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We consider the m-phase Whitham’s averaging method and propose the procedure of
“averaging” nonlocal Hamiltonian structures. The procedure is based on the existence of a
sufficient number of local-commuting integrals of the system and gives the Poisson bracket
of Ferapontov type for Whitham’s system. The method can be considered as the general-
ization of the Dubrovin-Novikov procedure for the local field-theoretical brackets.
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1. Introduction. We consider the averaging of the nonlocal Hamiltonian structures

in Whitham’s averaging method. As it is well known, Whitham’s method permits to

obtain the equations on the “slow” modulated parameters of the exact periodic or

quasi-periodic solutions of systems of partial differential equations and it was pointed

out by Whitham [32] that these equations inherit the local Lagrangian structure if the

initial system has it. The Lagrangian formalism for Whitham’s system is given in this

approach by “averaging” the local Lagrangian function for the initial system on the

corresponding space of (quasi)-periodic solutions. Some basic questions concerning

Whitham’s method can be found in [4, 5, 6, 7, 17, 19, 20, 32].

Dubrovin and Novikov also investigated the question of the conservation of local

field-theoretical Hamiltonian structures in Whitham’s method and suggested the pro-

cedure of “averaging” of local field-theoretical Poisson bracket to obtain the Poisson

bracket of Hydrodynamic type for Whitham’s system (see [5, 6, 7, 28]).

The Jacobi identity for the averaged bracket and the invariance of the Dubrovin-

Novikov procedure of averaging was proved by the author in [23] (see also [21]) using

the Dirac restriction procedure of the initial bracket on the subspace of quasi-periodic

“m-phase” solutions of the initial system. The connection between the procedure of

Dubrovin and Novikov, and the procedure of averaging of the Lagrangian function

in the case when the initial local Hamiltonian structure just follows from the local

Lagrangian one, can be found in [25].

Some extension of the averaging “local” Hamiltonian structures for the case of dis-

crete systems is also presented in [22].

In the present work, we deal with the Poisson brackets having the nonlocal part of

the form

{
ϕi(x),ϕj(y)

}= ∑
k≥0

Bijk
(
ϕ,ϕx,. . .

)
δ(k)(x−y)

+
∑
k≥0

ekSi(k)
(
ϕ,ϕx,. . .

)
ν(x−y)Sj(k)

(
ϕ,ϕy,. . .

)
,

(1.1)
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where ek =±1, ν(x−y)=−ν(y−x), ∂xν(x−y)= δ(x−y), and both sums contain

the finite number of terms depending on the finite number of derivatives of ϕ with

respect to x.

We point out here that the brackets (1.1) can be found in the so-called “integrable”

systems (see [8, 24, 30]).

The most general form of the nonlocal Hamiltonian operators (1.1) containing only

δ′(X − Y) and δ(X − Y) in the local part and the quasi-linear fluxes Si(k)j(U)U
j
X of

“hydrodynamic” type in the nonlocal one, was suggested by Ferapontov in [9] as the

generalization of the bracket introduced in [26]. We discuss here the possibility of

“averaging” the brackets (1.1) in Whitham’s method to obtain the bracket of such

“Hydrodynamic type” for Whitham’s system.

As was shown by Ferapontov, the Hamiltonian operators of this type reveal a beauti-

ful differential-geometrical structure following from the Jacobi identity of the bracket

(see [9, 10, 11, 16]). In particular, they can be obtained as the Dirac restriction of

local differential-geometrical Poisson brackets on the space with flat normal connec-

tion [11].

The first example of the nonlocal bracket (of Mokhov-Ferapontov type, see [26])

for Whitham’s system, for NS equation in the one-phase case, was constructed by

Pavlov in [29] from a nice differential-geometrical consideration. After that there was

a question about the possibility of constructing the nonlocal Hamiltonian structures

for Whitham’s system from the structures (1.1) for the initial one. As was mentioned

above, the Hamiltonian operators (1.1) exist for many “integrable” systems like KdV

and in [16] (see also [2]) there was a discussion of the possibility of averaging the

nonlocal operators for KdV equation using the local bi-Hamiltonian structure and the

recursion operator for the two averaged local Poisson brackets. The corresponding

calculations for the m-phase periodic solutions of KdV were made by Alekseev in [1].

Here we propose the general construction for the averaging of operators (1.1) in

Whitham’s method which is the generalization of the Dubrovin-Novikov procedure

for the case of the presence of nonlocal terms in the bracket. Our procedure does not

require the local bi-Hamiltonian structure and can be used in the general situation. As

in the procedure of Dubrovin and Novikov, we require here the existence of sufficient

number of local-commuting integrals generating the local flows according to (1.1). We

also impose the conditions of “regularity” of the full family of m-phase solutions as

in the local case (see [23]).

2. Some general properties of nonlocal brackets. Consider the nonlocal 1-dimen-

sional Hamiltonian structure of the type

{
ϕi(x),ϕj(y)

}= ∑
k≥0

Bij(k)
(
ϕ,ϕx,. . .

)
δ(k)(x−y)

+
∑
k≥0

S̃i(k)
(
ϕ,ϕx,. . .

)
ν(x−y)T̃ j(k)

(
ϕ,ϕy,. . .

)
, 1≤ i, j ≤n,

(2.1)

where we have the finite number of terms in both sums depending on the finite number

of derivatives of ϕ with respect to x.
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We call the local translation invariant Hamiltonian function, the functional of the

form

H[ϕ]=
∫

�H
(
ϕ,ϕx,. . .

)
dx. (2.2)

Here ν(x−y) is the skew-symmetric function such that

Dxν(x−y)= δ(x−y), (2.3)

and δ(k)(x−y) is the kth derivative of the delta-function with respect to x.

We assume that the bracket (2.1) is written in the “irreducible” form, that is, the

number of terms in the second sum is the minimal possible, and the sets S̃i(k) and T̃ j(k)
are both linearly independent. From the skew-symmetry of the bracket (2.1), it follows

that the sets of S̃i(k) and T̃ j(k) coincide and it can be easily seen that the bracket (2.1)

can be represented in the “canonical” form (1.1).

Indeed since the sets {S̃i(k)} and {T̃ jk} coincide, we have the one finite-dimensional

linear space generated by fluxes (vector fields)

ϕi
τk = S̃i(k)

(
ϕ,ϕx,. . .

)
, (2.4)

and the symmetric (view the skew-symmetry of the bracket and the function ν(x−y))
finite-dimensional constant 2-form which describes their couplings in the nonlocal

part of (2.1). So, we can write it in the canonical form according to its signature after

some linear transformation of the flows ˆ̃S(k) with constant coefficients.

We should also define in every case the functional space where we consider the

action of the Hamiltonian operator (1.1) and this can depend on the concrete situa-

tion. The most natural thing is to consider the functional space ϕ(x) and the algebra

of functionals I[ϕ] such that their variational derivatives multiplied by the flows

S(k)(ϕ,ϕx,. . .) give us the rapidly decreasing functions as |x| → ∞. Here we use the

functionals of the type

∫ n∑
p=1

ϕp(x)qp(x)dx, (2.5)

where qp(x) are arbitrary smooth functions with compact supports. To get all the

properties of the bracket (1.1) and for the other functionals used in the considerations,

we assume that they have the form compatible with the bracket (1.1) in the sense

discussed above.

We construct the procedure which gives us the brackets of Ferapontov type [9, 10,

11, 16]

{
Uν(X),Uµ(Y)

}= gνµ(U)δ′(X−Y)+bνµλ (U)UλXδ(X−Y)
+
∑
k≥0

ekSν(k)λ(U)U
λ
Xν(X−Y)Sµ(k)δ(U)UδY , 1≤ ν, µ,λ,δ≤N (2.6)
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from the initial bracket (1.1) of the general form after the averaging on the appropriate

family of exact m-phase solutions.

So for the Poisson brackets (1.1), we consider Whitham’s method for the local fluxes

generated by Hamiltonian functions (2.2) (if they exist), that is,

ϕi
t =Qi(ϕ,ϕx,. . .

)
. (2.7)

Now we formulate some general theorems about the nonlocal part of the bracket

(1.1).

Theorem 2.1. For any nonlocal Hamiltonian operator written in the “canonical”

form (1.1),

(1) the flows

ϕ̇i = Si(k)
(
ϕ,ϕx,. . .

)
(2.8)

commute with each other;

(2) any of the flows (2.8) conserves the Hamiltonian structure (2.1).

Proof. Consider the functional (2.5) for some qp(x) with the compact supports

and consider the Hamiltonian flow ξi(x) generated by (2.5) according to (1.1), that is,

ξi(x)=
∑
k≥0

Bijk
(
ϕ,ϕx,. . .

) dk
dxk

qj(x)

+ 1
2

∑
k≥0

ekSi(k)
(
ϕ,ϕx,. . .

)

×
[∫ x

−∞
Sj(k)

(
ϕ,ϕz, . . .

)
qj(z)dz−

∫∞
x
Sj(k)

(
ϕ,ϕz, . . .

)
qj(z)dz

]
,

(2.9)

where ek =±1 (there is a summation over the repeated indices).

For the Hamiltonian flow ξi(x), we should have

[
�ξĴ

]ij(x,y)≡ 0, (2.10)

where Ĵ is the Hamiltonian operator (1.1) and �ξ is the Lie-derivative given by the

expression

[
�ξĴ

]ij(x,y)=
∫
ξs(z)

δ
δϕs(z)

Jij(x,y)dz

−
∫
Jsj(z,y)

δ
δϕs(z)

ξi(x)dz

−
∫
Jis(x,z)

δ
δϕs(z)

ξj(y)dz.

(2.11)
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Consider the relation (2.10) for x andy larger than any z from the support of qp(z).
Then we have

[
�ξĴ

]ij(x,y)= ∑
k≥0

Ḃijk
(
ϕ,ϕx,. . .

)
δ(k)(x−y)

+
∑
k≥0

ekṠi(k)
(
ϕ,ϕx,. . .

)
ν(x−y)Sj(k)

(
ϕ,ϕy,. . .

)

+
∑
k≥0

ekSi(k)
(
ϕ,ϕx,. . .

)
ν(x−y)Ṡj(k)

(
ϕ,ϕy,. . .

)

−
∑
k≥0

(−1)k
dk

dyk

(
Bsjk

(
ϕ,ϕy,. . .

) ∑
k′≥0

ek′
δSi(k′)

(
ϕ,ϕx,. . .

)
δϕs(y)

)

×
[

1
2

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

]

−
∑
k≥0

Bisk
(
ϕ,ϕx,. . .

) dk
dxk

( ∑
k′≥0

ek′
δSj(k′)

(
ϕ,ϕy,. . .

)
δϕs(x)

)

×
[

1
2

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

]

−
∫
dz

∑
k≥0

ekSs(k)
(
ϕ,ϕz, . . .

)
ν(z−y)Sj(k)

(
ϕ,ϕy,. . .

)

×
∑
k′≥0

ek′
δ

δϕs(z)

(
Si(k′)

(
ϕ,ϕx,. . .

)[1
2

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

])

−
∫
dz

∑
k≥0

ekSi(k)
(
ϕ,ϕx,. . .

)
ν(x−z)Ss(k)

(
ϕ,ϕz, . . .

)

×
∑
k′≥0

ek′
δ

δϕs(z)

(
Sj(k′)

(
ϕ,ϕy,. . .

)[1
2

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

])
,

(2.12)

where Ḃijk (ϕ,ϕx,. . .) and Ṡi(k)(ϕ,ϕx, . . .) are the derivatives of these functions with

respect to the flow

ϕi
t =

∑
k≥0

ekSi(k)
(
ϕ,ϕx,. . .

