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ABSTRACT. We begin with the basic definition and soma very simple examples from

the theory of univalent functions. After a brief look at the literature, we

survey the progress that has been made on certain problems in this field. The

article ends with a few open questions.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Primy 30A6, secondary 30A2,

30A34.

i. THE HEART OF THE SUBJECT.

We are concerned with power series

w f(z) b" z
n

b
0 + b z + b2z2 +

n I
n=0

(i.i)

in the complex variable z x + iy that are convergent in the unit disk
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E zl < i. Such a power series provides a mapping of E onto some domain D.

Two questions present themselves: (A) given the sequence of coefficients

b0, bl, b2, what can we say about the geometric nature of D: and

(B) given some geometric property of D what can we say about the sequence

b0, bI, b 2,

An example of a nice geometric property is given in

DEFINITION i. A function f(z) that is regular (holomorphic) in E is

said to be univalent in E, if it assumes no value more than once in E. Such

a function is also called simple or schlicht in E. When f(z) is univalent

in E we say that the domain D f(E) is a simple (schlicht) domain.

Stated algebraically, f(z) is univalent in E if the equation w
0

f(z)

has at most one solution in E for each complex w0. If f(z) is univalent

in E, then f’ (z) # 0 in E. But one must be careful because the converse

is false.

As trivial examples, we mention that f(z) -= z is univalent in E while

2
f2(z) z is not univalent in E. The function z + zn/n is univalent in

E for each positive integer n. The function sin z is univalent in the

larger disk z < /2.

PROBLEM. Find a useful set of conditions on the sequence {b that are
n

both necessary and sufficient for f(z) to be univalent in E.

This open problem is extremely difficult. However, partial results have

been obtained, some of which will be stated here.

We observe that if f(z) is univalent, then so is f(z) b0, and hence

we may assume that b
0

0 in (!.i) without loss of generality. Geometrically

this amounts to translating the domain D so that z 0 goes into w-- 0

under the mapping w f(z). Next we note that f’ (0) bI # 0, so we can



UNIVALENT AND MULTIVALENT FUNCTIONS 165

divide by bl, and then write f(z) in the form. n
bnF(z) z + anZ a /b

n=2
n I" (1.2)

Geometrically this amounts to shrinking or expanding the domain D, and possibly

rotating D. This does not disturb the unlvalence of the function.

When F(z) has the form (1.2) we say that the function has been normalized.

Other normalizations are possible, but the set of conditions F(0) 0, F’ (0) i,

is the most usual and the one we will use here.

We now give a very important example of a normalized univalent function.

We start with the function

l+zg(z) I z
(1.3)

and from the properties of the general linear fractional transformation, it is

easy to see that g(z) is univalent in E and g(E) is the half-plane

2Re g > 0. If we square g(z) we see that the function h(z) g (z) is also

univalent in E and maps E onto the entire complex plane minus the sllt

along the negative real axis from 0 to -. To normalize E we subtract

h(0) i and divide by h’ (0) 4. Thus we arrive at

K(z) (1.4)

This important function is called the Koebe function and it maps E onto the

entire complex plane minus the slit along the negative real axis from-1/4 to

-. On intuitive grounds it is a "largest" univalent function because we cannot

adjoin to K(E) any open set without destroying univalence. A short computation
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(starting with i/(i- z) In=0 zn) gives the power series for K(z),

K(z) z + 2z
2 + 3z

3 + [ nz
n--1

This power series for the "largest" univalent function suggests immediately

CONJECTURE i. If F(z) is univalent in E, and has the power series

(1.2), then

for n 2, 3,

This conjecture has been the subject of research for more than 60 years and

still represents an open problem, although it has been settled in many special

cases. A complete account of these results is far beyond the scope of this

paper but the interested reader can pursue the matter in the books by Spencer

and Schaeffer [27], Goluzln [8], Jenkins [14], Hayman [ii, 12], Pommerenke [25]

and Schober [28].

The best result known today is due to D. Horowltz [13] who proved that

anl __< 1.0657 n, (1.7)

using a very deep method due to Carl FitzGerald [7].

