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We discuss the monad associated with the topology of pointwise convergence. We also
study examples of the Eilenberg-Moore algebras for this monad.
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1. Introduction. Let Top denote the category of topological spaces and continuous
functions. Let R denote the real line with the usual topology, and for each topological
space X, let C(X,R) be the set of continuous real-valued functions from X to R. Con-
sider the contravariant hom-functor C, : Top — Top® defined by assigning to each
space X the space of continuous real-valued functions with the topology of point-
wise convergence. We denote this space by C, X. The space C, X has been extensively
studied. A fundamental reference on C, X is Arkhangel’skii [2]. We recall that the sub-
basic open sets of C, X are sets of the form [ f,V], where [x,V]={f e C,X: f(x) e
V, V open in R}.

2. The monad induced by the hom-functor in Top and the associated M-algebras.
We now consider the composite functor C,°Cp : Top — Top® — Top where C,” is the
dual functor. Let M = Cp"C,.If x € X, then the function X : C, X — R defined by X (f) =
f(x) is called the evaluation map at x. The following propositions are important since
they ensure that our morphisms are continuous. The proofs are straightforward and
will be omitted.

PROPOSITION 2.1. (i) Forall x € X, X: C, X — R is continuous.
(ii) Forallg € C,X, g:MC,X — R is continuous.

PROPOSITION 2.2. Let X be any topological space. Then
(i) nx:X — MX, where nx(x) = X is continuous.
(i) px:MMX — MX, where ux(y)[g]l=y(g) is continuous.

We recall from [1] that a monad on a category A is a triplet M = (M, n, u) consisting
of a functor M : A — A and natural transformations n:idy — M and yu: MM — M such
that yoMu = pouM, poMn =id, and ponM =id.

PROPOSITION 2.3. The triplet (M,n,u), where n :idrop, — M and p : MM — M are
defined by nx(x) = X and ux(y)[gl = y(g), respectively, where x € X, g € C, X, is a
monad.
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PROOF. We first check that n :idrep — M and py : MM — M are natural transfor-
mations. Let f : X — Y be a continuous function. We show that M(f)ony = ny o f.
We define ny and M(f) by nx(x) = x and M(f)(y)[g] = y(go f) where g:Y — R
is continuous, y € M(X), and ~ denotes evaluation, for example, X(g) = g(x). Then

M(f) o nx(x) = M(f)(X). Let g € CpX. Then M(f)(X)[g]l = X(g o f) = go f(x) =
gfx) = FIgl. Hence M(f)(R) = F(xX). Now ny o f(x) = ny(f(x)) = F(x).
Let g € CpX. Then f(x) =g(f(x)). Hence M(f) onx = ny o f. We define ux by

ux(y)gl =y(g) where y € MM(X), g € C, X, and g denotes the evaluation function
at g, thatis, g: M(X) — R. We now show that p: MM — M is a natural transformation,
that is, M (f) o py = gy o M?(f).Let h € C, Y. Then

(M(f)opx) ()] = M) (ux (Y)[h] = ux () (ho f) =y (ho f).  (2.1)
On the other hand,

py e M?(f) () [h] = py (M2 (f) (y))[h]

= M2(f)(y)(h)
- (2.2)
=M(M(f))(y)(h)
= y(hoM(f)).
Let A : C,X — R. Then (h o o M(f)(A) = RM(f)(A) = M(f)N)[R] = A(ho f) =

ho f()\) Therefore, h o oM(f)=ho f From the equations

M(f)opx(y)[h] =y(hof),
py o M2(f)(y)[h] = y(hoM(f)), (2.3)
(RoM(f))(A) = ho f(A),

we get M(f) o ux = pHy o M2(f). Therefore u : MM — M is a natural transforma-
tion. We now show that the other monad conditions are satisfied. First, we show
that ux o Mn = id. We prove that pux o Mn = id and pyx o ny = id. Let y € M(X) and
f € CpX. Then VE M(X)A—» R anAd (ux oMn)(y) € M(X). Then (ux o Mn)(y)[f] =
px(Mn(y)Lf1=Mn(y)(f) = y(fen) = y[f]. Therefore px o Mn = id. On the other

hand (ux o ma) (Y)LF] = ux () VL] = i LF1 = $(f) = F(y) = y(f). Therefore
Lx o ny = id. Second, we show that px o py = Ux o Muyx. We prove that py o uy =
Hx o Mpux. Let y € MMM (X). Then ux o Mux(y) € M(X). Let f € CpX. Then (ux o

