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A theorem of Arazy shows that every extreme point of the unit ball of trace-class operators
is strongly exposed. We give this result a simpler and direct proof here.
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The main purpose of this paper is to give a direct proof of an interesting special

case of a far-reaching theorem of Arazy [1, 2].

Arazy studied the extreme, exposed, and strongly exposed points in the unit balls

of symmetrically normed ideals (of operators) acting on a separable Hilbert space, and

he obtained very useful and complete results in [2] on the extremal structure of these

operator balls. Arazy’s study of symmetrically normed ideals is, on the one hand,

quite general. On the other hand, the ideal of trace-class operators is, for a variety of

reasons, perhaps the most interesting of the symmetrically normed ideals. Because of

the importance of the trace-class operators, and in the light of sustained interest in

exposed points amongst Banach space theorists, we thought it is worthwhile to find

a fairly direct proof of Arazy’s theorem in this particular case. Our proof, presented

herein, is straightforward in the sense that it relies essentially only on fundamental

properties of singular values, as explained in the monograph of Gohberg and Krĕın [3].

Theorem 1 (Arazy). Let S1 denote the Banach space of the trace-class operators

acting on an infinite-dimensional separable complex Hilbert space, and assume that

x ∈ BallS1. The following statements are equivalent:

(a) x has rank 1 and tr(x∗x)= 1;

(b) x is an extreme point of BallS1;

(c) x is a strongly exposed point of BallS1.

The equivalence of (a) and (b) seems to have first been determined by Holub in [5].

Before moving to the proof, the relevant definitions are reviewed below.

An elementω in a convex set C in a complex Banach space X is an extreme point of

C if the equation ω = tω1+(1− t)ω2, for t ∈ (0,1) ⊂ R and ω1,ω2 ∈ C , is satisfied

only with ω1 =ω2 =ω. A point ω ∈ C is strongly exposed if there is a continuous

linear function f :X → C such that

(i) Ref(γ) < Ref(ω), for all γ ∈ C \{ω},
(ii) Ref(γk)→ Ref(ω), for a sequence, {γk}k ⊂ C , only if γk→ω.

If only (i) holds forω∈ C , thenω is said to be an exposed point of C . Exposed points

of C (if they exist) are extreme points of C , but in general extreme points need not

be exposed.
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For any Banach space X, let

(1) BallX = {x ∈X : ‖x‖ ≤ 1},
(2) extBallX = {x ∈ BallX : x is an extreme point of BallX}.

It is an elementary consequence of the Cauchy-Schwarz inequality that the extreme

points of BallH in any Hilbert spaceH (of any dimension) are strongly exposed. In con-

trast, if B(H) denotes the algebra of a bounded operator acting on a Hilbert space H,

then the extreme points of BallB(H) are exposed if and only if H is separable, and

they are strongly exposed if and only if H is finite dimensional. (These results were

proved by Grzaślewicz [4].) Arazy’s work provides a complete analysis of the situation

concerning strongly exposed points in the unit balls of symmetrically normed ideals.

Henceforth, H will denote a separable, infinite-dimensional Hilbert space; B(H) is

the C∗-algebra of (bounded) operators acting on H; and K(H) denotes the ideal of

compact operators acting on H. If x ∈ B(H), then x has a polar decomposition x =
w|x|, where |x| is the (unique) positive square root ofx∗x and wherew is the (unique)

partial isometry whose initial space is the closure of the range of |x| and whose final

space is the closure of the range of x.

For x ∈ K(H), the singular values of x are the elements sk(x) of the decreasing

sequence {sk(x)}k∈Z+ of nonnegative real numbers sk(x)=
√
λk(x∗x), where

λk
(
x∗x

)=min
{

max
{‖xξ‖2 : ξ ∈ L⊥, ‖ξ‖ = 1

}
: L⊂H, dimL= k−1

}
. (1)

Let ‖ · ‖ denote the operator norm on B(H), namely, ‖x‖ = sup{‖xξ‖ : ξ ∈ H,
‖ξ‖ = 1}. If x ∈K(H), then, by [3, page 29],

s1(x)= ‖x‖;
sn(x)=min

{‖z−x‖ : rankz ≤n−1
}
, for n≥ 2.

(2)

The trace class is the ideal set S1 of B(H), defined by S1 = {x ∈ K(H) :
∑
n sn(x) <

∞}, is an ideal of B(H), and the function ‖·‖1 : S1 →R+0 , given by

‖x‖1 =
∞∑

n=1

sn(x), x ∈ S1, (3)

is a norm on S1 under which S1 is a Banach space.