The question raised by Conjecture i, suggests a large number of related

problems, some of which are open while others have been solved completely. The

Koebe function is the "heart of the subject" because it appears so often, that

a theorem in this subject becomes very interesting if it does no___!t use the Koebe
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function or some modification of it. We will mention some of these theorems and

conjectures, but first we give

2. A SURVEY OF THE LITERATURE.

The specialist in the theory of univalent and multlvalent functions must be

grateful to S. D. Bernardl, who has devoted much of his time to preparing an

exhaustive bibliography of the subject [3]. The first volume covers the period

from 1907 to 1965 and lists 1694 papers. The second volume covers the period

from 1966 to 1975 and lists 1563 papers, Each of these ,2 volumes has an exten-

slve index which lists subtopics in this field and those papers that touch on

each subtopic. Thus it is an easy matter for the specialist to determine the

status of any problem up to the year 1975.

In addition, these two volumes give references to the many survey articles

on the subject that have appeared during this period. Here we cite only three

such; one by D. Campbell [5], a second by Anderson, Barth and Brannan I,

pp. 138-144], and third, the article by the author [9], It is the purpose of

this paper to review this third survey and bring it up to date by reporting on

the progress made on the problems mentioned there.

3. THE PRESENT STATUS OF SOME OPEN PROBLEMS,

thLet S (z) be the n partial sum of the series (1.2. Thus
n

n
S (z) z + akzk, n > 2.
n k=2

QUESTION i. Find necessary and sufficient conditions on the sequence

a2, a3, an, such that F(z) and every partial sum S (z) is unl-
n

valent in E,
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It is an easy matter to prove that if

k;2
(3,2)

then F(z) is univalent in Eo Indeed as Ao Hurwitz first observed,

F(z2) F(Zl)
i + akPk(Z2,Z.l)z

2
zI k=2

where ’k(Z2,Zl) z2k-i + z-2Zl + + zlk-l, < k for Zl, z2 e E, It

follows that if the condition (3.2) is satisfied then the right side of (3.3)

is never zero for Zl, z
2

e E.

Now suppose (3.2) is satisfied, then the same inequality is true for each

S (z) and hence the condition (3.2) is a sufficient condition for F(z) and
n

every Sn(z) to be univalent in E.

Let PS(1) denote the set of all functions F(z) of the form (1.2) for

which F(z) and all the partial sums are univalent in E. Thus the condition

(3.2) is a sufficient condition for F(z) to be in PS(1). However, the condl-

tion is not necessary as we will soon see.

Alexander [2] has proved that if a
k __> 0 in (1.2) and

i => 2a
2 => 3a

3 => ffi> nan >= >= 0, (3,4)

then F(z) is univalent in E. For example

n (- z) . z__ (.3.5)
n--i

n
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satisfies the condition (3.4). In fact every partial sum also satisfies (3.4)

and hence in (i z) e PS(1). Thus (3.4) is also a sufficient condition for

F(z) to be in PS(1). Further Alexander proved that if

a3z3 a5z5 2k+lG(z) z + + + + a2k+iZ + (3.6)

and

I => 3a
3 => 5a

5 => => (2k+l)a2k+l => ffi> 0 (3,7)

then G(z) is univalent in E. Thus (3.7) is also a sufficient condition for a

function G(z) to be in PS(1). But neither of these conditions is included in

the other, nor in the condition (3.2). The determination of all functions in

PS(1) is a difficult task. Still more difficult is the generalization to

p-valent functions.

DEFINITION 2. A function

F(z) a z
n

is said to be p-valent in a domain E if it assumes no value more than p

times in E and there is some w
0

such that F(z) w
0

has exactly p

solutions in E, when roots are counted in accordance %rlth their multiplicities.

Observe that the normalization aI i (used for univalent functions) has

2
been dropped. Indeed it is no longer available because f(z) z is

2-valent in E.
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Now let PS(p) be the set of all functions F(z) such that F(z) and all

the partial sums S (z), with n > p have valence not exceeding p. The deter-

mlnation of PS(p) seems to be very difficult, and very little is known beyond

the trivial PS(1) C PS(2) C PS(3) .... In this direction Ozaki [24] has

proved that if

z
k . n

F(z) + anZ i _< k < p (_3.9)
n=k+l

and if

k(p-k+l) >= 7. n(n+p-l) lan
n=k+l

(3

then F(z) and all partial sums Sn, with n _> k + I are at most p-valent in

E. Thus Fz) e PSi).

QUESTION 2. What can we say about F(z), given hy (1.2) when F(z) is

biunivalent in E?