Mux) (Y)[f] = ux (Mux (y)[f1 = Mux (y)[f1 = y(foux) = y(f). On the other hand,
(ux o) (W LF] = ux(upr (Y] = um(y) (f) = y(f). Therefore px o py = px o Mpux.
Therefore (M,n,u) is a monad. O

If M = (M,n,u) is a monad on A, then (A, h,) is called an Eilenberg-Moore algebra
or simply an M-algebra if the algebra map h, : MA — A satisfies hy ons =id4 and
hyoMha =hyopy.

We now look at examples of the M-algebras of the monad (M, n, u).
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PROPOSITION 2.4. The real line R is an M-algebra.

PROOF. We define hg : MR — R as i[R, that is, the identity map with respect to
R, and show that the M-algebra conditions are satisfied. It is obvious that the map
hg is continuous. Let x € R. Then hg o nr(x) = hg(X) = X(1g) = 1g(x). Therefore
hg o ng = 1g. Now let y € MM(R). Then hg o piz (y) = 1a (ur(y)) = g (y) (1g) = y(1g).
On the other hand, hg o Mhg(y) = 1g(M1g(y)) = 1g(y o Cp(1g)) = y o Cp (1) (1g) =
Y(Cp(1r)(1r)) = y(1g o 1g) = y(1g). Therefore hg o iz = hg o Mhag. 0

PROPOSITION 2.5. For each X € Top, C, X is an M-algebra with hc,x = Cp(Nx).

PROOE. We first define hc,x : MCp X — CpX. Let @ € MC,X. We define hc,x by
hcpx((p) = @onx = Cpnx(@). Then the map hcnx is continuous, since it is the com-
posite of continuous functions @ and nx. We now show that the conditions for an
M-algebra are satisfied. Thus, we must show thatA hcp X° ne,x = idcp «- Let f e CpX.
Then he,x o ne,x(f) = he,x(Ne,x(f)) = Conx(f) = fenx = f = idc,x(f), since
Fonx(x) = F(ny(x)) =X (f) = f(x). Therefore h¢,xonc,x =id, -

We must now show that hc,x o ic,x = he,x °©Mhc,x. Let y € MMCp, X. Then hc,x o
Hepx(y) = he,x(He,x(¥)) = Cpnx(He,x(¥)) = Hc,x(y) o nx. Now let x € X. Then
He,x (¥) onx(x) = pe,x (¥)(X) = y(X). On the other hand, hc,x o Mhe,x(y) = Cpnxo
MCpnx(y) = Cp(Mnxonx)(y) = yoMnxenx.Let x € X. Then Mnyonx(x) = Mnx(X)
=XoCpnx = )% Therefore he,x o Hc,x = he,x o Mhc,x. Hence Cp X is an M-algebra.

O

PROPOSITION 2.6. Retracts of C, X are M-algebras.

PROOF. Let g:C,Y — X be a retraction. Then there is a continuous function f :
X — C,Y such that g o f = idy. The following diagram will help us define the algebra
map hx:MX — X:

C,
X 2 mx M me,y ey

(2.4)

Define

hx=goCpnoMf =goCp(Cpfony). (2.5)

Since hy is the composite of continuous functions, then it is continuous.
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Now,

hxonx(x) =hx(x) =g(C(Cfeony) (X)) =g(XoCfony)

_ (2.6)
=g(f(x)ony) =g(f(x)) =idx(x),
since g is a retraction.
We now show that hyouy =hyoMhy. Let y € MMX. Then
hxoux(y) = hx(ux(y)) =geCp(Cpfony) (ux(y)) 2.7
=9 (Cp(Cpfony)(ux(¥))) =g(ux(y) o Cpfony). '
If k € Cp X, then ~
px(y) (k) =y (k). (2.8)
On the other hand,
hxoMhx =goCp(Cpfony)oM(geCp(Cpfony))
=goCpnyoMfoMgoMCy(Cpfony)
=goCpnyoM(fog)oMCy(Cpfony)
=goCpnyoM(idx)oMCp(Cpfony) (2.9)
=goCynyoMCy (CpforlY)
=g°Cp(M(Cpfony)ony)
=goCp(nc,xoCpfony).
Now,
hxoMhx(y) =g(Cp(nc,x o Cpfony)(y))
(2.10)

=g(yonc,x°Cpfony).