)[1
2

∫∞
−∞
Sp(k)

(
ϕ,ϕw,. . .

)
qp(w)dw

]
. (2.13)

Here we used that x,y > suppqp in the expression (2.9) for ξi(x) and ξj(y), and

also omitted the variational derivatives, with respect toϕs(x) andϕs(y), of the non-

local expressions containing the convolutions with qp(w).
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So, we have

0≡ [�ξĴ
]ij(x,y)

=
∑
k≥0

Ḃijk
(
ϕ,ϕx,. . .

)
δ(k)(x−y)+

∑
k≥0

ekṠi(k)
(
ϕ,ϕx,. . .

)
ν(x−y)Sj(k)

(
ϕ,ϕy,. . .

)

+
∑
k≥0

ekSi(k)
(
ϕ,ϕx,. . .

)
ν(x−y)Ṡj(k)

(
ϕ,ϕy,. . .

)

−
∑
k≥0

(−1)k
dk

dyk

(
Bsjk

(
ϕ,ϕy,. . .

) ∑
k′≥0

ek′
δSi(k′)

(
ϕ,ϕx,. . .

)
δϕs(y)

)

×
[

1
2

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

]

−
∑
k≥0

Bisk
(
ϕ,ϕx,. . .

) dk
dxk

( ∑
k′≥0

ek′
δSj(k′)

(
ϕ,ϕy,. . .

)
δϕs(x)

)

×
[

1
2

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

]

−
∫
dz

∑
k≥0

ekSs(k)
(
ϕ,ϕz, . . .

)
ν(z−y)Sj(k)

(
ϕ,ϕy,. . .

)

×
∑
k′≥0

ek′
δSi(k′)

(
ϕ,ϕx,. . .

)
δϕs(z)

[
1
2

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

]

−
∫
dz

∑
k≥0

ekSi(k)
(
ϕ,ϕx,. . .

)
ν(x−z)Ss(k)

(
ϕ,ϕz, . . .

)

×
∑
k′≥0

ek′
δSj(k′)

(
ϕ,ϕy,. . .

)
δϕs(z)

[
1
2

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

]

−
∫
dz

∑
k≥0

ekSs(k)
(
ϕ,ϕz, . . .

)
ν(x−y)Sj(k)

(
ϕ,ϕy,. . .

)

×
∑
k′≥0

ek′Si(k′)
(
ϕ,ϕx,. . .

)1
2

[
δ

δϕs(z)

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

]

−
∫
dz

∑
k≥0

ekSi(k)
(
ϕ,ϕx,. . .

)
ν(x−y)Ss(k)

(
ϕ,ϕz, . . .

)

×
∑
k′≥0

ek′S
j
(k′)

(
ϕ,ϕy,. . .

)1
2

[
δ

δϕs(z)

∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

]

≡
∑
k≥0

ek
[

1
2

∫∞
−∞
Sp(k)

(
ϕ,ϕw,. . .

)
qp(w)dw

]
·[�kĴ

]ij(x,y)

+
∑

k,k′≥0

ekek′Si(k′)
(
ϕ,ϕx,. . .

)
Sj(k)

(
ϕ,ϕy,. . .

)
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× 1
2

∫ (
Ss(k)

(
ϕ,ϕz, . . .

) δ
δϕs(z)

[∫∞
−∞
Sp(k′)

(
ϕ,ϕw,. . .

)
qp(w)dw

]

−Ss(k′)
(
ϕ,ϕz, . . .

) δ
δϕs(z)

[∫∞
−∞
Sp(k)

(
ϕ,ϕw,. . .

)
qp(w)dw

])
dz,

(2.14)

where [�kĴ]ij(x,y) are the Lie derivatives of Ĵ with respect to the flows (2.8) ϕ̇i =
Si(k)(ϕ,ϕx, . . .).

As it can be easily seen, the last term in (2.14) is the only one containing the func-

tions not equal to zero when x ≠ y , which are not skew-symmetric as x → y (the

other nonlocal terms contain the function ν(x−y)). So from (2.14), we have that it

should be identically zero for any qp(w) with the support satisfying the conditions

described above (x,y > suppqp(w)). Using the standard expression for the varia-

tional derivative and the integration by parts, we obtain that this term can be written

in the form

∑
k,k′≥0

ekek′Si(k′)
(
ϕ,ϕx,. . .

)
Sj(k)

(
ϕ,ϕy,. . .

)× 1
2

∫∞
−∞
qp(z)

[
S(k),S(k′)

]p(z)dz, (2.15)

for any qp(z) (x,y > suppqp(z)) where [S(k),S(k′)] is the commutator of the flows

(2.8). So for the linearly independent set of S(k), we obtain

[
S(k),S(k′)

]≡ 0. (2.16)

From (2.14) we also have for the linearly independent set of S(k) and different qp(w)
that

[
�kĴ

]ij(x,y)≡ 0. (2.17)

So, Theorem 2.1 is proved.

It is also obvious that the statements of the theorem are valid for all the brackets

(2.1) written in the “irreducible” form since all S̃(k) and T̃(k) in this case are just the

linear combinations of the flows S(k).

Remark 2.2. We point here that the first statement of the theorem for the diagonal-

izible nonlocal brackets (2.6) of Ferapontov type was proved previously by Ferapontov

in [9] using the differential-geometrical considerations. In [9, 10, 11, 16] also the full

classification of the brackets (2.6), from the differential geometrical point of view, can

be found.

It is easy to see that the local functional of type (2.2)

I =
∫

�
(
ϕ,ϕx,. . .

)
dx (2.18)

generates the local flow in the Hamiltonian structure (2.1) if and only if the derivative

of its density �(ϕ,ϕx,. . .), with respect to any of the flows (2.8), is the total derivative

with respect to x, that is, there exist �(k)(ϕ,ϕx, . . .) such that

�τk
(
ϕ,ϕx,. . .

)≡ ∂x�(k)
(
ϕ,ϕx,. . .

)
(2.19)
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or, as was pointed by Ferapontov [9], this means that the integral I is the conservation

law for any of the systems (2.8).

From Theorem 2.1 we have now that the flows (2.8) commute with all the local

Hamiltonian fluxes generated by the local functionals (2.2) since they conserve both

the Hamiltonian structure and the corresponding Hamiltonian functions.

3. The Whitham method and the “regularity” conditions. We come to Whitham’s

averaging procedure (see [4, 5, 6, 7, 20, 32]). Recall that in the m-phase Whitham’s

method for the systems (2.7), we make a rescaling transformation X = εx, T = εt to

obtain the system

εϕi
T =Qi(ϕ,εϕX,ε2ϕXX,. . .

)
, (3.1)

and then try to find the functions

S(X,T)= (S1(X,T), . . . ,Sm(X,T)
)
, (3.2)

and 2π -periodic with respect to each θα (θ = (θ1, . . . ,θm)) functions

Φi(θ,X,T ,ε)=
∞∑
k=0

εkΦi(k)(θ,X,T), (3.3)

such that the functions

ϕi(θ,X,T ,ε)=
∞∑
k=0

εkΦi(k)
(
θ+ S(X,T)

ε
,X,T

)
(3.4)

satisfy system (3.1) at any θ in any order of ε.
It follows that Φi(0)(θ,X,T) at any X and T gives the exactm-phase solution of (2.7)

depending on some parameters U = (U1, . . . ,UN) and initial phases θ0 = (θ1
0 , . . . ,θ

m
0 )

and, besides that

SαT =ωα(U(X,T)), SαX = kα
(
U(X,T)

)
, (3.5)

where ωα(U) and kα(U) are, respectively, the frequencies and the wave numbers of

the corresponding m-phase solution of (2.7).

The conditions of the compatibility of system (3.1) in the first order of ε together

with

kαT =ωα
X (3.6)

give us Whitham’s system of equations on the parameters U(X,T),

UνT = Vνµ (U)UµX, (3.7)

which is the quasi-linear system of hydrodynamic type.

The first procedure of averaging the local field-theoretical Poisson brackets was

proposed in [5, 6, 7] by Dubrovin and Novikov. This procedure permits to obtain the

local Poisson brackets of hydrodynamic type

{
Uν(X),Uµ(Y)

}= gνµ(U)δ′(X−Y)+bνµγ (U)UγXδ(X−Y), (3.8)
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for Whitham’s system (3.7) from the local Hamiltonian structure

{
ϕi(x),ϕj(y)

}= ∑
k≥0

Bijk
(
ϕ,ϕx,. . .

)
δ(k)(x−y), (3.9)

for the initial system (2.7).

The method of Dubrovin and Novikov is based on the presence of N (equal to the

number of parameters Uν of the family of m-phase solutions of (2.7)) local integrals

Iν =
∫

�ν(ϕ,ϕx,. . .
)
dx, (3.10)

commuting with the Hamiltonian function (2.2) and with each other

{
Iν ,H

}= 0,
{
Iν ,Iµ

}= 0, (3.11)

and can be written in the following form.

We calculate the pairwise Poisson brackets of the densities �ν in the form

{
�ν(x),�µ(y)

}= ∑
k≥0

Aνµk
(
ϕ,ϕx,. . .

)
δ(k)(x−y), (3.12)

where

Aνµ0

(
ϕ,ϕx,. . .

)≡ ∂xQνµ(ϕ,ϕx,. . .
)

(3.13)

according to (3.11). Then the Dubrovin-Novikov bracket on the space of functions

U(X) can be written in the form

{
Uν(X),Uµ(Y)

}= 〈Aνµ1

〉
(U)δ′(X−Y)+ ∂

〈
Qνµ〉
∂Uγ

UγXδ(X−Y), (3.14)

where 〈·〉 means the averaging on the family of m-phase solutions of (2.7) given by

the formula, strictly speaking, this formula is valid for the generic set of the wave

numbers kα, but we should use, in any case, the second part of it for the averaged

quantities to obtain the right procedure (here kα are continuous parameters on the

family of the m-phase solutions),

〈F〉 = lim
c→∞

1
2c

∫ c
−c
F
(
ϕ,ϕx,. . .

)
dx

= 1
(2π)m

∫ 2π

0
···

∫ 2π

0
F
(
Φ,kα(U)Φθα , . . .

)
dmθ,

(3.15)

and we choose the parameters Uν such that they coincide with the values of Iν on the

corresponding solutions

Uν = 〈Pν(x)〉. (3.16)

The Jacobi identity for the averaged bracket (3.14) in the general case was proved

in [23] (for the systems having also local Lagrangian formalism, there was a proof

in [25]).
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Note also that we get here the Poisson bracket only if we average the initial Hamil-

tonian structure on the full family of m-phase solutions (see [23, 28]). More precise

requirements will be formulated when describing the averaging procedure in the non-

local case.

Brackets (3.8) can be described from the differential-geometrical point of view.

Namely, for the nondegenerated tensor gνµ , we have that it should be a flat con-

travariant metric and the values

Γ νµγ =−gµλbλνγ , (3.17)

should be the Levi-Civita connection for the metric gνµ (with lower indices). The brack-

ets (3.8) with the degenerated tensor are more complicated but also have a nice geo-

metrical structure (see [18]).

The nonlocal Poisson brackets (2.6) are the generalization of local Poisson brackets

of Dubrovin and Novikov and are closely connected with the integrability of systems of

hydrodynamic type reducible to the diagonal form [31]. Namely, the system reducible

to the diagonal form and Hamiltonian, with respect to the bracket (2.6), satisfies (see

[9, 10, 11, 16]) the so-called “semi-Hamiltonian” property introduced by Tsarëv [31]

and can be integrated by Tsarëv’s “generalized hodograph method.” In [3], the inves-

tigation of the equivalence of “semi-Hamiltonian” properties, introduced by Tsarëv,

and the Hamiltonian properties with respect to the bracket (2.6) can also be found.