Of course we need

DEFINITION 3. A function F(z) is said to be biunivalent in E if both

F(z) and its inverse are univalent in E.

Let us examine this definition a little more closely. On a first reading,

it sounds as though F(z) is 1-to-l, but l-to-i and regular is really univalent,

so biunivalent must mean something different.

Suppose that F(z) is regular in E and f’ (0) i. It follows from

ia el8Schwarz’s Lemma that either F(z) z or there are two points e and

such that F(eia) < 1 and F(eiS) > i. The image of E under such a
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function F is shown in Figure i. Let r be an arc of the boundary of F(.)
w

F(eiS) F(ei)

z-plane w-plane

Figure i

that lles inside E in the w-plane and suppose that F F(F where F is
w z z

a suitable arc on Izl i. If F(z) is biunivalent, then it must be analytic

-i
on F and such that it can be continued across F so that F (w) is defined

z z

and regular throughout lwl < i. This additonal requirement is very stringent,

and is very awkward to use in practice.

The concept of a biunivalent function was introduced by M. Lewin [19] who

proved that if F(z), given by (1.2), is biunlvalent (belongs to the set BI),

then ,,]a2[ < 1.51. At one time, I believed that the bound ]a < i was true
n

for every n, and that the extremal function should be z/(l-z)
=i

z

However, in a very difficult paper, E. Netanyahu [23] ruined this conjecture

by proving that in the set BI, max a2] 4/3.

Jenson and Waadeland [15] proved that if f(z) e BI, then ]a3] < 2.51, 5ut

this result is not sharp (a lower bound may be the correct one).

Prof. Waadeland noted (in a letter to the author) that the interesting

example on page I0 of [15] is not in the set BI because it has a pole at
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w-- 16/25, and that another example due to Busklein [4] has the same defect

although it was intended to show that in BI max a > n/4. At this time
n

is known about max anl, max If’(z) l, max (arg f’(z)), etc, for thenothing

set of functions BI.

QUESTION 3. Let A be the set of all functions of the form

(z) f(z) + 8g(z) (3.11)

where , 8 > 0, + i, and f(z) and g(z) are arbitrary functions from

some given normalized set X. What can we say about (z)?

First suppose that X S, the set of normalized functions that are uni-

valent in E. It is known [i0] that if

0.042 1 < , < e__:0 958
l+e l+e

(3.12)

then it is possible to find f and g in S such that (z) has infinite

valence in E. However if , or 8 are in the interval (0,1/(l+e)), then

the maximum valence of (z) is unknown.

DEFINITION 4. We let CV be the set of all normalized univalent functions

F(z) for which F(E) is a convex region. We let ST denote the set of all

normalized univalent functions F(z) for which F(E) is starlike with respect

to the origin. A domain D is starlike with respect to the origin if the

intersection of D with each ray (starting at the origin) is either the ray

itself or a line segment.

For example the functions z and z/(! z) are convex (in CV), since

z/(l z) maps E onto the half-plane Re w > -1/2. The Koebe function
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z/(l z) 2 is not convex but it is starlike (in ST) because it maps E onto

the entire complex plane minus the slit < w < -1/4. For the classes CV

and ST, sharp coefficient bounds are known: If f(z) e CV then lanl l

for every n 1 and !(1-) +
2

is an extreml function, If

f(z) e ST, then [a < n for every n > i and the Koebe function is an
n

extremal function.

It is clear from the definitions of CV and ST that

CV C ST C S. (3.13)

We now return to question 3.

Styer and Wright [29] have proved that if e 8 i/2, then there are

two functions f and g in ST for which (z) is infinite-valent. Such

a conclusion may also hold for other values of e and 8, but at present the

range of such pairs in unknown.

In [9] Goodman conjectured that if f and g are in CV, then (f + g)/2

is at most 2-valent. Styer and Wright [29] produced a pair of functions in CV

for which (f + g)/2 is 3-valent and they venture the opinion that this sum

"may very well be infinite-valent for some f and g in CV." Other questions

about such sums have been raised and answered. For furthr details see [5, 9].

