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Let B be a Galois algebra with Galois group G, Jg = {b € B | bx = g(x)b for all x € B} for
each g € G, ey the central idempotent such that BJg = Bey, and ex = deK,egﬂ eg for a
subgroup K of G. Then Bek is a Galois extension with the Galois group G(ek) (={g € G|
gl(ex) = ex}) containing K and the normalizer N (K) of K in G. An equivalence condition is
also given for G(eg) = N(K), and Beg is shown to be a direct sum of all Be; generated by
a minimal idempotent e;. Moreover, a characterization for a Galois extension B is shown
in terms of the Galois extension Beg and B(1 —eg).

2000 Mathematics Subject Classification: 16S35, 16W20.

1. Introduction. The Boolean algebra of idempotents for commutative Galois alge-
bras plays an important role (see [1, 3, 6]). Let B be a Galois algebra with Galois group G
and J; = {b € B| bx = g(x)b for all x € B} for each g € G. Then, in [2], it was shown
that the ideal BJ4 = Bey for some central idempotent ey. By using the Boolean algebra
of central idempotents {ey} in the Galois algebra B, the following structure theorem of
B was shown. There exist some subgroups H; of G and minimal idempotents of {e; | i =
1,2,...,m for some integer m} such that B= @ > ", Be;® B(1—->", e;) where Be; is a
central Galois algebra with Galois group H; for each i =1,2,...,m, and B(1 — Zfﬁl e;)
is C(1-X1", e;), a commutative Galois algebra with Galois group induced by and iso-
morphic with G in case 1 = X", e¢; where C is the center of B. Let (Bg;+,-) be the
Boolean algebra generated by {0,e; | g € G} wheree-e’ =ee’ ande+e’ =e+e’ —ee’
for any e and e’ in B,. In the present paper, we study the Galois extension Beg where
ex = deK,egil ey € B, for a subgroup K of G. Let G(e) = {g € G | g(e) = e} for a cen-
tral idempotent e. Then it will be shown that K ¢ N(K) C G(ex) and Beg is a Galois
extension with Galois group G (ex) where N (K) is the normalizer of K in G. A necessary
and sufficient condition for G(ex) = N(K) is also given so that Bey is a Galois exten-
sion of (Bek)X with Galois group K, and (Bek)X is a Galois extension of (Bey)¢(€x)
with Galois group G(ekx)/K.Let S(K) = {H | H is a subgroup of G and ey = ex}. Then
the map S(K) — ex from {S(K) | K is a subgroup of G} to B, is one-to-one. In par-
ticular, when K = G, we derive an expression for B, B = Beg @ B(1 — eg) such that
Beg = @ > Be;, a direct sum of central Galois algebras with Galois subgroup H;,
and B(1 —eg) =B(1— X’i":l e;) = C(1—eg) which is a commutative Galois algebra with
Galois group induced by and isomorphic with G. Moreover, a characterization for a
Galois extension B is shown in terms of the Galois extension Beg and B(1 —eg).
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2. Definitions and notation. Let B be a ring with 1, C the center of B, G an au-
tomorphism group of B of order n for some integer n, and B¢ the set of elements
in B fixed under each element in G. We call B a Galois extension of B¢ with Galois
group G if there exist elements {a;,b; in B, i = 1,2,...,m} for some integer m such
that >, a;g(b;) = 01,9 for each g € G. We call B a Galois algebra over B¢ if Bis a
Galois extension of B¢ which is contained in C, and B a central Galois extension if B
is a Galois extension of C. Throughout this paper, we will assume that B is a Galois
algebra with Galois group G. Let Jg = {b € B| bx = g(x)b for all x € B}. In [2], it was
shown that BJ4 = Be, for some central idempotent e, of B. We denote by (Bg; +, ) the
Boolean algebra generated by {0,e,; | g € G} where e-e’ =ee’ ande+e’ =e+e’ —ee’
for any e and e’ in B,. Throughout, e + ¢’ for e,e’ € B, means the sum in the Boolean
algebra (Bg; +, ) and a monomial e in B, is I1;ese, + 0 for some S C G.

