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By means of Bihari type inequalities, we derive sufficient conditions for solutions of a dis-
crete reaction-diffusion equation to be bounded or to converge to zero. Asymptotic repre-
sentation of solutions are also derived. Our results yield estimates and explicit attractive
regions for the solutions.
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1. Introduction. Discrete reaction-diffusion type partial difference equations have

recently been introduced by a number of authors as models for the study of spatio-

temporal chaos (cf. [4]). Stability criteria have also been derived for such equations,

which involves two-level (see [2]) as well as three-level processes (cf. [3]). Besides, the

question of stability and asymptotic representation of solutions of such difference

schemes are also of fundamental importance. In this paper, we study nonlinear two-

level partial difference equations and, by means of comparison theorems, we derive

sufficient conditions for the solutions to be bounded or to converge to zero. Further,

asymptotic formulae for the solutions of the above equation are obtained. We want to

point out that our results compare favorably with results in [1, 2], basically because

their main results are valid only for linear or sublinear perturbations. Besides, our

results are new and do not overlap with those in [1, 2].

2. Preliminary facts. LetR be the set of reals andN the set of nonnegative integers.

Consider a discrete reaction-diffusion equation of the form

u(j+1)
i = au(j)i−1+bu(j)i +cu(j)i+1+g(j)i + F̃

(
i,j,u(j)i

)
, (2.1)

where i = 1,2, . . . ,n; j ∈ N; a,b,c ∈ R; g = {g(j)i } is a real function defined for i =
1,2, . . . ,n and j ∈N, and F̃ is a real function. We will also assume that side conditions

u(j)0 = hj ∈R, j ∈N,
u(j)n+1 = qj ∈R, j ∈N,
u(0)i = τi ∈R, i= 1,2, . . . ,n,

(2.2)

are imposed. Let

Ω = {(i,j) | i= 0,1, . . . ,n+1; j ∈N}. (2.3)
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A solution of (2.1) and (2.2) is a discrete function u= {u(j)i }(i,j)∈Ω which satisfies the

functional relation (2.1) and also the side conditions (2.2). If we put u(j) = col(u(j)1 ,
u(j)2 , . . . ,u(j)n ) and τ = col(τ1, . . . ,τn), then the sequence {u(j)}∞j=0 will satisfy the two-

term vector equation

u(j+1) =Au(j)+fj+F
(
j,u(j)

)
, j ∈N, (2.4)

subject to the initial condition

u(0) = τ, (2.5)

where

A=




b c 0 ··· ··· 0

a b c 0 ··· 0

0 a b c ··· 0

··· ··· ··· ··· ··· ···
··· ··· ··· ··· ··· ···
0 ··· ··· 0 a b



,

fj =
(
g(j)1 , . . . ,g(j)n

)
+col

(
ahj,0, . . . ,0,cqj

)
,

F(j,x)= col
(
F̃
(
1,j,x1

)
, . . . , F̃

(
n,j,xn

))
.

(2.6)

Conversely, if {u(j)}∞j=0 is a solution of (2.4) and (2.5), then by augmenting each u(j) =
col(u(j)1 , . . . ,u(j)n ) with the terms u(j)0 = hj and u(j)n+1 = qj to form {u(j)0 ,u(j)1 , . . . ,u(j)n ,
u(j)n+1}, we see that the resulting family forms a solution of (2.1) and (2.2).

Theorem 2.1 (see [5]). Let B = (bij)n×n be a real matrix and ρ(B) its spectral radius.

Then, there exists a constant Γ ≥ 1, such that ‖Bi‖ ≤ Γ(ρ(B))i for i∈N.

We will use the following theorem which gives an explicit estimate for a function

u=u(m) which satisfies the functional inequality

u(m)≤ c+
p∑
i=1

m−1∑
j=0

λi(j)wi
(
u(j)

)
, m∈N, (2.7)

where (G1) c ≥ 0, p is a positive integer, (G2) λ1,λ2, . . . ,λp are nonnegative sequences

in �1(N), where �1(N) is the set of all absolutely summable real sequences defined

on N, and (G3) the functions wi, 1 ≤ i ≤ p, are continuous on [0,∞) and positive

on (0,∞), such that wi+1/wi, 1≤ i≤ p−1, are nondecreasing on (0,∞).
To this end, we need to define

Wi(u)=
∫ u
ui

1
wi(s)

ds, u > 0, ui > 0, 1≤ i≤ p,

Ψi(u)=W−1
i
(
Wi(u)+αi

)
,

(2.8)

with α1, . . . ,αp ∈R, and ϕ0(u)=u, ϕi = Ψi ◦Ψi−1◦···◦Ψ1 for 1≤ i≤ p.
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Theorem 2.2 (see [6, 7]). Under the conditions (G1), (G2), and (G3), ifu={u(m)}m∈N
is a nonnegative sequence which satisfies (2.7), αi =

∑∞
j=0λi(j), and c <ϕ−1

p (∞), then

u(m)≤W−1
p

(
Wp

(
ϕp−1(c)

)+m−1∑
k=0

λp(k)
)
, m∈N, (2.9)

and u(m)≤ϕp(c) for m∈N.