There are similar results for the geometric mean of normalized functions,

(3,14)

hut for brevity we omit the details [9, I0]0

We can replace the arithmetic or geometric mean in equations (3.11) and

(3.14) hy other forms of composition. For this purpose we set
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(z) z + a z
n

n-2
(3.15)

Z(z) z + z
n-2 n

(3.16)

and we define the Cvo operators (convolution, Yaltung) f,g and f,g by

H(z) f(z)g(x) z + Z a b z
n=2 n n

(3.17)

ab
J(z) (z)vvg(z) Z + [ n n n

Z

QUESTION 4. If f and g belong to the sets X and Y respectively,

what can we say about H(z) or J(z)?

As an example consider

CONJECTURE 2. If f and g E S (normalized univalent function in E)

then f,g is also in S.

If this conjecture were true, then it would be easy to prove (in several

different ways) that anl _< n for every function in S. Unfortunately,

conjecture 2 is false, and indeed has been disproved on several different

occasions (see [6]). One easy approach is to observe that

Z
f(z)Z z

anzn f (t) dt[ ’I t’
n:l

(3.19)
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Now Biernackf attempted to prove that if f(z) e S, then the integral in

is also in S. Unfortunately his proof was erroneous, and a counterexample

was found by Krzyz and Lewandowskl [17]. This same counterexample disproves

the conjecture 2, but also disproves the much weaker conjecture: If f e S

and g e CV then fg is in S.

Suppose that f and g are in S. Since J(z), given by (3.18) is not

necessarily univalent, the question naturally arises, what can be said about

the valence of J(z)? Campbell and Slngh [6] gave the very surprising answer

THEOREM I. There are two functions f S and G e ST such that fg

has infinite valence in E.

We outline the proof. By a theorem due to Libera [20], if (z) e ST

then

g(z)
2 I (tdt (.20)

is again in ST. We apply this theorem with (.z) z/(l z) 2, the Koebe

function, and find that

g(z) -= 2z
2n nntndt

n + 1
z (3.21)

is a starlike univalent function. Now take

I -l+bi
f(z) -= i- bi

[(i z) i], 0 < b _< i. (3.22)

If we use the properties of the exponential function and the logarithm function,
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it can be shown that (i- z) -l+bi C-l+bl) in (l-z)
e is univalent in E, The

other items in (3.22) merely normalize the function, Now

2n n 2 n
J(z) f(z),, . n i z [ n-- anZ

n--1 n=l

2
f (t)dt.

z
(3.23)

We apply this with f(z) given by (3.22) and find that

2 (i- z)bi- i
J(z) bi--- [i + iz ]" (3,24)

This function has infinite valence in E, because at the points

Zn 1 e-2n/b n i, 2, J(zn) always assumes the same value.

This theorem supplies one more counterexample for Conjecture 2, and as

far as the author can see, it is the simplest of the many counterexamples now

known [6, 9],

Returning to question 4, we observe that different selections for X and

Y and different properties for H(z) and J(z), yield a tremendous number

of open problems. However the most interesting ones have been settled in a

very important paper by Ruscheweyh and Sheil-Small [26]. Here we merely state

some of their results.

THEOREM 2. If f(z) and gz) are normalized convex in E, then H(z),

given by (3.17), is also convex in E.

THEOREM 3. If f(z) and g(z) are normalized starlike in E, then

J(z) given by (3,18) is also starlike in E.

THEOREM 4. If f(z) is normalized starlike in E and g(z) is

normalized convex in E, then H(z), given by (.3.17) is starlike in E.
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DEFINITION 5. Kaplan [16]. A function f(z) of the form 63015) is said

to be close-to-convex in E if there is a univalent starlike function (z)

such that in E

zf’ (Z)Re -(z) > 0 (3.25)

We let CC denote the set of all functions that are normalized and close-to-

convex in E.

Geometrically, the condition (3.25) implies that the image of each circle

zl r < i is a curve with the property that as 8 increases the angle of the

tangent vector does not decrease by more than -= in any interval [81,82],
Thus the curve can not make a "hairpin bend" backward to intersect itself.

This means that each function in CC is univalent in E. Furthermore the class

CC contains CV and ST. On the other hand there are univalent functions that

are not in CC. Ruscheweyh and Shell-Small [26] extended Theorem 4 by proving:

THEOREM 5. If f(z) is normalized close-to-convex in E and g(z) is

rrmalized convex in E: then H(2), given by (3.17) is close-to-convex in E.

THEOREM 6. If f(z) is normalized close-to-convex in E and g(z) is

normalized starlike in E, then J(z) given by (3.18 is close-to-convex in E.