For every x ∈ S1,
∑
n〈xφn,φn〉, where {φn}n∈Z+ is an orthonormal basis of H is

absolutely convergent. This defines a linear functional on S1 called the trace

tr(x)=
∞∑

n=1

〈
xφn,φn

〉
, x ∈ S1. (4)

It is well known that the definition of the trace is independent of the choice of or-

thonormal basis.

If x ∈ S1, then let �x be the vector in �1 whose nth component is sn(x). It is clear

from the definition of S1 that x ∈ BallS1 if and only if �x ∈ Ball�1.

Proof of Arazy’s theorem. We show that (b)⇒(a)⇒(c)⇒(b).

Thus, assume that x ∈ extBallS1, and consider �x ∈ Ball�1. We aim to show that �x is

an extreme point of Ball�1. Suppose that �x = (1/2)α+(1/2)β, for some α,β∈ Ball�1.
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If x =w|x| is the polar decomposition of x, where |x| has the spectral decomposition

|x|ξ =∑n sn(x)〈ξ,φn〉φn, for ξ ∈H. Let a,b ∈ B(H) be defined so that the action of

a and b on each ξ ∈H is

ν∑

n=1

αn
〈
ξ,φn

〉
wφn,

ν∑

n=1

βn
〈
ξ,φn

〉
wφn, (5)

whereαn and βn denote thenth components of the vectorsα,β∈ �1 and ν ∈ Z+∪{∞}.
Thus, x = (1/2)a+(1/2)b. Because ‖a‖1 ≤ ‖w‖(

∑
n |αn|)≤ 1 and, likewise, ‖b‖1 ≤ 1,

x is an average of two elements (namely, a and b) from the unit ball of S1. Hence,

a= b = x.

The projection w∗w has the range (Span{φn}νn=1)−, and therefore w∗wφn =φn,

for all n. Thus, for all ξ ∈H,

|x|ξ =w∗xξ =w∗aξ =
ν∑

n=1

αn
〈
ξ,φn

〉
φn, (6)

which means that αn = sn(x) for every n. Similarly, βn = sn(x). Hence, α = β = �x,

which proves that �x ∈ extBall�1.

Now let en ∈ �1 be the vector with the real number 1 in position n and zero in all

other positions. Because extBall�1 = {−en,en :n∈ Z+}, x ∈ extBallS1 if and only if x
has exactly one nonzero singular value, namely s1(x), and s1(x)= 1. In other words,

‖x‖2 = tr(x∗x)= rankx = 1, completing the proof that (b)⇒(a).

To prove that (a)⇒(c), let x be a rank-1 operator of norm 1. From the polar decom-

position x =w|x| of x, there are unit vectors φ1,ψ1 ∈ H such that xξ = 〈ξ,φ1〉ψ1,

for every ξ∈H, where wφ1=ψ1 and ww∗ is the projection onto Span{ψ1}.
Set p = |x|. Because x is a rank-1 operator of norm 1, p is a rank-1 projection

whose range is spanned by φ1. Extend the singleton set {φ1} to an orthonormal basis

{φn}n∈Z+ of H. Thus, the trace of every z ∈ S1 is given by tr(z)=∑n〈zφn,φn〉.
Define a linear functional f on S1 by

f(y)= tr
(
pw∗yp

)
, ∀y ∈ S1. (7)

Then f(x)=tr(pw∗w|x|p)=tr(p)= 1, becausep is a rank-1 projection. So, Ref(x)=
f(x)= 1. Moreover, if y ∈ BallS1, then

∣∣f(y)
∣∣= ∣∣〈w∗yφ1,φ1

〉∣∣≤ ∥∥w∗∥∥‖y‖ = s1(y)≤
∞∑

n=1

sn(y)= ‖y‖1 ≤ 1. (8)

Thus, f is a support functional for BallS1.

Assume that {yk}k ⊂ BallS1 and limkRef(yk)= Ref(x)= f(x)= 1, that is,

lim
k

Re
〈
w∗ykφ1,φ1

〉= 1. (9)

Then, by (8), the sequence {yk}k has the property that, for all n≥ 2,

lim
k
s1
(
yk
)= lim

k

∥∥yk
∥∥= lim

∥∥yk
∥∥

1 = 1, lim
k
sn
(
yk
)= 0. (10)
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Furthermore,

∥∥ykφ1−xφ1

∥∥2 = ∥∥ykφ1

∥∥2−2Re
〈
ykφ1,xφ1

〉+∥∥xφ1

∥∥2

= ∥∥ykφ1

∥∥2−2Re
〈
ykφ1,wφ1

〉+∥∥ψ1

∥∥2

≤ ∥∥yk
∥∥2∥∥φ1

∥∥2−2Re
〈
w∗ykφ1,φ1

〉+∥∥ψ1

∥∥2

≤ 2
(
1−Re

〈
w∗ykφ1,φ1

〉)
.