We only need to show that yonc,x = px.Letk € Cp X. Then yonc,x (k) = y(nc,x(k))
= y(l?). From (2.8), we have y onc,x = px and therefore hy o ux = hx o Mhy. Hence
retracts of C, X are M-algebras. O

3. The algebra morphisms and the transfer of ring structure from MX to X for
an M-algebra (X,hy). For an M-algebra (X,hx) the ring structure on MX can be
transferred to X, via hy, in such a way that X becomes a ring with respect to the
induced operations.

DEFINITION 3.1. On an M-algebra (X,hy) define
(i) x1+x2 tobe hx(nx(x1)+nx(x2)),
(i) x1-x2 tobe hx(nx(x1)-nx(x2)).

In addition to the ring structure defined above we also define the scalar multiplica-
tion in the following way: define tx to be hx (tnx(x)), where t is a scalar.
According to Definition 3.1, C, X (being an M-algebra, Proposition 2.5) has now two

“w ,»

concepts of the operations “+” and “-”, the natural one defined pointwise

(hx(x+y) = hx(x)+hx(¥),hx(xy) = hx(X)hx(Y)) (3.1)
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and Definition 3.1. The same applies to M X. We omit the straightforward proof of the
following proposition.

PROPOSITION 3.2. The natural operations on MX defined pointwise coincide with
the corresponding ones defined above.

LEMMA 3.3. The topology on X is initial with respect to nx, that is, X has the weak
topology induced by nx into C,Cp X = MX.

PROOF. Basic neighborhoods of nx(x) have inverse images of nx of the form
m?:lfifl[wi]- u

LEMMA 3.4 [2]. Let ¢ € C,CpX such that @ : (C,,X,hcnx) — (R,hRr) is a linear
functional. Then there are x,...,Xn € X, A1,...,Ay € R such that @ = > | A;X;.

PROPOSITION 3.5. If @ : (CpX,hc,x) — (R,hg) is a nontrivial continuous multi-
plicative linear functional, then there is x € X such that ¢ = X, that is, @ is a point
evaluation.

PROOF. By Lemma 3.4, there are points x1,...,x, € X, and scalars Aq,...,A; € R
such that @ = >, A;X; where A; = @(gi), gi € CpX being such that gi(x;) = 1,
gi(xj) =0fori+j,0=<g;<1.Now(g;) = @(gr)? = Ak. Also @ (gg) = X1 AiXi(g})
= > Aigi (xi) = Ak

Thus Ay = )\i, sothat Ay =0or Ay =1 for k=1,2,...,n. Moreover, Ay = gx(xy) = 0.
Furthermore, @ (1) =1 gives 1 = @ (1) = X.1* 1 A;X;(1) = > A;. Consequently, all A;’s
except one are zero, the exceptional one being one 1. Let x = x;, where A; = 1. Then
A; =0fori=l sothat p = A\;X; = X). O

PROPOSITION 3.6. Let @ : (CpX, hc,,,x) — (R,hR) be an algebra map. Then @ is a
continuous ring homomorphism.

PROOE. Given f,g € C,X, consider nc,x(f) +nc,x(g) in MC, X. We have

hg o C*@(Nc,x (f) +Ncyx(9)) = he e M@ (ne,x (f) +hre M@ (ne,x(9))  (3.2)

by Lemma 3.4.

Hence @ o hx(nc,x(f) +nc,x(g)) = @ o hx(Nc,x(f)) + @ o hx(nc,x(g)), so that
Q(f+9) =p(f)+p(g), since hy preserves the ring structure. Similarly, @ (f-g) =
Q(f)-@p(g).Wealsohave @ (tf) =te(f),t € R. Moreover ¢ (1) = 1, where 1 denotes
the constant function with value equal to 1. ]

PROPOSITION 3.7. Every algebra map @ : (Cp X, hc,x) — (R, hg) is a point evalua-
tion map.