We also point here that the questions of integrability of Hamiltonian with respect

to (2.6) systems, which cannot be written in the diagonal form, were studied in [12,

13, 14, 15].

The procedure of averaging of the nonlocal Poisson brackets in Whitham’s method

and the proof of the Jacobi identity for the averaged nonlocal bracket resemble those

for the local brackets. However, the difference in formulas of averaging and in the

proof contain very many essential things and also many considerations valuable for

the local case that cannot be used in the nonlocal one. So, we should make here the

consideration for the nonlocal case.

The m-phase solutions of (2.7)

ϕi(x,t)= Φi(ωt+kx+θ0
)
, (3.18)

where

ω= (ω1, . . . ,ωm), k= (k1, . . . ,km
)
, (3.19)

are the 2π -periodic solutions of the system

ωαΦiθα−Qi(Φ,kαΦθα ,kαkβΦθαθβ , . . .)= 0, α= 1, . . . ,m, (3.20)

depending on the parametersω and k. So we assume that we have, from (3.20) for the

generic ω and k, the finite-dimensional subspace �ω,k (in the space of 2π -periodic

with respect to each θα functions) parameterized by the initial phase shifts θα0 and



THE AVERAGING OF NONLOCAL HAMILTONIAN . . . 409

may be also by some additional parameters r 1, . . . ,rh. For the multiphase case (m≥ 2),

it is essential that the closure of any orbit generated by the vectors (ω1, . . . ,ωm)
and (k1, . . . ,km) in the θ-space is the full m-dimensional torus Tm. For the case of

“rationally-dependent” ω1, . . . ,ωm and k1, . . . ,km and m ≥ 3, we have that the oper-

ators (3.20) are independent of each of such closed submanifolds in Tm which can

have dimensionality less than m. The functions from �ω,k can be found in this case

from the additional requirement that they are the m-phase solutions for (2.8) (with

some Ωα(k)(ω,k,r)) and the systems generated by the functionals Iν (see (3.22) later)

with someωαν(ω,k,r). All these requirements uniquely define the finite-dimensional

spaces �ω,k which continuously depend on the parameters ω and k.

Combining all such �ω,k at differentω and k, we obtain that them-phase solutions

of the system (2.7) can be parameterized by N = 2m+h parameters (U1, . . . ,UN)-
invariant with respect to the initial shifts of θα and the initial phase shifts θα0 after

the choice of some “initial” functions Φi(in)(θ,U) corresponding to the zero initial

phases. The joint of the submanifolds �ω,k at all ω and k gives us the submanifold

� in the space of 2π -periodic with respect to each θα functions which corresponds

to the full family of m-phase solutions of (2.7).

For Whitham’s procedure, we should now require some “regularity” properties of

the system of constraints (3.20) these properties are the following.

(I) We require that the linearized system (3.20) at any “point” of �ω,k has exactly

h+m = N−m solutions (“right eigenvectors”) ξ(q)ω,k(θ,r) for the generic ω and k
given by the vectors tangential to �ω,k which are the derivatives Φθα(θ,r ,ω,k) and

Φrq (θ,r ,ω,k) (at the fixed values of ω and k).

(II) We also require that the number of the linearly independent “left eigenvectors”

κ(q)ω,k(θ,r) orthogonal to the image of the introduced linear operator is exactly the

same (N−m) as the number of the “right eigenvectors” ξ(q)ω,k(θ,r) for the generic

ω and k. In addition, we assume that κ(q)ω,k(θ,r) also depend continuously on the

parameters Uν on �.

The requirements (I) and (II) are closely connected with Whitham’s procedure and

the asymptotic solutions (3.4). Indeed, it is not very difficult to see that every kth

term in the expansion (3.4) is determined by the above defined linear system with the

nontrivial right-hand part depending on the previous terms of (3.4). We suppose that

this system is resolvable on the space of 2π -periodic with respect to each θα functions

if the right-hand part is orthogonal to all the “right eigenvectors” κ(q)ω,k(θ,r) for the

corresponding (ω = ST , k = SX , r ). If so, the solution of this system can be found

modulo the “left eigenvectors” ξ(q)ω,k(θ,r) with the same ω, k, and r defined by the

zero term of (3.4). So we can find in the generic situation the unique Φ(k)(θ,X,T) for

k ≥ 1 from the N−m compatibility conditions of the same system in the order k+1

when the compatibility conditions in the first order of ε, together with

kT =ωX, (3.21)

give us Whitham’s system of (3.7). We assume that Φ(k)(θ,X,T) depend continuously

on X and T and so, are also well defined for the nongeneric k1, . . . ,km and ω1, . . . ,ωm

in the multiphase Whitham’s method.
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We now discuss the requirements (I) and (II) from the Hamiltonian point of view.

First of all for the procedure of averaging of the bracket (1.1), we need the set of

the integrals Iν , ν = 1, . . . ,N, like in the procedure of Dubrovin and Novikov, that is,

satisfying the following requirements.

(A) Every Iν is the local functional Iν = ∫ �ν(ϕ,ϕx,. . .)dx, which generates the local

flow

ϕi
tν =Qi

(ν)
(
ϕ,ϕx,. . .

)
, (3.22)

with respect to the bracket (1.1).

As was pointed above, we should have for this that the local flows (2.8) defined

from the bracket (1.1) in the “canonical” (or “irreducible”) form conserve all the Iν ,

that is, the time derivatives of the corresponding �ν(ϕ,ϕx,. . .) with respect to each

of the flows (2.8) are the total derivatives with respect to x

d
dtk

�ν(ϕ,ϕx,. . .
)≡ ∂xFν(k)(ϕ,ϕx,. . .

)
(3.23)

for some functions Fν(k)(ϕ,ϕx,. . .).
(B) All Iν commute with each other and with the Hamiltonian function (2.2), that is,

{Iν ,Iµ} = 0, {Iν ,H} = 0.

(C) The averaged densities 〈�ν〉

〈
�ν〉= lim

c→∞
1
2c

∫ c
−c

�ν(ϕ,ϕx,. . .
)
dx

= 1
(2π)m

∫ 2π

0
···

∫ 2π

0
�ν(Φ,kαΦθα , . . .)dmθ

(3.24)

can be regarded as the independent coordinates (U1, . . . ,UN) on the family ofm-phase

solutions of (2.7). Here again we should use everywhere the second part of formula

(3.24) for the averaged values on � for the right procedure as will be shown later.

From the requirements above, we immediately obtain that the flows (3.22) commute

with our initial system (2.7) and with each other.

From Theorem 2.1, we obtain also that the commutative flows (2.8) defined by the

Poisson bracket also commute with (2.7) and (3.22) since they conserve the corre-

sponding Hamiltonian functions and the Hamiltonian structure (2.1).

We can consider the functionals

Īν = lim
c→∞

1
2c

∫ c
−c

�ν(ϕ,ϕx,. . .
)
dx, (3.25)

H̄ = lim
c→∞

1
2c

∫ c
−c

�H
(
ϕ,ϕx,. . .

)
dx, (3.26)

on the space of the quasiperiodic functions (with m quasiperiods).
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It is easy to see now that the local fluxes (2.7), (2.8), and (3.22) being considered

on the space of the quasiperiodic functions also conserve the values of Īν and H̄ and

commute with each other since these properties can be expressed just as the local

relations containing ϕ,ϕx,. . . and the time derivatives of the densities �ν(ϕ,ϕx,. . .),
�H(ϕ,ϕx,. . .) at the same point x.

Now we can conclude that all the fluxes (2.8) and (3.22) leave the family ofm-phase

solutions given by (3.20) invariant and can generate on it only the linear shifts of the

initial phases θα0 which follow from the commutativity of the flows

ϕi
τk(θ)= Si(k)

(
ϕ,kαϕθα,kαkβϕθαθβ , . . .

)
,

ϕi
tν (θ)=Qi

(ν)
(
ϕ,kαϕθα,kαkβϕθαθβ , . . .

)
,

(3.27)

with the flows ϕi
tα =ϕi

θα and

ϕi
t =Qi(ϕ,kαϕθα,kαkβϕθαθβ , . . .

)
, (3.28)

on the space of 2π -periodic with respect to each θα functions and the conservation

of the functionals Īν (i.e., Uν on �) by the flows (3.27). (Here kα arem quasiperiods of

the function ϕ(x).) So we obtain that our family of m-phase solutions of (2.7) is also

the family of m-phase solutions for (2.8) and (3.22) and we assume also the existence

of the solutions (3.4) for these systems based on the family �.

We can also conclude that in our situation the variational derivatives of the func-

tionals (3.25) and (3.26), with respect toϕ(θ) at the points of the submanifold �, are

the linear combinations of the corresponding “right eigenvectors” κ(q)(θ+θ0,U) (see

[4, 6, 7] and the references therein). Indeed from the conservation of the functionals

(3.25) and (3.26) by the flows ϕi
tα =ϕi

θα and

ϕi
t =Qi(ϕ,kαϕθα, . . .

)
, (3.29)

we can conclude that the convolution of their derivatives with respect to ϕi(θ) with

the system of constraints (3.20) is identically zero for all the periodic functions with

respect to all θα and for any (k1, . . . ,km) and (ω1, . . . ,ωm). So we can take the vari-

ational derivative of the corresponding expression with respect to ϕj(θ′) and then

omit the second variational derivative of Īν and H̄ according to the conditions (3.20).

After that we obtain that the variational derivatives of Īν and H̄ are also orthogonal

to the image of the linearized operator (3.20) at the points of � and so are the linear

combinations of κ(q)(θ+θ0,U) on �.

Lemma 3.1. Suppose the properties (A), (B), (C) and (I), (II) are satisfied for our family

of m-phase solutions of (2.7). We put

Uν = 〈�ν〉 = Īν (3.30)

on the space �, and then define the functions kα = kα(U) on the submanifold �.

Then the functionals Kα = kα(Ī[ϕ]) on the space of 2π -periodic with respect to each

θα functions (and also at the space of quasiperiodic functions ϕ(x) with m quasiperi-

ods) have the zero variational derivatives on the submanifold �.
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Proof. As we have from (II), the maximal number of the linearly independent vari-

ational derivatives of Īν on � is h+m = N−m. So we have m linearly independent

relations

N∑
ν=1

λαν (U)
δĪν

δϕ(θ)
≡ 0, α= 1, . . . ,m (3.31)

(where ϕ(θ) = (ϕ1(θ), . . . ,ϕm(θ))) being considered at the given k1, . . . ,km at any

point of �, (or in other words

N∑
ν=1

λαν (U)
δĪν

δϕ(x)
≡ 0, α= 1, . . . ,m (3.32)

when considered in the space of functions with m quasiperiods). We have here the

standard expression for the variational derivative and the formula (3.24) for Īν .

Since we can obtain the change of these linear combinations of the functionals Īν on

� only due to the variations of k in (3.24) but not of ϕi(θ) (or in other words only if

we have the nonbounded variations ofϕi(x) after the variations of the quasiperiods)

we have on �

N∑
ν=1

λαν (U)dUν =
m∑
β=1

µ(α)β (U)dkβ(U) (3.33)

for some functions µ(α)β (U).
If Uν are the coordinates on � then the matrix µ(α)β has the full rank and is re-

versible. So we obtain the differentials dkβ as the linear combinations of differentials∑N
ν=1λαν (U)dUν corresponding to the functionals with zero derivatives on �

dkβ =
m∑
α=1

(
µ−1)β

(α)

N∑
ν=1

λ(α)ν (U)dUν. (3.34)

So Lemma 3.1 now follows from (3.31).