It is worthwhile to compare Theorem 1 and 6 and to observe that when "close-

to-convex" is replaced by "univalent", the maximum valence of f**g Jumps from

1 to .
We now look at the bounds for the coefficients if f(z) is p-valent in E.

In his thesis, the author initiated
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CONJECTURE 3. If f(z) [n-I a z is p-valent In E, then
n

lakl <3.261[ant-<
k=l pk)’. (p-k).’ (n-p-l).’ (n2-k2)

for every n > p.

The reader will find in [9] some historical notes and an account of the

progress on this conjecture up to the year 1968. When p i, inequality (3.26)

yields anl <_ n[all and this is equivalent to Conjecture i. Certainly, we

can hardly expect to prove (3.26) in full generality, as long as the inequality

lanl <= nlal{ for univalent functions is still unsettled. However, there are

some recent advances that are worth recording.

We generalized Definition 5 of close-to-convex univalent functions so that

the new class CC) includes p-valent functions. Without going into too much

detail, a function (z) belongs to the class ST) (starlike p-valent) if

f(z) is regular in E and if there is some r0
< i such that for each r in

Jr0,1) the image of the circle zl r under f(z) is a curve that is

starlike with respect to the origin (arg f(rei8) is monotonic increasing

in D) and the curve makes p complete turns around the origin.

Now a function f(z) is said to belong to the class CC(p) (close-to-

convex of order p) if there is a function (z) in ST(p) and an rI
< i,

such that

zf’ (z}
Re > 0

(z)

for rI < [z < i (we omit some minor refinements here) [21].

The main point .here is that ST(p) C CC(p) (any starlike function is
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close-to-convex) and hence any theorem about close-to-convex functions includes

the same result about starlike functions as a special case. Two results by

A. E. Livingston deserve mention.

THEOREM 7. [21]. Let f(z) be close-to-convex of order p in

Then the inequality (3.26) is true for n p + i, and this inequality is

In other words the bound for the coefficients of a p-valent function is

true in the special case that f(z) e CC(p) and we look only at the (p + l)st

coefficient.

THEOREM 8. [22]. Suppose that f(z) is close-to-convex of order p

in E, and that aI a2 ap_2 O. Then the inequality (3.26) is true

for every n > p and every pair ap_1 and ap not both zero. The inequality

is sharp in both variables.

For the latest results about close-to-convex functions of order p the

reader should consult the paper by R. Leach [18].

4. MORE OPEN PROBLEMS.

Let A denote the set of all functions

f(z) z + a z
n=2

n

that are regular in E, and let S denote the subset of those functions that

are also univalent in E.

It is not too difficult to ask questions about the set S, or questions

about the relation of S to A. Here some caution is necessary. When one

considers the 3257 papers listed in Bernardi’s bibliography together with those

published since 1975, and those few that Bernardi may have missed, it is clear
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that a question selected at random may be answered already either explicitly or

implicitly in some work previously published. With this note of warning to the

reader we pose a few problems, that w believe are still open.

1. Suppose that f(z) is in S and that f(E) is bounded by a rectifi-

able curve of length L. For flxed L* > 2, let S(L*) denote the subset of

those functions for which L L*. We can ask many questions about S(L*). For

example, in this set find sup If(z) I, find max anl for each n. If f(z

omits y in E, find min lI, etc.

2 Let A denote the area of f(E) For each fixed A* let S(A*) de-

note the subset of those functions in S for which A < A*. We can ask the

same type questions for this set that we asked about the set S(L*). Here, we

have the help of the well-known formula for the area of the image of the disk

E Izl <r

A (r2 + [ nla 12r2n)
nffi2

r< I, (4.2)

but there is no way to find an analogous formula for

L (4.3)

the length of the boundary of f(Er).
3. Let s and 8 be fixed and suppose that f(z) omits the two values

Zl.ffi rle and z2 r2e What can we say about mln (rI + r2) for f(z)

in S? More generally if (s,t) is any fixed function what can we say about

the minimum or maximum value of (rl,r2) for f(z) in S? As a simple example,

it is known that if 8 s + , then
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Suppose that zI and z
2

are fixed and f(z) omits both zI
and z

2

in E. If f(z) is in S, find max lanl for each fixed n > i. Here, of

course max anl is a function of the omitted values zI and z2.