PROOF. By the above proposition, @ is a continuous ring homomorphism, that is,
a continuous multiplicative linear functional. Thus, there is some x € X such that
@ (f) = f(x) for all f in C,X, by the above proposition. O

THEOREM 3.8. The algebra morphisms @ : (CpX,hc,x) — (R,hg) are precisely the
morphisms x, where x € X, that is, the point evaluation map.
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PROOF. Suppose @ = X, for some x € X. Let y € MC, X. Take hy = Cpnc,x and
he = 1g. Then @ o hy(y) = X0 Cpnc,x(y) = R(Cpnc,x(¥)) = yonx(x) = y(R). On the
other hand, hg o M(@)(y) = hg (M(®)(y)) = La(M(@)(y)) = M(®)(y) (1) = y(1go
@) = y(@) = y(X). Therefore, @ o hy = hg o M(p) and thus @ = X is an algebra
morphism. The converse follows from Proposition 3.7. a

PROPOSITION 3.9. The algebra morphisms @ : (C, X, hc,x) — (CpY,hc,y) are the
maps C, (f), where f:Y — X is continuous.

PROOF. Suppose that @ : (C, X, hc,x) — (CpY,h¢,y) is an algebra map. Given y €
Y, yo: (CpX,hc,x) — (R,hg) is an algebra map, since the composition of two
algebra maps is an algebra map. Thus the following diagram is commutative:

M, x % mc,(v) s MR

lhcpx lhcpy lhm{ (3.3)

CpyX CY R
P by

By Theorem 3.8, o @ = X for some x € X. Put x = f(y). Thus f maps Y into
X. Since X has the initial topology induced by nx, f will be continuous if nx o f is
continuous. Now nxo f(y) =X = yo@ = Cp(ny(y)). Thus nyo f = Cp o ny, so
that ny o f is continuous, hence f is continuous, as required. It remains to prove that
@ = Cf. Since the functions ¥ distinguish the points of C, Y, it suffices to prove that
Yo =yoCf forevery y € Y. Now ¥(Cf(g)) = y(gef) =gof(y)=g(f(¥) =
g(x).Also ¥ (@ (g)) =yop(g) =x(g) =g(x).Hence yop =yoCfforall y €Y, so
that @ = Cf.

Conversely suppose the morphism @ : (CpX,thx) - (Cp Y,hcpy) is such that @ =
Cf. Then by Proposition 3.9, @ is an algebra morphism. a

PROPOSITION 3.10. The map hc,x : MC, X — Cp X preserves the ring structure of
the function spaces, operations being defined pointwise.

PROOF. Let @,y € MC,X, so that @, : MX — R. The maps ¢ +y, @ -y, and t@
(where t € R) are both defined pointwise, so that (p+@)(A) = @A) +@(A), - w(A) =
@A) - @A), and (t)(A) = t@(A), for all A € Cp X. Now he,x (@) = Cnx (@) = @ony,
hence hcpx((pﬂp) = (@ +y)onx. Thus

(@+)onx(x) =(@+yP)(nx(x)) = @(nx(x)) + Y (nx(x))

(3.4)
= he,x (@) (x) +he,x (@) (x) = (he,x (@) +he,x (W) (x).
Since this holds for every x € X, we have he,x (@ + @) = he,x (@) +he,x ().
The proof that hc,x (@ - @) = he,x (@) - he,x () is similar. We also have h¢, x (t@)
=thc,x (), where t is a scalar. |

PROPOSITION 3.11. Forany f:Y — X, the map C,f : C,X — C,Y preserves the ring
structure.
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PROOF. Since C,f acts by composition on the right, the result is clear. We will
verify one case only: Cp f(@ + ) = Cp f (@) +Cp f (). Then

Cof (@+) (V) = (@+)(fO)) =@ (fOD)+w(f())

3.5
= G @O+ Cof WD) = (Cof (@) 4 Cof @) (3). )

Since the equality holds for every y € Y, Cp f(@ +¢) = Cp f (@) +Cp f (P). ]

PROBLEM 3.12. Characterize fully the Eilenberg-Moore category of M-algebras.
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