Remark 3.2. As can be seen from the proof of Lemma 3.1, the variational deriva-

tives of Īν on � should span all the (N−m)-dimensional linear space generated by

all κ(q)(θ+θ0,U) if we want to take 〈�ν〉 as the independent coordinates on �. It is

essential also that we consider the full family of m-phase solutions given by (3.20) at

differentω and k, but not its “subspace,” and havem independent relations (3.33) on

N differentials dUν from m relations (3.31).

Remark 3.3. We note that (3.32) was introduced at first by Novikov in [27] as the

definition of the m-phase solutions for the KdV equation.

We now prove a technical lemma which we will need later.

Lemma 3.4. Introduce the additional densities

∏ν

i(k)

(
ϕ,ϕx,. . .

)≡ ∂�ν(ϕ,ϕx,. . .
)

∂ϕi
kx

(3.35)

for k≥ 0, where ϕi
kx ≡ ∂k/∂xkϕi(x).
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Then on the submanifold � the relation

N∑
ν=1

∂kα

∂Uν
1

(2π)m

∫ 2π

0
···

∫ 2π

0

∑
p≥1

pkβ1(U)···kβp−1(U)Φi
(in)θβθβ1 ···θβp−1

(θ,U)

×
∏ν

i(p)

(
Φ(in)(θ,U),kγΦ(in)θγ (θ,U), . . .

)
dmθ ≡ δαβ

(3.36)

holds at any U and θ0.

Proof. According to Lemma 3.1 we should not take into account the variations

of the form of Φ(in)(θ+θ0,U) when we consider the change of the functionals kα(Ī)
on �. So the only source for the change of these functionals on � is the dependence

on the wave numbers k in the expressions

Īν = 1
(2π)m

∫ 2π

0
···

∫ 2π

0
�ν(Φ(in),kγΦ(in)θγ ,kγkδΦ(in)θγθδ , . . .)dmθ. (3.37)

So we can write

d
(
kα
(
Ī
)|�)=

N∑
ν=1

∂kα

∂Uν
(U)

∂Īν[ϕ]
∂kβ

∣∣∣∣
�
dkβ, (3.38)

where the values of ∂Īν[ϕ]/∂kβ on � are given by the integral expressions from (3.36).

Since the values of the functionals kα(Ī) on � coincide by the definition with the wave

numbers kα we obtain the relation (3.36). Lemma 3.4 is proved.

For the evolution of the densities �ν(ϕ,ϕx,. . .) according to our system (2.7) we

can also write the relations

d
dt

�ν(ϕ,ϕx,. . .
)≡ ∂xQνH(ϕ,ϕx,. . .

)
, (3.39)

and Whitham’s system (3.7) can also be written in the following “conservative” form

∂TUν = ∂X
〈
QνH〉, ν = 1, . . . ,N, (3.40)

for the parameters Uν .

From the existence of the series (3.4) on the space of 2π -periodic with respect to

θ functions, it can be shown that this form gives us the system equivalent to (3.7) in

the generic situation, and all the other local conservation laws of the form (3.39) (if

they exist) give us the equation

∂T 〈�〉 = ∂X
〈
QH〉 (3.41)

compatible with (3.40) for the full set of parameters Uν (see [4, 5, 6, 7, 20, 32]).

The conservative form (3.40) of Whitham’s system will be very convenient in our

considerations on the averaging of Hamiltonian structures.

Now we make some “regularity” requirements about the joint � of the submanifolds

�ω,k at all ω and k corresponding to the m-phase quasiperiodic solutions of the

system (2.7), that is,
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(III) we require that � is an (N+m)-dimensional submanifold in the space of the

2π -periodic with respect to each θα functions.

The property (III) means nothing but the fact that the shapes of the solutions of

(3.20) are all different at different ω and k in the space of the 2π -periodic vector-

functions of θ so that ω and k can be reconstructed from them. It is easy to see that

this requirement corresponds to the generic situation. We will use the property (III)

for our procedure of averaging of bracket (2.1).

We will work with the full family of 2π -periodic solutions of (3.20) the functions of

which will also depend on the “slow” variables X and T . To define this submanifold

in the space of functions ϕ(θ,X,T) with the system of constraints like (3.20), we

should extend the coordinates Uν as the functionals of ϕ(θ) in the vicinity of our

submanifold �. This can be easily done (see [23]) by the following way.

Introduce N different functionals

Aν = 1
(2π)m

∫ 2π

0
···

∫ 2π

0
aν
(
ϕ,ϕθα,ϕθαθβ , . . .

)
dmθ, (3.42)

such that their values Āν are functionally independent on the functions, from the

submanifold �. Then we can express Uν =Uν(Ā) in terms of Āν on � and after that

extend them as the functionals Uν(A) on the space of 2π -periodic with respect to

each θα functions.

We also expand the coordinates θα0 (see [23]) in the vicinity of � by introduction of,

say, functionals

Bα
[
ϕ(θ)

]= 1
(2π)m

∫ 2π

0
···

∫ 2π

0
ϕθα(θ)Φ(in)

(
θ,U[ϕ]

)
dmθ, (3.43)

which are zero if ϕ(θ) = Φ(in)(θ,U[ϕ]). In the generic situation, we can locally ex-

press the values of θα0 on � in terms of B̄α and after that put θα0 = θα0 (B[ϕ]) in the

corresponding local coordinate maps in the vicinity of �.

We consider the system

ϕi(θ,X)−Φi(in)
(
θ+θ0[ϕ],U[ϕ]

)≡ 0, (3.44)

where θα0 [ϕ] and Uν[ϕ] are the functionals in the vicinity of � as the system of con-

straints which defines � in the space of 2π -periodic with respect to each θα functions.

We can see now that the linearized system (3.44)

1
(2π)m

∫ 2π

0
···

∫ 2π

0

(
Lij[U,θ0]

(
θ,θ′

)
δΦj

(
θ′
))
dmθ′ = 0, (3.45)

where

Lij[U,θ0]
(
θ,θ′

)≡ δijδ(θ−θ′)−
m∑
α=1

Φi(in)θα
(
θ+θ0[ϕ],U[ϕ]

)× δθα0 [ϕ]
δϕj

(
θ′
)

−
N∑
ν=1

Φi(in)Uν
(
θ+θ0[ϕ],U[ϕ]

)× δUν0 [ϕ]
δϕj

(
θ′
) ,

(3.46)
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at any point (U,θ0) of � has exactly N+m solutions ξ̃(p)[U,θ0](θ) corresponding to

the tangential to � vectors Φ(in)θα and Φ(in)Uν , α= 1, . . . ,m, ν = 1, . . . ,N.

It is evident also that all the “left eigenvectors” κ̃(p)[U,θ0](θ) orthogonal to the image

of L̂ are given by the variational derivatives δθα0 [ϕ]/δϕj(θ) and δUν0 [ϕ]/δϕj(θ).
From the invariance of the submanifold � with respect to the flows (2.8) and (3.22),

we can also write the relations

1
(2π)m

∫ 2π

0
···

∫ 2π

0
Lij[U,θ0]

(
θ,θ′

)

×Sj(k)
(
Φ(in)

(
θ′ +θ0,U

)
,kαΦ(in)θα

(
θ′ +θ0,U

)
, . . .

)
dmθ′ ≡ 0,

(3.47)

1
(2π)m

∫ 2π

0
···

∫ 2π

0
Lij[U,θ0]

(
θ,θ′

)

×Qj
(ν)
(
Φ(in)

(
θ′ +θ0,U

)
,kαΦ(in)θα

(
θ′ +θ0,U

)
, . . .

)
dmθ′ ≡ 0,

(3.48)

for any i, k at any point (U,θ0) of � where kα = kα[Φ] can be considered now as the

values of the corresponding functionals on �.

We introduce the space of functions ϕ(θ,X,T) depending on “slow” parameters

X and T , and 2π -periodic with respect to each θα. Systems (3.44) being considered

independently at different X, give us the system of constraints defining the subspace

�′ in the space of functions ϕ(θ,X) corresponding to m-phase solutions of (2.7)

depending also on the parameters X and T .

After the introduction of the “modified” constraints (3.44)

Gi[U,θ0](θ,X)=
1

(2π)m

∫ 2π

0
···

∫ 2π

0
Lij[U,θ0]

(
θ,θ′

)

×(ϕj(θ′)−Φj(in)(θ′ +θ0[ϕ],U[ϕ]
))
dmθ′,

(3.49)

we can take Uν(X), θα0 (X), and Gi[U,θ0](θ,X) such that

1
(2π)m

∫ 2π

0
···

∫ 2π

0
κ̃(p)[U]

(
θ+θ0(X)

)
×Gi[U,θ0](θ,X)d

mθ ≡ 0, p = 1, . . . ,N+m,
(3.50)

as the coordinates are in the vicinity of �′ instead of the ϕi(θ,X) since we can find,

uniquely, ϕi(θ,X) from

1
(2π)m

∫ 2π

0
···

∫ 2π

0
Lij[U,θ0]

(
θ,θ′

)(
ϕj(θ′)−Φj(in)(θ′ +θ0,U

))
dmθ′ =Gi[U,θ0](θ,X)

(3.51)

if we have conditions (3.50) and the values of Uν(X) and θα0 (X). This system of con-

straints is different from the system introduced in [23].

Remark 3.5. Certainly, we have some freedom in the choice of the constraints

Gi(θ,X). For example, we can also take the expressions (3.44) as the system of con-

straints defining �′. We prefer to take the constraints in the form (3.49) just to fix the

uniform orthogonality conditions (3.50) in the vicinity of �′.
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We also need another coordinate system in the vicinity of �′, which differs from

the described above, by the transformation depending on the small parameter ε and

singular at ε→ 0. Namely, we recall our integrals (3.10)

Iν =
∫

�ν(ϕ,ϕx,. . .
)
dx, (3.52)

make a transformation X = εx, and define the functionals

Jν(X)= 1
(2π)m

∫ 2π

0
···

∫ 2π

0
�ν(ϕ(θ,X),εϕX(θ,X), . . .

)
dmθ (3.53)

on the space of 2π -periodic with respect to each θα functions ϕ(θ,X).
We also introduce the functionals

θ∗α0 (X)= θα0 (X)−θα0
(
X0
)− 1

ε

∫ X
X0

kα
(
J
(
X′
))
dX′, (3.54)

for some fixed point X0. We have identically

θ∗α0

(
X0
)≡ 0. (3.55)

As was shown in [23], we can also obtain the values ofUν(X) and θα0 (X) from Jν(X),
θ∗α0 (X), and θα0 (X0) on �′ as the formal series in powers of ε and we have for these

series

Uν(X)
[
J,θ∗0

]= Jν(X)+∑
k≥1

εkuν(k)
(
J,JX,θ∗0X, . . .

)
, (3.56)

θα0 (X)
[
J,θ∗0

]= θ∗α0 (X)+θα0
(
X0
)+ 1

ε

∫ X
X0

kα
(
J
(
X′
))
dX′. (3.57)

The form of the relation (3.56) will be important in our considerations, so we re-

produce here the calculations from [23].

