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ASYMPTOTIC HOLDER ABSOLUTE VALUES
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We prove that asymptotic Holder absolute values are Holder equivalent to classical abso-
lute values. As a corollary we obtain a generalization of Ostrowski’s theorem and a classi-
cal theorem by E. Artin. The theorem presented implies a new, more flexible, definition of
classical absolute value.
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1. Introduction. Asymptotic Holder absolute values generalize the notions of clas-
sical absolute value and of Holder absolute value. A Holder absolute value (HAV) sat-
isfies an approximate triangle inequality and multiplicative property. More precisely,
let C; =1 and C> = 1. A (C1,C)-Holder absolute value on a ring R is a mapping
II-1:R — R, satisfying:

(HAV1) for x €R, ||x|| =0 < x =0;

(HAV2) for x,y €R, lIx + x| < C(lxlI+ 1v1D;

(HAV3) for x,y € R, Ci' x|yl < lIxyll < CulixIHy .

It is known that HAV on a ring are Holder equivalent to a classical ones. More
precisely, we have the following theorem (see [2]).

THEOREM 1.1 (Holder rigidity). Let| - ||:R — R be a (Cy,C>)-Hélder absolute value
on a commutative ring R with unit element. There exists an absolute value on R, | - | :
R — R., which is (C{*, ®)-Holder equivalent to || - || with « = log, (2C>), that s, for x € R,

Cr%x % < lIx|l < C{¥lx]®. (1.1)
Moreover, | - | can be defined by
Ix| = lim |[x"]|"". (1.2)
Nn—+oo

For a ring R with unity, a real constant C> > 1, and a function C; (-, -) defined on
11, +00[ XN taking values in [1, +oo[, we define a (Cy,C>)-asymptotic Holder absolute
value (AHAV) on R,

[-]:R— R, (1.3)
satisfying the three following axioms:

(AHAV1) |x| =0 if and only if x = 0;
(AHAV2) for x,y €R, |x+y| <G (|x|+|¥1]);
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(AHAV3) for y > 1 and n > 2 there is a constant C;(y,n) > 1 such that for x,...,
Xn €R,

-1 -1
Gy, x|V o xn]” < xxn] =G | xal” - xal?, (14)

and L = lim,,_.(1/n)logC1 (y,n) < +co.
We prove the following theorem.

THEOREM 1.2. Let R be a commutative ring with unity. Let C> > 1 be a real constant,
o =1/log,(2Cy), and || -1l a (C1,C2)-AHAV on R. We have the following dichotomy:
@ if
— 1
}g{l@;logCl(y,n) =0, (1.5)

then || - |* is a classical absolute value on R;
(i) if
0<L= HllogCl(y,n)<+oo, (1.6)
n—on

then || - ||* is a Holder absolute value on R, more precisely, it is (e*, x)-Holder
equivalent to an absolute value on R.

As a result of Theorem 1.2(i), we can define classical absolute values as AHAV with
C, = 1 having a sequence of constants (C; (y,n)), growing sub-exponentially, that is,

— 1
}llf?oﬁlogcl(y’") =0. (1.7)

This is far more flexible than the classical definition.

Note that, in general, Holder equivalence is a metric property which is stronger than
the usual topological equivalence, for example, {0} U {1/n; n = 1} and {0} U {1/2™;
n = 1} are homeomorphic, but not Holder equivalent.

COROLLARY 1.3. Consider |-|: R — R* satisfying

(AV1) |x|=0ifandonlyifx =0,

(AV2) for x,v € R, |x+y| <|x|+|y]| then,

(AV3) forx,y € R, |xy| = |x||y| is equivalent to:

(AV3') fory >1 andn > 2 there is a constant C,(y,n) > 1 such that for x,,...,x, €
R,

-1 -1
Cly,m) x|V o xn]” < lxaoxa] <Gy, x| xa]” (1.8)

with limy, .. (1/n)log Ci (y,n) = 0.
Our theorem gives a generalization for discrete rings of Artin’s theorem [1].

COROLLARY 1.4. If | -l is a (1,C2)-AHAV over a discrete field F, there exists an
absolute value | - | and an exponent «, such that for all x in F, || x||* = |x|.

Also, our theorem implies a generalization of Ostrowski’s theorem [3] for classical
absolute values (C; = C> =y =1) over Z.
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COROLLARY 1.5. If |- || isa (Cy,C2)-AHAV over Z normalized, so that ||1]| = 1, then
|-l is (el®, x)-Holder equivalent to a p-adic absolute value | - |p orto ||« or to the
trivial absolute value, with « = 1/1og,(2C>).