(11)

Thus, by (9),

∥∥ykφ1−xφ1

∥∥ �→ 0. (12)

Because x is a rank-1 operator, the inequalities in [3, page 29] are

sn+1
(
yk
)≤ sn

(
yk−x

)≤ sn−1
(
yk
)
, for n≥ 2. (13)

Hence, for every k,

∥∥yk−x
∥∥

1 = s1
(
yk−x

)+s2
(
yk−x

)+
∞∑

n=3

sn
(
yk−x

)

≤ 2s1
(
yk−x

)+
∞∑

n=2

sn
(
yk
)

= 2
∥∥yk−x

∥∥+∥∥yk
∥∥

1−s1
(
yk
)

≤ 2
∥∥yk−x

∥∥+1−s1
(
yk
)
.

(14)

Therefore, to prove that limkyk = x in S1 it is sufficient, by (10), to prove that

‖yk−x‖→ 0.

The singular value s2(yk) measures the distance in B(H) from yk to the set of

operators whose rank is at most 1. Thus, by (10), there is a sequence {zk} ∈ S1 of

operators such that each zk is zero or rank-1 and ‖yk − zk‖ → 0 as k → ∞. From

‖yk−x‖ ≤ ‖yk−zk‖+‖zk−x‖we see that it is now enough to prove that ‖zk−x‖→ 0.

Because ‖zkφ1 −xφ1‖ ≤ ‖zk −yk‖‖φ1‖ + ‖ykφ1 −xφ1‖, we have that ‖zkφ1 −
xφ1‖ → 0. Hence, there exists N ∈ Z+ such that zkφ1 ≠ 0, for all k ≥ N. In all cases

for which zkφ1 ≠ 0, the vector zkφ1 spans the range of zk and, therefore, there exist

vectors ηk ∈H such that, for every ξ ∈H,

zkξ =
〈
ξ,ηk

〉
zkφ1. (15)

Formula (15) also holds for all k for which zkφ1 = 0 by simply choosing ηk = 0.

If k≥N then zkφ1 = 〈φ1,ηk〉zkφ1; that is,

〈
φ1,ηk

〉= 1, ∀k≥N. (16)

Also,

∣∣∥∥yk
∥∥−∥∥zk

∥∥∣∣≤ ∥∥yk−zk
∥∥,

∥∥zk
∥∥= ∥∥ηk

∥∥∥∥zkφ1

∥∥. (17)
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Therefore, the sequence {‖ηk‖}k is bounded and

lim
k→∞

∥∥ηk
∥∥= lim

k≥N

∥∥zk
∥∥

∥∥zkφ1

∥∥ = 1. (18)

For any ξ ∈H,

∥∥(zk−x
)
ξ
∥∥= ∥∥〈ξ,ηk

〉
zkφ1−

〈
ξ,φ1

〉
xφ1

∥∥

= ∥∥〈ξ,ηk
〉
zkφ1−

〈
ξ,ηk

〉
xφ1+

〈
ξ,ηk

〉
xφ1−

〈
ξ,φ1

〉
xφ1

∥∥

≤ ∣∣〈ξ,ηk
〉∣∣∥∥zkφ1−xφ1

∥∥+∥∥xφ1

∥∥∣∣〈ξ,ηk−φ1
〉∣∣

≤ ‖ξ‖(∥∥ηk
∥∥∥∥zkφ1−xφ1

∥∥+∥∥ηk−φ1

∥∥).

(19)

Therefore, we have ‖zk−x‖ → 0 if we can prove that ‖ηk−φ1‖ → 0. But this is so,

because

∥∥ηk−φ1

∥∥2 = ∥∥ηk
∥∥2−2Re

(〈
ηk,φ1

〉)+∥∥φ1

∥∥2

= ∥∥ηk
∥∥2−2+1= ∥∥ηk

∥∥2−1.
(20)

Thus, from (18) we conclude that ‖ηk−φ1‖→ 0. Hence, (8)⇒(10).

The proof of (c)⇒(b) is a standard argument in convexity theory, which is, therefore,

omitted here.
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