We recall that the values Jν(X), θ∗α0 (X), θα0 (X0), and Uµ(X) are connected on �′

by the relations (the definition of Jν(X))

Jν(X)= 1
(2π)m

∫ 2π

0
···

∫ 2π

0
�ν(Φ(in)(θ+s(X,ε),U(X)),

ε∂XΦ(in)
(
θ+s(X,ε),U(X)), . . .)dmθ

= 1
(2π)m

∫ 2π

0
···

∫ 2π

0
�ν(Φ(in)(θ+s(X,ε),U(X)),

kα(J)∂θαΦ(in)
(
θ+s(X,ε),U(X)), . . .)dmθ

+
∑
k≥1

εk
1

(2π)m

∫ 2π

0
···

∫ 2π

0
�ν
(k)
(
Φ(in)

(
θ+s(X,ε),U(X)), . . .)dmθ,

(3.58)

where

s(X,ε)≡ θ∗0 (X)+θ0
(
X0
)+ 1

ε

∫ X
X0

k
(
J
(
X′
))
dX′ (3.59)
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and �ν
(k)(Φ(in)(θ+ s(X,ε), . . .)) are local densities depending upon Φ(in)(θ+ s(X,ε),

U(X)) and their derivatives with respect to Uν and θα with the coefficients of types:

UX(X),UXX(X), . . . , k(J),∂Xk(J),∂2
Xk(J), . . . , and θ∗0X(X),θ

∗
0XX(X), . . . , are given by col-

lecting together these terms, having the general multiplier εk. The term corresponding

to the zero power of ε is written separately.

After the integration with respect to θ, which removes the singular at ε→ 0 phase

shift θ0 in the argument of Φ(in), we obtain on �′

Jν(X)= ζν(J,U)+
∑
k≥1

εkζν(k)
(
U,UX, . . . ,UkX,J,JX, . . . ,JkX,θ∗0X, . . . ,θ

∗
0kX

)
. (3.60)

The sum in (3.60) contains the finite number of terms. The functions ζν(k) and ζν

are integrated with respect to θ functions �ν
(k), and �ν , respectively.

So, since

ζν(J,U)= 1
(2π)m

∫ 2π

0
···

∫ 2π

0
�ν(Φ(in)(θ,U),kα(J)Φ(in)θα(θ,U), . . .)dmθ, (3.61)

we obtain that the system

Jν(X)= ζν(J(X),U(X)) (3.62)

is satisfied by the solution Jν(X)≡ Uν(X) according to the definition of the parame-

ters Uν . Since we suppose that the system (3.62) is of the generic form, we will assume

that (locally) this is the only solution and put Jν(X)=Uν(X) in the zero order of ε.
After that we can resolve the system (3.60) by the iterations taking on the initial

step Uν(X)= Jν(X). The substitution of (3.56) into (3.60) under the condition of the

non-singularity of matrix ‖∂ζν(J,U)/∂Uµ‖|U=J sequentially define the functions uν(k).
So we obtain the relations (3.56) and (3.57).

We can take also the values of Jν(X), θ∗α0 (X), θα0 (X0), and Gi[U[ϕ],θ0[ϕ]](θ,X) with

the restrictions (3.55) and also

1
(2π)m

∫ 2π

0
···

∫ 2π

0
κ̃(q)[U[ϕ](X)]

(
θ+θ∗0 (X)+θ0

(
X0
)+ 1

ε

∫ X
X0

k
(
J
(
X′
))
dX′

)

×Gi[U[ϕ],θ0[ϕ]](θ,X)d
mθ ≡ 0

(3.63)

as the coordinates in the vicinity of �′.
We define the Poisson bracket on the space of functions ϕ(θ,X) by the formula

{
ϕi(θ,X),ϕj(θ′,Y )}= ∑

k≥0

Bijk
(
ϕ,εϕX,. . .

)
εkδ(k)(X−Y)δ(θ−θ′)

+ 1
ε
δ
(
θ−θ′) ∑

k≥0

ekSi(k)
(
ϕ,εϕX,. . .

)
ν(X−Y)Sj(k)

(
ϕ,εϕY ,. . .

)
,

(3.64)

which is just the rescaling of (1.1) multiplied by δ(θ−θ′). We normalize the δ-function

δ(θ−θ′) by (2π)m.
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The pairwise Poisson brackets of the constraints Gi[U,θ0](θ,X) on �′ can be written

in the form{
Gi(θ,X),Gj

(
θ′,Y

)}|�′
= 1
(2π)2m

∫ 2π

0
···

∫ 2π

0
Lik[U(X),θ0(X)](θ,τ)

×Ljs[U(Y),θ0(Y)]
(
θ′,σ

)×{ϕk(τ,X),ϕs(σ ,Y)
}|�′dmτdmσ,

(3.65)

(we can omit the Poisson brackets of Lik and Ljs on �′ and also the brackets of the

functionals θα0 [ϕ] and Uν[ϕ] from Φ(in) in (3.49) since they are multiplied by the

convolutions of the corresponding L-operators with the “right eigenvectors” Φ(in)θα
and Φ(in)Uν which are zero on �′).

Brackets (3.65) evidently satisfy the orthogonality conditions

1
(2π)m

∫ 2π

0
···

∫ 2π

0
κ̃(q)i[U[J,θ∗0 ](X)]

(
θ+θ∗0 (X)+θ0

(
X0
)+ 1

ε

∫ X
X0

k
(
J
(
X′
))
dX′

)

×{Gi(θ,X),Gj(θ′,Y )}|�′dmθ = 0,
(3.66)

1
(2π)m

∫ 2π

0
···

∫ 2π

0

{
Gi(θ,X),Gj

(
θ′,Y

)}|�′
× κ̃(q)j[U[J,θ∗0 ](Y)]

(
θ+θ∗0 (Y)+θ0

(
X0
)+1
ε

∫ Y
X0

k
(
J
(
Y ′
))
dY ′

)
dmθ′ =0

(3.67)

for q = 1, . . . ,N+m in the coordinates J(X), θ∗0 (X), and θ0(X0) on the submanifold �′.
We note that every derivative with respect to X or Y appears in the bracket (3.64)

with the multiplier ε but being applied to the functions

ϕi(θ,X)= Φi(in)
(
θ+θ∗0 (X)+θ0

(
X0
)+ 1

ε

∫ X
X0

k
(
J
(
X′
))
dX′,U

[
J,θ∗0

]
(X)

)
(3.68)

on �′ contains the nonzero at ε → 0 term kα(J)∂/∂θα. We formulate the statement

about the structure of the bracket (3.64) on �′ in the coordinates J(X), θ∗0 (X), and

θ0(X0).

Lemma 3.6. The pairwise Poisson brackets of constraints Gi[U,θ0](θ,X) have no sin-

gular terms at ε → 0 and have no nonlocal terms in the zero order of ε (ε0) on �′

at any fixed coordinates Jν(X), θ∗α0 (X), and θα0 (X0) (such that U(X) = U[J,θ∗0 ](X),
θ0(X)= θ0[J,θ∗0 ,θ0(X0)](X)).

Proof. The first statement is evident for the local part of bracket (3.64) since any

differentiation with respect to X in it appears with the multiplier ε and has the regular

form at ε→ 0, kα(J(X))∂/∂θα+O(ε) being applied to the functions of the form (3.68).

So we should check only the nonlocal part of (3.64) which contains the multiplier ε−1

in it. But according to the relation (3.47) and also (3.56), we have that the terms arising

on both sides of ν(X−Y) (the convolutions of L̂ with S(k)(Φ,kαΦθα , . . .)) are of order

of ε on the �′ in the coordinates Jν(X) and θ∗α0 (X). So we obtain that all the nonlocal
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part of (3.65) is of order of ε on �′ at any fixed coordinates Jν(X), θ∗α0 (X), and θα0 (X0).
Lemma 3.6 is proved.

We formulate the last “regularity” property of the submanifold �′ with respect to

the Poisson structure (3.64).

We consider, in the coordinates Jν(X), θ∗α0 (X), and θα0 (X0) on �′, the linear non-

homogeneous system on the functions

fj[J,θ∗0 ]
(
θ′ +θ∗0 (Y)+θ0

(
X0
)+ 1

ε

∫ Y
X0

k
(
J
(
Y ′
))
dY ′,Y ,ε

)
(3.69)

having the form

1
(2π)m

∫ 2π

0
···

∫ 2π

0

{
Gi[U[ϕ],θ0[ϕ]](θ,X),G

j
[U[ϕ],θ0[ϕ]]

(
θ′,Y

)}∣∣∣
�′

×fj
(
θ′ +θ∗0 (Y)+θ0

(
X0
)+ 1

ε

∫ Y
X0

k
(
J
(
Y ′
))
dY ′,Y ,ε

)
dmθ′dY

=
{
Gi[U[ϕ],θ0[ϕ]](θ,X),F[ϕ](ε)

}∣∣∣
�′
,

(3.70)

where F[ϕ](ε) is the functional defined in the vicinity of �′.
After all differentiations, with respect to X, we can omit the term θ∗0 (X)+θ0(X0)+

(1/ε)
∫ X
X0
kα(J(X′))dX′ which occurs in all functions depending on θ and X in (3.70),

and then consider the system (3.70) at the zero order of ε.
From Lemma 3.6, we have that at the zero order of ε, the brackets {Gi(θ,X),

Gj(θ′,Y )} on �′ do not contain the nonlocal terms depending on ν(X−Y). For the

derivatives, with respect to X, which arise with the multiplier ε from the local terms

of {ϕk(τ,X),ϕs(σ ,Y)}|�′ , we should take in the zero order of ε only the main part

kα(J)∂/∂θα. So in the zero order of ε, we obtain from (3.70) just the linear systems of

the integral-differential equations with respect to θ and θ′ on the functions fj(θ′,X)
independent at different X. We have also that the right-hand side of (3.70) satisfies at

any X and ε the compatibility conditions (3.66) (recall that Uν[J,θ∗0 ] are the asymp-

totic series at ε→ 0).

(IV) So we require that the system (3.70) is resolvable on �′ for any F[ϕ](ε) in

the class of 2π -periodic with respect to all θα functions, and its solutions can be

represented in the form of regular at ε→ 0 asymptotic series

fj[J,θ∗0 ](θ,Y ,ε)=
∑
n≥0

εkf (k)j[J,θ∗0 ]
(θ,Y) (3.71)

for regular at ε→ 0 right-hand sides of (3.70).

Condition (IV) is responsible for the Dirac restriction of the bracket (3.64) on the

submanifold �′.
We prove the statement which is very important for our averaging procedure.
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Lemma 3.7. The Poisson brackets of the functionals θ∗α0 (X) with Jν(Y) are of order

of ε at ε→ 0 on the �′ at any fixed coordinates Jν(X) θ∗α0 (X) and θα0 (X0)

{
θ∗α0 (X),Jν(Y)

}∣∣
�′ =O(ε), ε �→ 0. (3.72)

Proof. First, we note that the Poisson brackets of ϕi(θ,X), with the functionals

Jν(Y), can be written in the form

{
ϕi(θ,X),Jν(Y)

}
=
∑
k≥0

Ciνk
(
ϕ(θ,X),εϕX(θ,X), . . .

)
εkδ(k)(X−Y)

+
∑
k≥0

ekSi(k)
(
ϕ(θ,X),εϕX(θ,X), . . .

)
ν(X−Y)

(
Fν(k)

(
ϕ(θ,Y),εϕY (θ,Y), . . .

))
Y
,

(3.73)

for some Ciνk (ϕ,εϕX,. . .) and Fν(k)(ϕ,εϕY , . . .) (we have integrated with respect to θ′).
So the flow generated by the functional

∫
q(Y)Jν(Y)dY (where q(Y) has a compact

support) can be written as

ϕi
t =

∑
k≥0

Ciνk
(
ϕ,εϕX,. . .

)
εkqkX(X)

+
∑
k≥0

ekSi(k)
(
ϕ,εϕX,. . .

)∫
ν(X−Y)q(Y) d

dY
Fν(k)

(
ϕ,εϕY ,. . .

)
dY

=
∑
k≥0

Ciνk
(
ϕ,εϕX,. . .

)
εkqkX(X)

+
∑
k≥0

ekSi(k)
(
ϕ,εϕX,. . .

)
Fν(k)

(
ϕ,εϕX,. . .