4. As is customary, for f(z) in A, set

M(r,f) max If(rei8)I (4.5)

for each r in (0,i) and let M-- sup M(r,f).
O<r<l

If f(z) is in S, it is well known that

M(r, f) < r
2 (4.6)

i- r)

Suppose, conversely, we are given M(rf). Can we say anything about the valence

of f(z)? What condition on M(r,f) is sufficient to insure that f(z) is

univalent in E (or in some fixed smaller disk)?

5. If f(z) is in A and

f")Re(! + z f-,) > 0, z E, (4.7)

then f(z) is univalent and f(E) is a convex region.

If

zf’ (z)Re (z}--) > O, z E, (4.8)

then fz) is univalent and f(E) is starlike with respect to the origin.
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Now in (4.7) and (4.8) replace 0 on the right side by C where C is

some fixed positive constant. We can no longer assert that f(z) must be uni-

valent. Can we give some upper bound on the valence of f(z) as a function of

the constant C?

6. Let M be some collection of functions each regular in E (not neces-

sarily univalent). The Koebe domain D for the set M is the largest domain

D that is contained in f(E) for every function in the set M. For example,

if M S then the Koebe domain is the disk lwl < 1/4.

Koebe domains have been determined for a large number of different sets M,

but we mention here two sets M for which the Koebe domain is unknown. We

first recall that a function f(z) in A is said to be typically-real if for

all z in E we have

(Im z) (Ira f(z)) > 0. (4.9)

This merely states that the upper half of the unit disk must go into the

upper half-plane under f(z), and the lower half of the unit disk must go into

the lower half-plane. The interval (-i,i) goes into the real axis. We let TR

denote the set of all typically-real functions with the normalization (4.1).

The Koebe domain for the set TR is the domain bounded by the curve in

polar coordinates

sin e 0 < e < (4.10)
4e( e)

together wlth lts reflection in the real axis.

One open problem (suggested by E. Merkes) is to find the Koebe domain for

the set of odd typically-real functions, with f’ (0) I.
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Let M > i be a fixed constant and let TR(M) be the subset of functions

in TR for which f(z)I < M for z in E. Find the Koebe domain for the

set TR(M).

7. Let D1 be the domain common to the two disks z i < / and

z + i < /. Goluzin first proved that every typlcally-real function is uni-

valent in D
1

and that D
1 is the largest domain with this property. Thus

D
1

is called the domain of univalence for the set TR.

For fixed p find D the domain of p-valence for the set TR. In other
P

words find the largest domain D such that every f(z) in TR has valence

at most p in D.

8. Finally we examine families of rational functions of the form

f(z)--
k=l z ak

where the and a
k

are subject to certain restrictions.

As P. Todorov pointed out to me in a letter, Thale [30] was the first to

prove that if > 0, and -i < a
k
< i, then f(z) is univalent in zl > i

and this is a maximal domain of unlvalence for the family of functions t.hat

satisfy these conditions.

Later, Cakalov rediscovered the same theorem. Further Cakalov proved

that if > 0 and akl < I, then f(z) is univalent in zl > /, and this

is the maximal domain of univalence.

Distler gave a beautiful generalization of these two theorems by finding

the domain of univalence of the family (4.12) when the a
k

are restricted to

lie in some fixed bounded set, and arg I < 00/2 for some fixed 00 < .
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If D denotes the domain of univalence in any of the above families

Todorov [31, 32] proved that one can add all of the boundary points of D

(with one exception) to D without destroying the univalence of f(z).

Suppose that in (4.11), we assume that

< a
I

< a
2

< a
3

< an < (4.12)

and that all are real. Let K. be the closed disk
3

Z a + aj+1
2

aj+1 aj
-<-= 2

j 1, 2, n-1. (4.13)

Todorov [31] proved that, f(z) given by 4.11 is univalent in Kj {ajl for

each j i, 2, n-l.

As interesting as the above results may be, the really difficult problem is

still untouched. Find D the domain of p-valence, for each p > i for the
P

family of functions of the form (4.12) for some reasonable set of conditions

on the constants and ak. For this problem, I can not even suggest a

conjecture for D
P

Finally we observe that Todorov [32] has investigated the applications of

sums of the form (4.11) to magnetic fields. In this work, some of the residues

may be negative.
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