3. Galois extensions generated by idempotents. Let K be a subgroup of G. The
idempotent deK,egﬂ ey € B, is called the group idempotent of K denoted by ek.
Let G(e) = {g € G| g(e) = e} for e € B,. Then we will show that K ¢ G(ek) and exk
generates a Galois extension Beg with Galois group G (ek). A necessary and sufficient
condition for G(ex) = N(K) is also given where N (K) is the normalizer of K in G. Thus
some consequences for the Galois extension Beg can be derived when K is a normal
subgroup of G or K = G.

LEMMA 3.1. For any g,h € G,
(1) glen) =egpg-1-
(2) ep =1 ifand only ifegpg1 = 1.

PROOE. (1) Itis easy to check that g(Ju) = Jyng-1, 80 Bg(en) = g(Bep) = g(BJn) =
Bg(Jn) = Blgng-1 = Begng-1. Thus glen) = egpq-1.
(2) It is clear by (1). O

THEOREM 3.2. Let K be a subgroup of G, ex = 3 gek,e =184, and G(ex) = {g € G |
glex) =ex}. Then
(1) K is a subgroup of G(ex) and
(2) B=Beg®B(1—exk) such that Bex and B(1 —ek) are Galois extensions with Galois
group induced by and isomorphic with G(ek).

PROOF. (1)For any g € K, by Lemma 3.1,

glex)=g| D e |= > glex)

keK1 keKl
e+ e+ (3 1)
= D egigt = > €gkg-1 = €gKg1-
keK -1 -1
e+l gkg E:qlKg
egkg™ #1

Since g € K, gKg~' = K. Hence g(ex) = ek, and so g € G(ex).

(2) We first claim that for any e + 0 in B,, Be is a Galois extension with Galois group
induced by and isomorphic with G(e). In fact, since B is a Galois extension with Galois
group G, there exists a G-Galois system for B {a;,b; in B, i = 1,2,...,m} for some
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integer m such that X" a;g(b;) = 81,4 foreach g € G.Hence Y.} | (a;e)g(b;e) = eS1 4
for each g € G(e). Therefore, {a;e,b;e in Be, i = 1,2,...,m} is a G(e)-Galois system
for Be,and e = X", (a;e)(bje— g(b;e)) for each g # 1 in G(e). But e # 0, $0 gl # 1
whenever g # 1 in G(e). Thus, Be is a Galois extension with Galois group induced by
and isomorphic with G(e). Statement (2) is a particular case whene = ex and e = 1 —ey,
respectively. |

The proof of Theorem 3.2(2) suggests an equivalence condition for a Galois exten-
sion B.

THEOREM 3.3. The extension B is a Galois extension with Galois group G(e) for a
central idempotent e of B if and only if B= Be ® B(1 —e) such that Be and B(1 —e) are
Galois extensions with Galois group induced by and isomorphic with G (e). In particular,
B is a Galois algebra with Galois group G (e) for a central idempotent e of B, if and only
if B= Be & B(1 —e) such that Be and B(1 —e) are Galois algebras with Galois group
induced by and isomorphic with G(e).

PROOF. (=) Since B is a Galois extension with Galois group G(e), B=Be®B(1 —e)
such that Be and B(1 —e) are Galois extensions with Galois group induced by and
isomorphic with G(e) by the proof of Theorem 3.2(2).

(«) Let {aﬁ-”;b}” € Be | j=1,2,...,n;} be a G(e)-Galois system for Be and let
{aij);bj-Z) €B(l-e)|j=1,2,...,n2} be a G(e)-Galois system for B(1 —e). Then we
claim that {a}i);b;i) | j=1,2,...,n4 i = 1,2} is a G(e)-Galois system for B. In fact,
Zle Z?ila;i)b}i) = e+ (1 —e) = 1. Moreover, for each g # 1 in G(e)—noting that
g + 1 in G(e) if and only if glg. # 1 and glga-) # 1 by hypothesis—we have that
Siagm) =0,i=1,2s0 3,57 a g(b}") = 0. Therefore {a'”;b{" | j =
1,2,...,ni, i=1,2} is a G(e)-Galois system for B, and so B is a Galois extension with
Galois group G (e).

Next, it is clear that B¢® c C if and only if (Be)¢® c Ce and (B(1 —e))¢© c
C(1-e), so by the above argument, B is a Galois algebra with Galois group G(e) for a
central idempotent e of B if and only if B = Be® B(1 —¢) such that Be and B(1 —e) are

Galois algebras with Galois group induced by and isomorphic with G (e). O

COROLLARY 3.4. An algebra B is a Galois algebra with Galois group G if and only if
B = Beg®B(1—eg) such that Beg and B(1 —eg) are Galois algebras with Galois group
induced by and isomorphic with G.