)
q(X)

−
∑
k≥0

ekSi(k)
(
ϕ,εϕX,. . .

)∫
ν(X−Y)Fν(k)

(
ϕ,εϕY ,. . .

)
qY (Y)dY .

(3.74)

As can be easily seen, the local terms of (3.74) have the form

q(X)
[
Ciν0

(
ϕ,εϕX,. . .

)+∑
k≥0

ekSi(k)
(
ϕ,εϕX,. . .

)
Fν(k)

(
ϕ,εϕX,. . .

)]+O(ε), (3.75)

where the term in the brackets is just the flow generated by the functional

1
(2π)m

∫∫ 2π

0
···

∫ 2π

0
�ν(ϕ,εϕX,. . .

)
dmθdX. (3.76)

In the nonlocal part of (3.74) (the last expression) we have the convolution of the

“slow” functions qY (Y) with the rapidly oscillating Fν(k)(ϕ,εϕY , . . .) where ϕi(θ,Y)
has the form (3.68). So in the leading order of ε, we can neglect the dependence on θ
of the last integral of (3.74) and take the averaged, with respect to θ values, 〈Fν(k)〉 on

�′ instead of the exact Fν(k)(ϕ,εϕY , . . .) in the integral expression in (3.74).
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After that we obtain that the nonlocal term of (3.74) gives us in the zero order of ε,
the linear combination of the flows S(k)(ϕ,εϕX,. . .), considered on the functions

ϕi(θ,X)= Φi(in)
(
θ+θ∗0 (X)+θ0

(
X0
)+ 1

ε

∫ X
X0

k
(
J
(
X′
))
dX′,J(X)

)
(3.77)

at any fixed point X.

From the invariance of the submanifold � with respect to the flows (3.27), we can

conclude that the flow (3.74) being considered at the points of �′ with fixed coordi-

nates J(X), θ∗0 (X), θ0(X0) in the zero order of ε, leaves �′ invariant and generates

on it the linear evolution of the initial phases

θα0 (X)= θ∗α0 (X)+θα0
(
X0
)+ 1

ε

∫ X
X0

kα
(
J
(
X′
))
dX′, (3.78)

with some frequencies Ωαν[q](X). We use the formula (3.56) for U[J,θ∗0 ] and we can

claim that the Poisson brackets of the functionals θα0 (X) with
∫
q(Y)Jν(Y)dY at the

points of �′ with fixed coordinates Jν(X), θ∗α0 (X), and θ0(X0) have the form

{
θα0 (X),

∫
q(Y)Jν(Y)dY

}
=Ωαν[q]

[
J,θ∗0

]
(X)+O(ε). (3.79)

We prove the relation

{
kα
(
J(X)

)
,
∫
q(Y)Jν(Y)dY

}
= ε d

dX
Ωαν[q]

[
J,θ∗0

]
(X)+O(ε2) (3.80)

at the points of �′ with the fixed values of Jν(X), θ∗α0 (X), and θα0 (X0).
Using again the relation (3.56), we can write for (3.74) at the points of �′

ϕi
t =Ωβν[q](X)Φi(in)θβ

(
θ+θ∗0 (X)+θ0

(
X0
)+ 1

ε

∫ X
X0

k
(
J
(
X′
))
dX′,U

[
J,θ∗0

]
(X)

)

+εηi
(
θ+θ∗0 (X)+θ0

(
X0
)+ 1

ε

∫ X
X0

k
(
J
(
X′
))
dX′,

[
J,θ∗0

])
,

(3.81)

where [J,θ∗0 ] means the regular at ε→ 0 dependence on J,JX,θ∗0X, . . . .
We are interested in the evolution of the functionals

Jµ(X)= 1
(2π)m

∫ 2π

0
···

∫ 2π

0
�µ(ϕ,εϕX,. . .

)
dmθ. (3.82)

We have

d
dt
Jµ(X)= 1

(2π)m

∫ 2π

0
···

∫ 2π

0

(
∂�µ

∂ϕi ϕ
i
t+

∂�µ

∂ϕi
X
ϕi
tX+

∂�µ

∂ϕi
XX
ϕi
tXX+ . . .

)
dmθ

= 1
(2π)m

∫ 2π

0
···

∫ 2π

0

(∏µ

i(0)
ϕi
t+
∏µ

i(1)
εϕi

tX+
∏µ

i(2)
ε2ϕi

tXX+···
)
dmθ,

(3.83)

where the densities
∏µ
i(k) were introduced in (3.35).
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It is easy to see that (3.81) does not change Jµ(X) at the zero order of ε and we can

also state that the terms of order of ε in (3.81) (i.e., εηi(θ+··· ,X)) are unessential

for the evolution of k(J(X)) on �′ at the order of ε. Indeed, their contribution to the

evolution of Jµ(X) in the order of ε is

ε
1

(2π)m

∫ 2π

0
···

∫ 2π

0

(∏µ

i(0)
ηi+

∏µ

i(1)
εηiX+

∏µ

i(2)
ε2ηiXX+···

)
dmθ, (3.84)

where we should take only the main term kγ(J(X))∂/∂θγ for the derivatives ε∂/∂X
in the formula (3.84). After the integration by parts, we have for this contribution

ε
1

(2π)m

∫ 2π

0
···

∫ 2π

0

(∏µ

i(0)
−kγ ∂

∂θγ
∏µ

i(1)
+···

)
ηi(θ+··· ,X)dmθ. (3.85)

But after the substitution of the main part of ϕi(θ,X)

Φi(in)
(
θ+θ∗0 (X)+θ0

(
X0
)+ 1

ε

∫ X
X0

k
(
J
(
X′
))
dX′,J(X)

)
(3.86)

(according to (3.56)) into the densities
∏µ
i(k)(ϕ,εϕX,. . .), we obtain in the leading or-

der of ε the convolution of η(θ,X) with the variational derivative of the functional Īµ

introduced in (3.25) with respect to ϕ(θ,X). Our statement follows from Lemma 3.1

which claims that the variational derivatives of the functionals kα(Ī[ϕ]) are identi-

cally zero on the space of m-phase solutions of (2.7).

Consider the first term of (3.81). We have that the evolution of Jµ(X) which is

responsible for the evolution of k(J) is given by the expression

d
dt
Jµ(X)=Ωβν[q](X)

× 1
(2π)m

∫ 2π

0
···

∫ 2π

0

(
∂�µ

∂ϕi Φ
i
(in)θβ

(
θ+s(X,ε),U

[
J,θ∗0

]
(X)

)

+ ∂�µ

∂ϕi
X

∂
∂X
Φi(in)θβ

(
θ+s(X,ε),U

[
J,θ∗0

]
(X)

)+. . .
)
dmθ

+ε
(
Ωβν[q](X)

)
X

1
(2π)m

∫ 2π

0
···
∫ 2π

0

(
∂�µ

∂ϕi
X
+2

∂�µ

∂ϕi
XX

∂
∂X
+3

∂�µ

∂ϕi
XXX

∂2

∂X2
+. . .

)

×Φi(in)θβ
(
θ+s(X,ε),U

[
J,θ∗0

]
(X)

)
dmθ+O(ε2),

(3.87)

where s(X,ε)≡ θ∗0 (X)+θ0(X0)+(1/ε)
∫ X
X0
k(J(X′))dX′.

The first term here after the substitution of exact ϕi in the form

ϕi(θ,X)= Φi(in)θβ
(
θ+s(X,ε),U

[
J,θ∗0

]
(X)

)
, (3.88)
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on the �′ as can be easily seen is just

Ωβν[q](X)
1

(2π)m

∫ 2π

0
···

∫ 2π

0

∂
∂θβ

�µ(Φ(in)(. . .),Φ(in)X(. . .), . . .)dmθ ≡ 0 (3.89)

while the second term on �′ in the leading order of ε is equal to

ε
(
Ωβν[q](X)

)
X

1
(2π)m

∫ 2π

0
···

∫ 2π

0

∑
p≥1

p
µ∏
i(p)

(
Φ(in)

(
θ+s(X,ε),J(X)

)
,

kγ
(
J(X)

) ∂
∂θγ

Φ(in)
(
θ+s(X,ε),J(X)

)
, . . .

)

×kα1
(
J(X)

)···kαp−1
(
J(X)

)
Φi(in)θβθα1 ···θαp−1

×(θ+s(X,ε),J(X), . . .
)
dmθ,

(3.90)

which coincides with the integral expression from (3.36) in Lemma 3.4. So from

Lemma 3.4 we have that the summation of (3.90) with ∂kα/∂Jµ is equal to ε(Ωβν[q](X))X
δαβ and we obtain that

∂
∂t
kα(J)= ε ∂

∂X
Ωαν[q](X)+O

(
ε2), (3.91)

that is, the relation (3.80).

Now using (3.79) and (3.80), we can write that

{
θ∗α0 (X),

∫
q(Y)Jν(Y)dY

}

=
{
θα0 (X)−θα0

(
X0
)− 1

ε

∫ X
X0

kα
(
J
(
X′
))
dX′,

∫
q(Y)JνdY

}
=O(ε),

(3.92)

for any q(Y) in our coordinates on �′.
So we have

{
θ∗α0 (X),Jν(Y)

}|�′ =O(ε) (3.93)

at any fixed coordinates Jν(X), θ∗α0 (X), and θα0 (X0). Lemma 3.7 is proved.

4. Averaging procedure. We formulate the averaging procedure of the Poisson

bracket (1.1) on the family ofm-phase solutions of (2.7) under the conditions of “reg-

ularity” formulated above.

Theorem 4.1. Consider the Poisson brackets (1.1) and the local system (2.7) gener-

ated by the local Hamiltonian function

H =
∫

�H
(
ϕ,ϕx,. . .

)
dx, (4.1)

which hasN(≥ 2m)-parametric full family ofm-phase solutions modulom initial phase

shifts θα0 .
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Assume that there exist N commutative local translation invariant integrals

Iν =
∫

�ν(ϕ,ϕx,. . .
)
dx,

{
Iν ,H

}= 0,
{
Iν ,Iµ

}= 0, (4.2)

which generate local flows according to the Poisson bracket (1.1) and the averaged

densities of which can be taken as parameters Uν on the space of m-phase solutions of

(2.7) (the conditions (A), (B), and (C)).

Then under the “regularity” conditions (I), (II), (III), and (IV) for the space ofm-phase

solutions of (2.7), we can construct a Poisson bracket of Ferapontov type (2.6) for the

“slow” parameters Uν(X) which coincide with the averaged densities 〈�ν〉(X) by the

following procedure: we calculate the pairwise Poisson brackets of �ν(ϕ,ϕx,. . .) in the

form {
�ν(ϕ,ϕx,. . .

)
,�µ(ϕ,ϕy,. . .

)}
=
∑
k≥0

Aνµk
(
ϕ,ϕx,. . .

)
δ(k)(x−y)

+
∑
k≥0

ek
(
Fν(k)

(
ϕ,ϕx,. . .

))
x
ν(x−y)

(
Fµ(k)

(
ϕ,ϕy,. . .

))
y
,

(4.3)

(there are finite numbers of terms in both sums). (The total derivatives of the functions

Fν(k) and Fµ(k) with respect to x and y arise as a corollary of the fact that both Iν and Iµ

generate the local flows (3.22).) From the commutativity of the set {Iν}, it follows also

that

Aνµ0

(
ϕ,ϕx,. . .

)
+
∑
k≥0

ek
(
Fν(k)

(
ϕ,ϕx,. . .

))
x
Fµ(k)

(
ϕ,ϕx,. . .