REMARKS. (1) The constant C;(y,n) in the definition of AHAV can be chosen to
satisfy the inequality

Ci(y,m) < Cy (yl/Hogznl+D) o)1 (1.9)

where [a] denotes the integer part of a.

(2)Let C2 > 1 andlet|-|:R — R, be a (C1,C2)-AHAV on R. If limy_; C (y,2) = C1 <
+oo, then |- | is a (Cy, Cp)-Holder absolute value.

(3) If R is a ring on which a (Cy,(C>)-AHAV | - | is defined, then R is a discrete ring
for the topology defined by | - |.

1.1. Weak subadditive lemma. We prove a generalization of a classical lemma on
subadditive sequences (which might be of independent interest).

DEFINITION 1.6. The real sequence (b,,)men is weakly subadditive if
(i) fory > 1and k > 1, thereis a constant K(y, k) > 0 such that for mq,...,my € N,

k
Dinysooimg ¥ . b, +K(y,k); (1.10)

i=1
(ii) for y > 1, we have K*(y) = limg_o (1/k)K(y, k) < +.

LEMMA 1.7. If (b)) men is weakly subadditive, then
lim — = lim —. (1.11)

PROOF. Fix n > 1. For any m € Z, we consider the Euclidean division

m=nq+v, 0<r<n. (1.12)
Now,
by =bpgir <y(@bn+by) +K(y,g+1). (1.13)
Dividing by m,
b
bm _ bnaer _ ( a_, . b )+( a+1 >K<m+1>_ (1.14)
m nq+r nqg+vr nq+v nq+vr q+1
Taking the upper limit when m — oo,
ﬁb—m sy(b—" +o>+11<*(y). (1.15)
m—co 1M n n
That is, for all g > 1,
mbﬂ syb—"+lK*(y). (1.16)
m—o M n n
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Now, taking the lower limit on the right side when n — oo,

hmb—m <y11mb— (1.17)
m-—oc M n—-oco N

This holds for all y > 1, thus making y — 1,

m 2 < tim 2" m2” - im 2 (1.18)
m—oo M m—oo M m—o M m—oco M

1.2. Proof of Theorem 1.1

LEMMA 1.8. Define ||| - ||l : R — Ry by |llx|I| = [Ix||*. Then, ||| - || is a (C{*,2)-AHAV
onR.

PROOF. (AHAVI1) |||x]|l| = 0 if and only if || x| = 0 if and only if x = 0.

(AHAV2) [lx + >l = [Ix + ¥ < QC)*max(llx|l,[1»[))* < 2(x[|* + | [1%) =
2(HE =+ T 1.

(AHAV3) For all y > 1 and for all n > 2 there is a constant C;(y,n)%* > 1 such that
for all x1,...,x,, in R,

-1 -1
(City,m)) Nl - [enll | (1.19)
< [lPer---2enll] < Crly, ) [Pl [{]enll | O
LEMMA 1.9. Let x € R and define the real sequence (ay)nen by an = |||x"|||. The
sequence (ar™ is converging and
e tlxlll = hm ay™ <et|xlll, (1.20)

where L =lim,_. (1/n)logC; (y,n) < +w.

PROOF. Let b,, = loga,,. The sequence {b,,} is weakly subadditive, since for all
y > 1 and for all k > 1 there is a constant K(y,k) = (C1(y,k))%, such that

k

Dinysooimg <Y . b, +10gK(y,k), (1.21)
i=1
and for all y > 1,
hm —logK(y k) < +oo. (1.22)
k—+o0
Therefore, by Lemma 1.7,
lim bm _ lim bm (1.23)
m—oo M m-—oco m
Thus, to prove the convergence of {ak/™}, we only have to prove that {ak/™} is

bounded.
Let y > 1, for n € N there is C; (y,n)% satisfying

Cr(y, )~ XlIx[I1™Y < |||x"]|] < Ci(y,n)*|lIx]II™. (1.24)
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Taking nth roots,
Cr(y, )M lx MY < ay/™ < Cily, )™ llx NI (1.25)
Since L = lim,, . (1/n)log Ci (y,n) < +co, we obtain

e “Hlx 'Y < lim a/™ < e llx]I]”. (1.26)

This inequality holds for any y > 1. Taking the limit when y — 1,

e x| < af/™ < e lx]ll. (1.27)
O
Now we define that |- | : R — R, by |0] = 0 and that | x| = limy,— ||| x™|/|}/" for x + 0.

LEMMA 1.10. The function |- | : R — R, defined as above is an absolute value on R.
Moreover, iflimy,— .. (1/n)log C; (y,n) =0, then |x| = || x||* for all x € R.