PROOF. By Theorem 3.2(1), G(eg) = G, so the corollary is immediate by Theorem
3.3. O

Now let S(K) = {H | H is a subgroup of G and ey = ex} and «:S(K) — ek. Itis easy
to see that « is a bijection from {S(K) | K is a subgroup of G} to the set of group
idempotents in B,.

We are interested in an equivalence condition for K such that G(ex) = N(K). We
need the following lemma.

LEMMA 3.5. Let K be a subgroup of G, then for a g € G, g € G(ek) if and only if
gKg— e S(K).
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PROOF. Suppose g € G(ek), then

ex=glex)=g| D ex|= > glex)

kekK kekK
ex#1 ep+1

(3.2)

= D egrgt = > €gkg—1 = €gKkg1-
kekK kg legkg!
gkg ~E€gKg
ex*l egkg1#1

Thus gKg~! € S(K). On the other hand, suppose gKg~! € S(K). Then

glex)=g| > ex|= > glex)

kekK kekK
ep+1 ep#+1

(3.3)

= D egrgt = 2. €gkg~! = €gkg-l = €K-
keK -1 -1
e+l gka "cgKg
egkg™" #1

Thus g € G(ek). O

THEOREM 3.6. G(ex) = N(K) if and only if S(K) contains exactly one conjugate of
the subgroup K.

PROOF. (=) For any g € G such that gKg~! € S(K), g € G(ex) by Lemma 3.5. But
G(ex) = N(K) by hypothesis, so g € N(K). Hence gKg~! = K. Thus S(K) contains
exactly one conjugate of the subgroup K.

(«)Foranyg € N(K),gKg~!' =K,sogKg~' € S(K).Hence g € G(ex) by Lemma 3.5.
Thus N(K) C G(ek). Conversely, for each g € G(ex), gKg~! € S(K) by Lemma 3.5, so
gKg~' = K by hypothesis. Thus g € N(K). This implies that G(ex) = N(K). O

COROLLARY 3.7. Assume that the order of G is a unit in B. If S(K) contains exactly
one conjugate of the subgroup K, then Bey is a Galois extension of (Beg)X with Galois
group K and (Beg)X is a Galois extension of (Bek)¢x) with Galois group G (ex) /K.

PROOF. By Theorem 3.2(2), Bex is a Galois extension with Galois group G(eg).
Hence Bey is a Galois extension of (Bekx)X with Galois group K for K is a subgroup
of G(ekx) by Theorem 3.2(1). Moreover, by hypothesis, the order of G is a unit in B,
so the order of K is a unit in Beg. Since S(K) contains exactly one conjugate of the
subgroup K, K is a normal subgroup of G (ex) by Theorem 3.6. Thus (Beg)X is a Galois
extension of (Beg)¢(ek) with Galois group G (ex) /K. O

Next are some consequences for an abelian group G or K = G.

COROLLARY 3.8. If B is an abelian extension with Galois group G (i.e., G is abelian)
of an order invertible in B, then for any subgroup K of G, Bek is a Galois extension of
(Bex)X with Galois group K and (Bex)X is a Galois extension of (Bex)¢&) with Galois
group G(ek) /K.

When K = G, we derive an expression for B by using the set {e¢; | i =1,2,...,m} of
minimal idempotents in B,. This gives detail descriptions of the components Be; and
B(1—e¢) as given in Corollary 3.4.
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THEOREM 3.9. Let B be a Galois algebra with Galois group G. Then B = Beg @
B(1 —eg) such that Beg = @Zf’z‘l Be; where each Be; is a central Galois algebra with
Galois group H; for some subgroup H; of G and B(1—eg) = C(1 —eg) which is a com-
mutative Galois algebra with Galois group induced by and isomorphic with G in case
ec + 1 where {e; |i=1,2,...,m} are given in [5, Theorem 3.8].