)≡ ∂xQνµ(ϕ,ϕx,. . .
) (4.4)

for some functions Qνµ(ϕ,ϕx,. . .).
Then for the “slow” coordinates Uν(X)= 〈�ν〉(X), we can define the Poisson bracket

by the formula

{
Uν(X),Uµ(Y)

}=
[〈
Aνµ1

〉
(X)+

∑
k≥0

ek
(〈
Fν(k)F

µ
(k)
〉−〈Fν(k)〉〈Fµ(k)〉

)
(X)

]
δ′(X−Y)

+
[
∂
〈
Qνµ〉(X)
∂X

−
∑
k≥0

ek
∂
〈
Fν(k)

〉
(X)

∂X
〈
Fµ(k)

〉
(X)

]
δ(X−Y)

+
∑
k≥0

ek
∂
〈
Fν(k)

〉
(X)

∂X
ν(X−Y)∂

〈
Fµ(k)

〉
(Y)

∂Y
,

(4.5)

where the averaged values are the functions of U(X) and U(Y) at the corresponding

X and Y .

Bracket (4.5) satisfies the Jacobi identity, and is invariant with respect to the choice

of the set {I1, . . . , IN} satisfying (A), (B), and (C) if it is possible to choose such integrals in

different ways, that is, if Uν = 〈�ν〉, Ũν = 〈�̃ν〉 and {Uν(X),Uµ(Y)}, {Ũν(X),Ũµ(Y)}′
are the brackets (4.5) constructed with the sets {Iν} and {Ĩν}, respectively, then

{
Ũν(X),Ũµ(Y)

}′ ≡ ∂Ũν
∂Uλ

(X)
{
Uλ(X),Uσ (Y)

} ∂Ũµ
∂Uσ

(Y). (4.6)
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Proof. The most difficult part is to prove the Jacobi identity for the bracket (4.5).

For this we use the Dirac restriction of the Poisson bracket (3.64) on the submanifold

�′ with the coordinates Jν(X), θ∗α0 (X), and θα0 (X0) on it. According to the Dirac

restriction procedure we should find for Jν(X), θ∗α0 (X), and θα0 (X0) the additions of

type

Vν(X)= 1
(2π)m

∫ 2π

0
···

∫ 2π

0

∫
vνj
[
J,θ∗α0 ,θ0

(
X0
)](
X,θ′,Z

)
Gj
(
θ′,Z

)
dmθ′dZ,

Wα(X)= 1
(2π)m

∫ 2π

0
···

∫ 2π

0

∫
wα
j
[
J,θ∗α0 ,θ0

(
X0
)](
X,θ′,Z

)
Gj
(
θ′,Z

)
dmθ′dZ,

Oα = 1
(2π)m

∫ 2π

0
···

∫ 2π

0

∫
oαj
[
J,θ∗α0 ,θ0

(
X0
)](
θ′,Z

)
Gj
(
θ′,Z

)
dmθ′dZ

(4.7)

such that the fluxes generated view (3.64) by the “functionals” Jν(X) + Vν(X),
θ∗α0 (X)+Wα(X), and θα0 (X0)+Oα leave �′ invariant, that is,

1
(2π)m

∫ 2π

0
···

∫ 2π

0

{
Gi(θ,Y),Gj

(
θ′,Z

)}|�′ ×vνj (X,θ′,Z)dmθ′dZ
=−{Gi(θ,Y),Jν(X)}|�′ ,

(4.8)

1
(2π)m

∫ 2π

0
···

∫ 2π

0

{
Gi(θ,Y),Gj

(
θ′,Z

)}|�′ ×wα
j
(
X,θ′,Z

)
dmθ′dZ

=−{Gi(θ,Y),θ∗α0 (X)
}|�′ ,

1
(2π)m

∫ 2π

0
···

∫ 2π

0

{
Gi(θ,Y),Gj

(
θ′,Z

)}|�′ ×oαj (θ′,Z)dmθ′dZ
=−{Gi(θ,Y),θα0 (X0

)}|�′ ,

(4.9)

and put after that for the Dirac restriction on �′

{
Jν(X),Jµ(Y)

}
D

= {Jν(X)+Vν(X),Jµ(Y)+Vµ(Y)}|�′
= {Jν(X),Jµ(Y)}|�′− 1

(2π)2m

∫ 2π

0
···

∫ 2π

0
vνi (X,θ,Z)×vµj

(
Y ,θ′,Z′

)
×{Gi(θ,Z),Gj(θ′,Z′)}|�′dmθdmθ′dZdZ′,

(4.10)

and by the same way

{
Jν(X),θ∗α0 (Y)

}
D =

{
Jν(X),θ∗α0 (Y)

}|�′
− 1
(2π)2m

∫ 2π

0
···

∫ 2π

0
vνi (X,θ,Z)×wα

j
(
Y ,θ′,Z′

)

×{Gi(θ,Z),Gj(θ′,Z′)}|�′dmθdmθ′dZdZ′
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{
θ∗α0 (X),θ∗β0 (Y)

}
D =

{
θ∗α0 (X),θ∗β0 (Y)

}|�′
− 1
(2π)2m

∫ 2π

0
···

∫ 2π

0
wα
j (X,θ,Z)×wβ

j
(
Y ,θ′,Z′

)
×{Gi(θ,Z),Gj(θ′,Z′)}|�′dmθdmθ′dZdZ′,

(4.11)

and so on.

After the calculation of the brackets in (4.8) and (4.9) and the substitution ofϕ(θ,X)
in the form (3.68) we obtain the regular at ε→0 systems for the functions v̄νj (X,θ,Z,ε),
w̄α
j (X,θ,Z,ε), and ōαj (θ,Z,ε) such that

vνj (X,θ,Z,ε)= v̄νj
(
X,θ+θ∗0 (Z)+θ0

(
X0
)+ 1

ε

∫ Z
X0

k
(
J
(
Z′
))
dZ′,ε

)
,

wα
j (X,θ,Z,ε)= w̄α

j

(
X,θ+θ∗0 (Z)+θ0

(
X0
)+ 1

ε

∫ Z
X0

k
(
J
(
Z′
))
dZ′,ε

)
,

oαj (θ,Z,ε)= ōαj
(
θ+θ∗0 (Z)+θ0

(
X0
)+ 1

ε

∫ Z
X0

k
(
J
(
Z′
))
dZ′,ε

)
,

(4.12)

which coincide with the system (3.70).

From the arguments analogous to those used in Lemma 3.6 and the fact that the

flows generated by the functionals Jν(X) leave invariant the submanifold �′ at the

zero order of ε in the coordinates J(X), θ∗0 (X), and θ0(X0) we have also that the

right-hand sides of these systems are regular at ε→ 0 in these coordinates.

So according to (IV) we can find the functions v̄νj , w̄α
j , and ōαj in the form of regular

at ε→ 0 asymptotic series. (The functions vνj (X,θ,Z,ε),w
α
j (X,θ,Z,ε), and oαj (θ,Z,ε)

are not uniquely defined but it can be shown that it does not influence on the Dirac

restriction of the bracket (3.64) on �′ according to the formulas (4.10) and (4.11).)

Besides that, as was mentioned above, the flows (3.74) generated by the functionals∫
q(X)Jµ(X)dX on the functions of the form (3.68) leave invariant the submanifold

�′ at the zero order of ε and generate the linear evolution of the initial phases. So

we can conclude that the right-hand side of the linear system (4.8) contains no zero

powers of ε and we should start the expansion for v̄νi (X,θ,Z,ε) from the first power.

Now we have

v̄νj
[
J,θ∗0 ,θ0

(
X0
)]
(X,θ,Z,ε)=

∑
k≥1

εkv̄νj(k)
[
J,θ∗0 ,θ0

(
X0
)]
(X,θ,Z),

w̄α
j
[
J,θ∗0 ,θ0

(
X0
)]
(X,θ,Z,ε)=

∑
k≥0

εkw̄α
j(k)

[
J,θ∗0 ,θ0

(
X0
)]
(X,θ,Z),

ōαj
[
J,θ∗0 ,θ0

(
X0
)]
(θ,Z,ε)=

∑
k≥0

εkōαj(k)
[
J,θ∗0 ,θ0

(
X0
)]
(θ,Z).

(4.13)

According to the relations above and Lemma 3.6, we can see that the corrections to

the values {Jν(X),Jµ(Y)}|�′ and {θ∗α0 (X),Jµ(Y)}|�′ , due to the Dirac restriction on

�′, are of order of O(ε2) and O(ε), respectively.

According to the relation (3.56), we can also substitute the values Jν(X) instead

of Uν[J,θ∗0 ](X) in the leading order of ε as the arguments of the averaged functions

on �′.
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We calculate the values {Jν(X),Jµ(Y)}|�′ . Let the Poisson brackets

{∫
qν(X)Jν(X)dX,

∫
qµ(Y)Jµ(Y)dY

}
|�′ , (4.14)

for the arbitrary smooth qν(X) and qµ(Y) with compact supports. For the Poisson

brackets of the densities �ν(ϕ,εϕX,. . .), according to (3.64), we have the expression

{
�ν(θ,X),�µ(θ′,Y )}

=
∑
k≥0

Aνµk
(
ϕ,εϕX,. . .

)
εkδ(k)(X−Y)δ(θ−θ′)

+εδ(θ−θ′) ∑
k≥0

ek
(
Fν(k)

(
ϕ,εϕX,. . .

))
X
ν(X−Y)

(
Fµ(k)

(
ϕ,εϕY ,. . .

))
Y
,

(4.15)

such that

{
Jν(X),Jµ(Y)

}

=
∑
k≥0

εk
1

(2π)m

∫ 2π

0
···

∫ 2π

0
Aνµk

(
ϕ(θ,X),εϕX(θ,X), . . .

)
dmθδ(k)(X−Y)

+ε
∑
k≥0

ek
1

(2π)m

∫ 2π

0
···

∫ 2π

0

(
Fν(k)

(
ϕ(θ,X),εϕX(θ,X), . . .

))
X

×ν(X−Y)×
(
Fµ(k)

(
ϕ(θ,Y),εϕY (θ,Y), . . .

))
Y
.

(4.16)

We should substitute the functions ϕi(θ,X), ϕi(θ,Y) on �′ in the form

Φi(in)
(
θ+θ∗0 (X)+θ0

(
X0
)+ 1

ε

∫ X
X0

k
(
J
(
X′
))
dX′,U

[
J,θ∗0

]
(X)

)
, (4.17)

Φi(in)
(
θ+θ∗0 (Y)+θ0

(
X0
)+ 1

ε

∫ Y
X0

k
(
J
(
Y ′
))
dY ′,U

[
J,θ∗0

]
(Y)

)
, (4.18)

respectively.

It is easy to see that the local part of (4.16) gives us the expression

1
(2π)m

∫ 2π

0
···

∫ 2π

0
dmθ×Aνµ0

(
Φi(in)

(
θ+s(X),U[J,θ∗0 ](X)),

ε
∂
∂X
Φi(in)

(
θ+s(X),U[J,θ∗0 ](X)), . . .

)

×δ(X−Y)+ε〈Aνµ1

〉(
J(X)

)
δ′(X−Y)+O(ε2),

(4.19)

in the coordinates J(X), θ∗0 (X), and θ0(X0) on �′ where s(X) ≡ θ∗0 (X)+θ0(X0)+
(1/ε)

∫ X
X0
k(J(X′))dX′.
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Here we used only the main part of (4.17) Φi(in)(θ+s(X),J(X)) in the second term

of (4.19) and replaced Uν(X) by Jν(X) according to (3.56) in the arguments of the

averaged functions modulo the higher orders of ε.
In the nonlocal part of (4.16) we have for (4.14) the following equalities:

∫∫
dXdY

1
(2π)m

∫ 2π

0
···

∫ 2π

0

1
ε

∑
k≥0

ekεqν(X)
∂Fν(k)

(
Φ(in)

(
θ+s(X),U(X)), . . .)
∂X

×ν(X−Y)

×εqµ(Y)∂F
µ
(k)
(
Φ(in)

(
θ+s(Y),U(Y)), . . .)
∂Y

dmθ

=
∫∫
dXdY

1
(2π)m

∫ 2π

0
···

∫ 2π

0

∑
k≥0

ek
∂2
[
qν(X)ν(X−Y)qµ(Y)]

∂X∂Y

×Fν(k)
(
Φ(in)

(
θ+s(X),U(X)), . . .)