We remark that if

∫∞
1

ds
wi(s)

=∞, 1≤ i≤ p, (2.10)

holds, then the same conclusion u(m) ≤ϕp(c) is valid for all c > 0. If the dual con-

dition

∫ 1

0+
ds
wi(s)

=∞, 1≤ i≤ p, (2.11)

holds, then the same conclusion u(m)≤ϕp(c) is valid if c is small enough.

Example 2.3. Let wi(u)=uni for i= 1,2. Then

Ψi(u)=


[
u1−ni+αi

(
1−ni

)]−1/(ni−1), ni ∈ (0,1)∪(1,∞),
uexpαi, ni = 1,

(2.12)

for i= 1,2. Thus, for ni ≠ 1, ϕ = Ψ2 ◦Ψ1 takes the form

ϕ(u)= {[u1−n1+α1
(
1−n1

)](n2−1)/(n1−1)+α2
(
1−n2

)}−1/(n2−1). (2.13)

Moreover, since Ψ−1
i (u)=W−1

i [Wi(u)−αi],ϕ−1(u) is obtained from (2.13) by replac-

ing αi with −αi. Thus, for ni > 1, ϕ(u) is defined for all u<ϕ−1(∞), where

ϕ−1(∞)= {[α1
(
n1−1

)](n2−1)/(n1−1)+α2
(
n2−1

)}−1/(n2−1). (2.14)

For the case n1 = 1<n2, we get

ϕ(u)= [(ueα1
)1−n2+α2

(
1−n2

)]−1/(n2−1)

=ueα1
[
1+α2

(
1−n2

)(
ueα1

)n2−1
]−1/(n2−1)

,
(2.15)

which is defined for

u<ϕ−1(∞)= [α2
(
n2−1

)]−1/(n2−1), (2.16)

and if n1 < 1=n2, then

ϕ(u)= eα2
[
u1−n1+α1

(
1−n1

)]−1/(n1−1)
(2.17)

is defined for u<ϕ−1(∞)= (∞).
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3. Boundedness. Now, we can establish our boundedness criteria.

Theorem 3.1. Assume that

∥∥F(j,x)∥∥≤ p∑
l=1

λl(j)wl
(‖x‖), j ∈N, (3.1)

for all x ∈ Rn, where w1, . . . ,wp satisfy condition (G3), and λ1, . . . ,λp are nonnegative

sequences in �1(N). In addition, suppose
∑∞
k=0‖fk‖<∞, ρ(A)= ρ ≤ 1, and ‖Ai‖ ≤ Γρi

for i∈N. If there exists a constant d> 0 such that

∞∑
k=0

λl(k) <
1
Γ

∫∞
ϕl−1(d)

1
wl(s)

ds, 1≤ l≤ p, (3.2)

and Γ(‖τ‖+∑∞
k=0‖fk‖) < d, then all solutions of (2.4) are bounded.

Proof. By inductive arguments, it is easily seen that the unique solution {u(j)}∞j=0

of (2.4), subject to u(0) = τ , satisfies

u(j) =Ajτ+
j−1∑
k=0

Aj−k−1fk+
j−1∑
k=0

Aj−k−1F
(
k,u(k)

)
, j ∈N. (3.3)

Thus, in view of Theorem 2.1 and our assumptions,

∥∥u(j)∥∥≤ Γρj‖τ‖+Γ j−1∑
k=0

ρj−k−1
∥∥fk∥∥+Γ

p∑
l=1

j−1∑
k=0

ρj−k−1λl(k)wl
(∥∥u(k)∥∥), (3.4)

where Γ is some positive number greater than or equal to 1. Putv(j)= ‖u(j)‖ for j ∈N.

Then

v(j)≤ Γ‖τ‖+Γ
∞∑
k=0

∥∥fk∥∥+Γ
p∑
l=1

j−1∑
k=0

λl(k)wl
(
v(k)

)

≤ d+Γ
p∑
l=1

j−1∑
k=0

λl(k)wl
(
v(k)

)
.