PROOF. From Lemma 1.9, if lim, . (1/n)logC;(y,n) = 0, we obtain
Hx Nl < Ix] < [lIx]l]. (1.28)

That is, |x]| = [|x]|%. H

Itis clear that, |x| = 0if and only if x = 0. Next we check the multiplicative property.
For y > 1 and for n > 2 there exists C;(y,2)% > 1, such that for n € N and x,y in R,

G2 e

(1.29)
< ™[ ™1 =ty P ™ I
Taking nth roots and passing to the limit when n — + o0, we obtain
Xyl s Ixyl < x|yl (1.30)

Taking the limit when y — 1, we have the desired multiplicative property.

Finally, we have to check the triangle inequality. This is a corollary of the following
general proposition that gives an equivalent, apparently weaker, definition of absolute
value.

PROPOSITION 1.11. Let R be a commutative ring with unity. Let | -| :R — R, be a
function satisfying the following three properties:
(A1) |x|=0ifandonlyifx =0;
(A2) (approximate triangle inequality) there exists a real constant B > 0, such that for
allx,y inR, |x+y| <B(|x|+|¥1);
(A3) forx,y inR, |xy|=IxIlyl.
Then, | - | is an absolute value on R, that is, | - | satisfies the triangle inequality.

LEMMA 1.12. Forx,y €R,

Ix+y| <B(Ix|+|yl) < 2Bmax (|x|,| ). (1.31)
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LEMMA 1.13. Let|-|":R — R, such that for x, €R,
Ix+yl"<Mmax (IxI',[»]"), (1.32)

for some positive constant M. Then for x1,Xx2,...,Xn €R,
’

< Mllogznl+1 lm,aX (\Xi|,): (1.33)
<i=n

n
> x
i=1

where [a] denotes the integer part of a.

PROOEF. Let m = [log,n]+ 1 and complete the sequence (x;)1<j<n INtO (X;)1<i<om
adjoining 0 elements.

’

om om-—1 om
dDxi| sMmax| | > xi| .| > x
i=1 i=1 j=pm-141
2m—2 ! mel ! 3_2m—2 ! om ’ (1.34)
<M’max| | > xi|,| > x|, > x|, > X
i=1 i=2m-241 i=2m-141 i=3-2m-24]
<. <M™ max |x;|’. O
l<i<2m
LEMMA 1.14. Let Z be the image of 7 in R. For n € N,
| <2n|1]. (1.35)
PROOF. We use Lemma 1.13 with M = 2 and |-|" = |-|. Take m = [log,n] + 1,
n<2M<2n,and x; =1 for 1 <i < n. We have
n
Inl=| > x;| =2™[1| < 2n|1]. (1.36)
i=1 O
LEMMA 1.15. Let Z be the image of 7 in R. For n € N,
Inl <n. (1.37)
PROOF. Using Lemma 1.14,
|nk| = [#k| < 2n1], (1.38)
and [nk|1/k < 21/kp 1|1/, Taking k — + o0, we have |71| < n. O

PROOF OF PROPOSITION 1.11. Let x, € R and n > 1. Let m = [log, n] + 1. Using
Lemmas 1.12 and 1.14, we have

[(x+2)"| =

> (1)
Z ) xlyTL—l
i=0 t

ny i on-i
(o]

(1.39)

< (B)™ max
O<i<n
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(1)

< (2B)™ max (n) x|yt
O<isn \ 1

Now using Lemma 1.14,

| (x+)"| < (2B)™ max Ix|'y "

(1.40)
n n . .
< (@2B)" Z ( Syt
i—o\!
< 2B)™(Ix|+1y)".
Finally,
Ix+y| = |(x+y)"|1/" < (ZB)(I/n)([logzn]+1)(|x‘+|y|), (1.41)

and passing to the limit n — + oo we get the sharp triangle inequality |x +y| < [x]|+]|¥|.
O

PROOF OF THEOREM 1.2.
CASE 1. Assume lim,_.(1/n)logC;(y,n) = 0. By Lemma 1.8, for all x,y in R we
have

Ix+x|=llx+xIl<2(lxI+1pI) < 4max ([[Ix]], [ v]l]) = 4max (|x],|¥1]).
(1.42)
Therefore, by Proposition 1.11, the function | - | satisfies the triangle inequality.
CASE 2. Assume 0 < L =lim,_...(1/n)logC;(y,n) < +0c0. From Lemma 1.9, for any
x inR,
e x|l = x| < e x|l (1.43)

Therefore,
Ix+x]<ellx+yIl <2e*L(llIxl+IyI) < 2e2*E (x| +]>1). (1.44)

Thus by Proposition 1.11, the function | - | satisfies the triangle inequality, it is an
absolute value, and || - [|* is (el%, x)-equivalent to | - |. O
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