×Fµ(k)
(
Φ(in)

(
θ+s(Y),U(Y)), . . .)dmθ

=
∫∫
dXdY

1
(2π)m

∫ 2π

0
···

∫ 2π

0

∑
k≥0

ekε
[
qνX(X)ν(X−Y)qµY (Y)

+(qν(X)qµY (Y)−qνX(X)qµ(Y))δ(X−Y)
−qν(X)qµ(Y)δ′(X−Y)]

×Fν(k)
(
Φ(in)

(
θ+s(X),U(X)), . . .)

×Fµ(k)
(
Φ(in)

(
θ+s(Y),U(Y)), . . .)dmθ

=
∫∫
dXdY

1
(2π)m

∫ 2π

0
···

∫ 2π

0

∑
k≥0

ekεqνX(X)ν(X−Y)qµY (Y)

×Fν(k)
(
Φ(in)

(
θ+s(X),U(X)), . . .)

×Fµ(k)
(
Φ(in)

(
θ+s(Y),U(Y)), . . .)dmθ

+ε
∑
k≥0

ek
∫ (
qν(X)qµX(X)−qνX(X)qµ(X)

)〈
Fν(k)F

µ
(k)
〉(
J(X)

)
dX

−ε
∑
k≥0

ek
∫
qν(X)qµX(X)

〈
Fν(k)F

µ
(k)
〉(
J(X)

)
dX

−ε
∫
qν(X)qµ(X)

1
(2π)m

∫ 2π

0
···

∫ 2π

0

∑
k≥0

ekFν(k)
(
Φ(in)

(
θ+s(X),U(X)), . . .)

× ∂
∂X
Fµ(k)

(
Φ(in)

(
θ+s(X),U(X)), . . .)

×dmθdX+O(ε2),
(4.20)

where we used the integration by parts for the generalized functions.
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We can see now that in the first term of the expression above in both regions X > Y
and X < Y we have the convolution with respect to X and Y , of the “slow” functions

qνX(X)q
µ
Y (Y) with the rapidly oscillating expression

〈
Fν(k)

(
Φ(in)

(
θ+s(X,ε),J(X)), . . .)Fµ(k)(Φ(in)(θ+s(Y ,ε),J(Y)), . . .)

〉
, (4.21)

in the main order of ε. Here 〈···〉 means the averaging with respect to phases θα.

So as the small ∆X and ∆Y lead in the main order of ε, to the changes of phase

difference equal to (1/ε)kα(J(X))∆X+O((∆X)2) and (1/ε)kα(J(Y))∆Y +O((∆Y)2)
it is not very difficult to see that in the sense of “generalized” limit (i.e., in the sense of

the convolutions with the “slow” functions of X and Y ) we can replace this oscillating

expression just by its mean value

∑
k≥0

ek
〈
Fν(k)

〉(
J(X)

)〈
Fµ(k)

〉(
J(Y)

)
, (4.22)

where 〈···〉 means the averaging on the space of m-phase solutions.

As for the last term of (4.20), we recall that its sum with the expression arising from

the first term of the local part in (4.19)

∫
dXqν(X)qµ(X)

1
(2π)m

∫ 2π

0
···

∫ 2π

0
dmθ

[
Aνµ0

(
Φ(in)

(
θ+s(X),U(X)), . . .)

−
∑
k≥0

ekFν(k)
(
Φ(in)

(
θ+s(X),U(X)), . . .)

×ε ∂
∂X
Fµ(k)

(
Φ(in)

(
θ+s(X),U(X)), . . .)]

(4.23)

is equal, according to (4.4), to

ε
∫ (

∂
〈
Qνµ〉(J(X))

∂X
−
∑
k≥0

ek
∂
〈
Fν(k)F

µ
(k)
〉(
J(X)

)
∂X

)
qν(X)qµ(X)dX, (4.24)

in the leading order of ε.
So we can write

{∫
qν(X)Jν(X)dX,

∫
qµ(Y)Jµ(Y)dY

}
|�′

= ε
∫ [
qν(X)qµX(X)

〈
Aνµ1

〉(
J(X)

)−qνX(X)qµ(X)∑
k≥0

ek
〈
Fν(k)F

µ
(k)
〉(
J(X)

)

+qν(X)qµ(X)∂X
(〈
Qνµ〉(J(X))−∑

k≥0

ek
〈
Fν(k)F

µ
(k)
〉(
J(X)

))]
dX

+ε
∫∫ ∑

k≥0

ekqνX(X)
〈
Fν(k)

〉(
J(X)

)
ν(X−Y)〈Fµ(k)〉(J(Y))qµY (Y)dXdY +O(ε2).

(4.25)
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After the integration by parts (in the sense of generalized functions) we can write

this expression in the following “canonical” form:

{∫
qν(X)Jν(X)dX,

∫
qµ(Y)Jµ(Y)dY

}
|�′

= ε
∫ (〈

Aνµ1

〉(
J(X)

)+∑
k≥0

ek
(〈
Fν(k)F

µ
(k)
〉(
J(X)

)−〈Fν(k)〉(J(X))〈Fµ(k)〉(J(X))
))

×qν(X)qµX(X)dX

+ε
∫ (

∂
〈
Qνµ〉(J(X))

∂X
−
∑
k≥0

ek
∂
〈
Fν(k)

〉(
J(X)

)
∂X

〈
Fµ(k)

〉(
J(X)

))
qν(X)qµ(X)dX

+ε
∫∫ ∑

k≥0

ekqν(X)
∂
〈
Fν(k)

〉(
J(X)

)
∂X

ν(X−Y)∂
〈
Fµ(k)

〉(
J(Y)

)
∂Y

qµ(Y)dXdY +O(ε2),
(4.26)

which corresponds to the bracket

{
Jν(X),Jµ(Y)

}|�′
= ε

(〈
Aνµ1

〉(
J(X)

)+∑
k≥0

ek
(〈
Fν(k)F

µ
(k)
〉−〈Fν(k)〉〈Fµ(k)〉

)(
J(X)

))
δ′(X−Y)

+ε
(
∂
〈
Qνµ〉(J(X))

∂X
−
∑
k≥0

ek
∂
〈
Fν(k)

〉(
J(X)

)
∂X

〈
Fµ(k)

〉(
J(X)

))
δ(X−Y)

+ε
∑
k≥0

ek
∂
〈
Fν(k)

〉(
J(X)

)
∂X

ν(X−Y)∂
〈
Fµ(k)

〉(
J(Y)

)
∂Y

+O(ε2)

(4.27)

for the functionals Jν(X).
So according to Lemma 3.7 and the remarks above, we obtain for the Dirac restric-

tion on �′

{
θ∗α0 (X),Jµ(Y)

}
D =O(ε), (4.28)

and the relations (4.27) for the brackets {Jν(X),Jµ(Y)}D in the coordinates J(X),
θ∗0 (X), and θ0(X0).

It is evident also that the Dirac brackets {Jν(X),Jµ(Y)}D on �′ do not depend at

any order of ε, on the common initial phase θ0(X0) because of the invariance of Jν(X),
the bracket (3.64), and the submanifold �′ with respect to the common shifts of θα.

The dependence of {Jν(X),Jµ(Y)}D on J(X),JX(X),θ∗0X(X), . . . is regular at ε → 0

and as can be easily seen from (4.27), we have not any dependence of θ∗0 in the first

order of ε.
So it is easy to see now that the Jacobi identities for the bracket {··· ,···}D on

�′ with coordinates J(X), θ∗0 (X), and θ0(X0) written for the fields Jν(X), Jµ(Y), and



THE AVERAGING OF NONLOCAL HAMILTONIAN . . . 431

Jλ(Z) at the order of ε2 coincide with the corresponding Jacobi identities for the

bracket (4.5).

So we proved the Jacobi identity for the bracket (4.5).

The skew-symmetry of the bracket (4.5) is just the trivial corollary of the skew-

symmetry of (3.64).

We prove the invariance of the bracket (4.5) with respect to the choice of the in-

tegrals Iν . The proof is just the same as in the local case and we just reproduce it

here.

Under the condition (IV) (which is the “generic” requirement) we have the unique re-

striction of the Poisson bracket (3.64) on �′ with the coordinates J(X), θ∗0 (X), θ0(X0)
in the form of formal series at ε→ 0.

So the two restrictions of (3.64) obtained in the coordinates

(
Jν(X),θ∗α0 (X),θα0

(
X0
))
,

(
J̃ν(X), θ̃∗α0 (X),θα0

(
X0
))
,

(4.29)

corresponding to the sets {Iν} and {Ĩν} (satisfying (A), (B), and (C)), respectively,

should transform one into another after the corresponding transformation of coordi-

nates

J̃ν(X)= j̃ν(0)
(
J(X)

)+∑
k≥1

εkj̃ν(k)
[
J,θ∗0

]
(X),

θ̃∗α0 (X)= θ̃∗α0

[
J,θ∗0 ,ε

]
(X)

(4.30)

on �′.
We note that the leading term of (4.27) coinciding with the bracket (4.5), transforms

according to the transformation

J̃ν(X)= j̃ν(0)
(
J(X)

)
(4.31)

which corresponds to the substitution Ũν(X) = Ũν(U(X)) on �′ view the relation

(3.56). So we obtain the second part of the theorem. Theorem 4.1 is proved.

Remark 4.2. From Theorem 4.1 it also follows, in particular, that the procedure

(4.5) is insensitive to the addition of the total derivatives with respect to x to the

densities �ν(ϕ,ϕx,. . .). This fact however can also be obtained from the elementary

consideration of the definition of bracket (4.5).

Theorem 4.3. The Hamiltonian functions

H̄ν =
∫
Uν(X)dX,

H̄ =
∫ 〈

�H
〉(
U(X)

)
dX,

(4.32)

generate view (4.5) the local-commuting flows which give us the Whitham equations for

the systems (3.22) and (2.7), respectively.
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Proof. It is easy to check by the direct substitution that any of H̄µ generates the

“conservative” form

UνT = ∂X
〈
Qνµ〉(U), (4.33)

of Whitham’s system for the corresponding flow (3.22). It is easy to see also that this

flow conserves any of H̄ν so that any H̄ν and H̄µ commute view the bracket (4.5).

The same property for the Hamiltonian function H̄ (and also for the integral of the

averaged density of any local integral I commuting with H and Iν and generating the

local flow view (1.1)) can be obtained from the invariance of (4.5) with respect to the

set {Iν} since we can use the Hamiltonian function H in the form of (2.2) as the one

of the integrals instead of any of Iν . Theorem 4.3 is proved.

We can also see that the functionals H̄ν give us the conservation laws for our

Whitham system.

From Theorem 2.1, it follows also that the flows

UνT = ∂X
〈
Fν(k)

〉
(U) (4.34)

commute with all the local flows generated by local functionals
∫
h(U)dX in the Hamil-

tonian structure (4.5) and it can also be seen that they give us Whitham’s equations

for the corresponding flows (2.8).

It can be easily seen also that the described procedure can be applied by the same

way to the brackets (2.1) written also in the “irreducible” form and not only in the

“canonical” one.
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