(3.5)

So, by Theorem 2.2, we obtain

v(j)≤W−1
p

(
Wp

(
ϕp−1(d)

)+Γ j−1∑
k=0

λp(k)
)
, j ∈N. (3.6)

Inequalities (3.2) show that this estimation is valid for all j ∈N, and that the function

in the right-hand side is bounded, in fact,

W−1
p

(
Wp

(
ϕp−1(d)

)+Γ ∞∑
k=0

λp(k)
)
≤ϕp(d). (3.7)

Hence,

v(j)≤ϕp(d); j ∈N, (3.8)

concluding the proof.
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Remarks. (a) If
∫∞
1 (1/wl(s))ds =∞, 1≤ l≤ p, then conditions (3.2) of Theorem 3.1

are satisfied for all d> 0.

(b) If
∫ 1
0+(1/wl(s))ds = ∞, 1 ≤ l ≤ p, then there always exists a small d satisfying

conditions (3.2) of Theorem 3.1.

(c) If
∫ 1
0+(1/wl(s))ds <∞, 1≤ l≤ p, then the inequality

∑∞
k=0λl(k)≥

∫∞
0 (1/wl(s))ds

for some l, 1≤ l≤ p, implies that there is no d > 0 satisfying (3.2). In every case, the

biggest d satisfying conditions (3.2) is d=ϕ−1
p (∞).

Thus, we can establish the following corollary of Theorem 3.1.

Corollary 3.2. (A) If
∫∞
1 (1/wl(s))ds = ∞, 1 ≤ l ≤ p, holds, then the result of

Theorem 3.1 is valid for all solutions.

(B) If
∫ 1
0+(1/wl(s))ds = ∞, 1 ≤ l ≤ p, holds, then the statement of Theorem 3.1 is

valid for all solutions of (2.4) such that Γ(‖u(0)‖+∑∞
k=0‖fk‖) is small enough, namely,

Γ(‖u(0)‖+∑∞
k=0‖fk‖) <ϕ−1

p (∞).
Corollary 3.3. Suppose that

∥∥F(j,x)∥∥≤ p∑
l=1

λl(j)‖x‖ηl , j ∈N, (3.9)

where ηi ≥ 1, 1≤ i≤ p and λ1, . . . ,λp are positive sequences in �1(N). Then, the state-

ment of Theorem 3.1 is valid for all sufficiently small positive d.

Remark 3.4. If 0 < ηi < 1, 1 ≤ i ≤ p, in (3.9), then the statement of Theorem 3.1

remains valid for all d> 0, and consequently for all solutions of (2.4).

Theorem 3.5. Suppose that the function F = F(j,x) satisfies (3.9), where

(I) the functions wl, 1 ≤ l ≤ p, satisfy conditions (G3), and for any l, 1 ≤ l ≤ p,

there is a function rl defined on (0,∞) such that wl(αu) ≤ rl(α)wl(u) for

α≥ 0, u≥ 0;

(II) the functions λl, 1≤ l≤ p, satisfy
∑∞
k=0ρ−k ·λl(k)rl(ρk) <∞;

(III) there is a constant d> 0 such that
∞∑
k=0

ρ−k ·λl(k)rl
(
ρk
)
<
ρ
Γ

∫∞
ϕl−1(d)

ds
wl(s)

, 1≤ l≤ p; (3.10)

(IV)
∑∞
k=0ρ−k‖fk‖<∞. If ρ(A)= ρ < 1 and ‖Ai‖ ≤ Γρi for i∈N, then any solution

u(j) of (2.4), such that Γ(‖τ‖ +∑∞
k=0ρ−(k+1)‖fk‖) < d, converges to zero, as

j→∞.

Indeed, it suffices to proceed in a way similar to the proof of Theorem 3.1, thus we

omit it.

Corollary 3.6. Suppose that

∥∥F(j,x)∥∥≤ p∑
l=1

λl(j)‖x‖ηl , j ∈N, (3.11)

where ηi ≥ 1, 1≤ i≤ p and the sequences λ1, . . . ,λp satisfy

∞∑
k=0

ρ−k(1−ηl) ·λl(k) <∞, 1≤ l≤ p. (3.12)
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Further, suppose that there exists a constant d> 0 such that

∞∑
k=0

ρ−k(1−ηl) ·λl(k) < ρΓ
(
ϕl−1(d)

)1−ηl

1−ηl , 1≤ l≤ p. (3.13)

Then the statement of Theorem 3.5 is valid for all sufficiently small positive d.

Remark 3.7. We want to point out that ϕp(d) and ϕ−1
p (∞) can be explicitly cal-

culated (see Section 2, Example 2.3), and consequently, we can show the radius of

attraction for bounded and convergent to zero solutions (see [6]).

