from (4.24) we find

f
(
X2,X3,X1,Y2,Y3

)= F(X2,X3,X1,Y3
)
, (4.26)

thus we have

F
(
X1,X2,X3,Y2

)= F(X2,X3,X1,Y3
)
. (4.27)

Since the left-hand side of the above equation is independent of Y3 and the right-

hand side is independent of Y2, we obtain

F
(
X1,X2,X3,Y2

)=G(X1,X2,X3
)
. (4.28)

On the basis of equality (4.28), formula (4.24) becomes

f
(
X1,X2,X3,Y1,Y2

)=G(X1,X2,X3
)
. (4.29)

Formula (4.29) gives a solution of the equation if and only if

G
(
X1,X2,X3

)−G(X2,X3,X1
)=O, (4.30)

whose general solution is given by

G
(
X1,X2,X3

)= h(X1,X2,X3
)+h(X2,X3,X1

)+h(X3,X1,X2
)
. (4.31)

Therefore, the general solution of the equation is

f
(
X1,X2,X3,Y1,Y2

)= h(X1,X2,X3
)+h(X2,X3,X1

)+h(X3,X1,X2
)
. (4.32)
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On the basis of the previous results, the following theorem holds.

Theorem 4.5. The general solution of the equation

a1f
(
X1,X2,X3,Y1,Y2

)+a2f
(
X2,X3,X1,Y2,Y3

)+a3f
(
X3,X1,X2,Y3,Y1

)=O (4.33)

is given by the formulas

(1) f(X1,X2,X3,Y1,Y2) ≡ O if a1+a2+a3 ≠ 0, and (a1−a2)2+ (a2−a3)2+ (a3−
a1)2 ≠ 0;

(2) f(X1,X2,X3,Y1,Y2) = h(X1,X2,X3,Y1)−h(X2,X3,X1,Y2) or f(X1,X2,X3,Y1,Y2)
= h(X1,X2,X3)+ω3h(X2,X3,X1)+ω2

3h(X3,X1,X2) if a1+a2+a3 ≠ 0, and (a1−
a2)2+(a2−a3)2+(a3−a1)2 = 0;

(3) f(X1,X2,X3,Y1,Y2)= h(X1,X2,X3)+h(X2,X3,X1)+h(X3,X1,X2) if a1+a2+a3 =
0, (a1−a2)2+(a2−a3)2+(a3−a1)2 ≠ 0;

(4) f(X1,X2,X3,Y1,Y2) = h(X1,X2,X3,Y1,Y2) or f(X1,X2,X3,Y1,Y2) = h(X1,X2,
X3,Y1)−ω3h(X2,X3,X1,Y2) if a1 +a2 +a3 = 0, and (a1 −a2)2 + (a2 −a3)2 +
(a3−a1)2 = 0, where h is arbitrary complex vector function with values in �.
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