PROOF. Since e; = Ilycy,ep where H; is the maximal subset (subgroup) of G such
that Ilyep,en # {0} or e; = (1 - Zg:lej)nthieh where H; is the maximal subset
(subgroup) of G for some t < i such that (1 — Z;Zlej)nheHieh + {0} (see [5, Theo-
rem 3.8]), we have that e;(X4c¢,,+1¢4) = €i for each i. Thus SMiei < 2.9€G,eg+1€g-
Noting that e, (1 - >™M ei) =0 for each g = 1 in G (see [5, Theorem 3.8]), we have
that (deG,egatl eg) (1 - Silie) = 0, that is, (deG,egatl eg)(zﬁlei) = deG,egﬁeg-
Hence e e, +1€9 < >, e;. Thus S geGeg+1€g = >, e, that is, eg = >ty e;. But
then by [5, Theorem 3.8], B= @ > ", Be; ®B(1->.1", e;) = Beg ® B(1 —eg) such that
B(1—eg) = C(1—e¢) which is a commutative Galois algebra with Galois group induced
by and isomorphic with G, and Beg = @ Zﬁl Be; such that each Be; is a central Galois
algebra with Galois group H; for some subgroup H; of G where {e; | i =1,2,...,m}
are minimal idempotents of B,. |

4. A relationship between idempotents. In this section, we show a relationship
between the set of idempotents {e; | g € G} and the set of minimal elements in B,
and give an equivalence condition for a monomial idempotent es (= > cs, ¢ +1€9)
where S is a subset of G, and a monomial e in B, is Izesey # 0 for some S C G.

THEOREM 4.1. Let S be a subset of G. Then there exists a unique subset Zs of the set
{1,2,...,m} such thates = 3 ;c 7, e;.

PROOE. Since C = @ >, Ce; ® Cf (see [5, Theorem 3.8]), es = >t cie; + ¢ f for
some cj,c € C. It can be checked that e; are minimal elements of B,, so ese; = e¢; or
ese;i = 0. Let Zg = {i | ese; = e;}. Then for each i € Zg, e; = ese; = c;e;, and for each
i¢ Zs, 0 = ege; = cie;. Hence eg = Diezg ei +cf. Moreover, since e, f = 0 for each
g #1in G (see [5, Theorem 3.8]), we have that 0 = es f = (X;cz, i +cf) f = cf. Hence
eg = ZiGZS e;. The uniqueness of Zs is clear. O

Next is a description of the components Bekx and B(1 —ek) for a subgroup K of G
as given in Theorem 3.2.

COROLLARY 4.2. For any subgroup K of G, B = Bex ® B(1 —ex) such that Bex =
Yz Bei andB(1-ek) = B(1 -3z, ei) which are Galois extensions with Galois group
induced by and isomorphic with G (ek).

PROOF. Itis an immediate consequence of Theorems 3.2(2) and 4.1. O

In [4], let K be a subgroup of G. Then K is called a nonzero subgroup of G if
[Tkexex # 0, and K is called a maximal nonzero subgroup of G if K ¢ K’ where K’
is a nonzero subgroup of G such that [Jycxex = [Ixex €k, then K = K'. It was shown
that the set of monomials in B, and the set of maximal nonzero subgroups of G are
in a one-to-one correspondence (see [4, Theorem 3.2]). Also, any maximal nonzero
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subgroup K = H, = {g € G | e < e;} where e = Ilxcker and H, is a normal subgroup
of G(e) (see [4, Lemma 3.3]). Next is a characterization of a monomial idempotent eg
(= Xges,e,+1€g) for asubset of G.

THEOREM 4.3. Let S be a subset of G such that es = des,eqﬂ ey #0,1. Then es is
a monomial if and only if e; < es whenever Ho; C H; for an atom e;.

PROOF. (=) By [4, Theorem 3.2], e — H, is a one-to-one correspondence between
the set of monomials in B, and the set of maximal nonzero subgroups of G. Noting
that e = IIyecn, ey when e is a monomial, we have for any monomials e and e’, He C Her
implies that e = e’. Thus, e; < es whenever H,, C He, for an atom e; because eg is a
monomial by hypothesis.

(<) By Theorem 4.1, e = Zeiezs e; where Zg = {e; | ej <eg}.Lete = HgGHES egy. Then
es < e and He, = H,. Suppose es = e. Then es = Zeiezs e; <e = ej where Zeiezs e; is
a direct summand of > e; by Theorem 4.1. It is easy to check that H; = Ne,ezoHe; =
H, = mHej. Therefore there exists some e; ¢ Zs, that is, e; £ es such that He, C Hej.
This is a contradiction. Thus es = e, which is a monomial. |
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