4. Asymptotic representation. In this section, our objective is to obtain asymptotic

formulae for the solution of discrete reaction-diffusion equations of the form (2.1), but

under the additional conditionsu(j)0 = 0=u(j)n+1; j ∈N and g(j)i = 0 for all i= 1,2, . . . ,n;

j ∈N.

By iteration and induction, it can be proved that the unique vector solution {u(j)}∞j=0

of the reduced equation

u(j+1) =Au(j)+F(j,u(j)); j ∈N, (4.1)

subject to u(0) = τ , satisfies

u(j) =Ajτ+
j−1∑
k=0

Aj−k−1F
(
k,u(k)

)
, j ∈N. (4.2)

Theorem 4.1. Assume that ‖F(j,x)‖ ≤ λ(j)w(‖x‖), for all x ∈ Rn and j ∈ N,

where w : [0,∞) → [0,∞) is a continuous, positive, and nondecreasing function on

[0,∞). Further, suppose that λ∈ �1(N), and there exists a constant d> 0 such that

∞∑
k=0

λ(k) <
1
Γ

∫∞
d‖τ‖

ds
w(s)

. (4.3)

If ρ(A) = ρ ≤ 1, and ‖Ai‖ ≤ Γρi for all i ∈ N, then corresponding to each bounded

solution of (4.1) there is z0 ∈ Rn such that u(j) = Ajz0+ õ(1), as j → ∞, where õ(1)
represents a vector function of j which is bounded at infinity.

Proof. From Theorem 3.1, we infer that all solutionsu(j) of (4.1), such that Γ‖u(0)‖
<d, are bounded. On the other hand, we have

∥∥∥∥∥∥
j−1∑
k=0

Aj−k−1F
(
k,u(k)

)∥∥∥∥∥∥≤
j−1∑
k=0

Γρj−k−1λ(k)w
(∥∥u(k)∥∥)

≤ Γw(K)
j−1∑
k=0

λ(k)≤ Γw(K)
∞∑
k=0

λ(k),

(4.4)

where K > 0 is a constant such that ‖u(j)‖ ≤ K, for j ∈N. Then, for every solution u
of (4.1), we see that the solution v of equation

v(j+1) =Av(j); j ∈N, (4.5)
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given by

v(j) =u(j)−
j−1∑
k=0

Aj−k−1F
(
k,u(k)

)
, (4.6)

has the property

u(j) = v(j)+ õ(1), as j �→∞. (4.7)

Moreover, if v(j) is a solution of (4.5), then there is z0 ∈Rn such that

v(j) =Ajz0. (4.8)

Therefore,

u(j) =Ajz0+ õ(1), as j �→∞. (4.9)

Remark 4.2. In Theorem 4.1, we assume that ‖τ‖ is small enough so thatW(0+)=
−∞, where

W(u)=
∫ u
u0

ds
w(s)

, u > 0, u0 > 0, (4.10)

in order that W−1 has meaning, that is, the inverse function W−1(v) is defined for

v ∈ (0,δ0), for δ0 small enough.

Corollary 4.3. (I) If (2.10) holds, then the result of Theorem 4.1 is valid for every

solution of (4.1).

(II) If (2.11) holds, then the result of Theorem 4.1 is valid for every solution u(j) of

(4.1), such that Γ‖u(0)‖<ϕ−1
p (∞).

A more precise asymptotic formula is given in the following theorem.

Theorem 4.4. Under the hypotheses of Theorem 4.1, if in addition,

j−1∑
k=0

Aj−k−1F
(
k,u(k)

)
�→ 0, as j �→∞, (4.11)

then

u(j) =Aj ·z0+o(1), as j �→∞. (4.12)

Theorem 4.5. Under the hypotheses of Corollary 4.3(II). Suppose that Φ(j,j0) =
Aj−j0 ; j ≥ j0, satisfies

∥∥Φ−1(j+1,0)F
(
j,Φ(j,0)z

)∥∥≤ λ(j)w(‖z‖), (4.13)

for j ∈N and z ∈Rn; and λ∈ �1(N). Then, for every solution u(j) of (4.1), with ‖u(0)‖
small enough, there is z0 ∈Rn, such that

u(j) =Aj

z0+O


 ∞∑
�=j
λ(l)




, as j �→∞. (4.14)
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Proof. Making u(j) = Φ(j,0)z(j) in (4.1), we get

z(j)= τ+
j−1∑
k=0

A−k−1F
(
k,Akz(k)

)
. (4.15)

The rest of the proof follows by arguments similar to those in the proof of Theorem

4.1, so we omit it.
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