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The aim of this paper is to construct a rotational product scheme in the product of Banach
spaces with rotational schemes. Besides we give an equivalent definition of the gener-
alized Kolmogorov diameters suggested by Aksoy and Nakamura in 1986, and give the
generalized Kolmogorov diameters of the product ([];enyD;) of bounded subsets D; in
the product of Banach spaces having schemes in terms of the generalized diameters of D;.
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1. Introduction. In [3], Pietsch has introduced the concept of an approximation
scheme on Banach spaces. In [1], Aksoy has generalized this notion and used it to
generalize the concept of Kolmogorov diameters in Banach spaces and in [2] in p-
Banach spaces.

In this paper, we suggest a method for constructing a product scheme in the prod-
uct of Banach spaces with schemes. Besides we give an equivalent definition of the
generalized Kolmogorov diameters suggested by Aksoy and Nakamura in [2] and give
the generalized Kolmogorov diameters of the product ([];cy D;) of bounded subsets
D; in the product of Banach spaces having schemes in terms of the generalized diam-
eters of D;.

In terms of the equivalent definition of the generalized Kolmogorov diameters,
we study analogous result for a sequence of generalized Kolmogorov diameters of
bounded linear operators.

2. Notations and definitions. We denote by L(E,X) and %,(E,X) the normed
spaces of bounded and at most n-dimensional linear operators from the normed space
E into the normed space X.

For a sequence {X;};cn of Banach spaces, and for any k € N, we denote by £, (X;)
and #,’;(Xi) the Banach spaces

0 (X)) = [ = (x0)ien 1 X0 € Xe, supilly, < 0],
ieN

(2.1)
05 (X)) = {x = (Xi)jeniXi €Xi, 1<i< k}
equipped with the norms
k 1/p
Il = sup|lxilly,  lIxll= (Z llxi||§i> : (2.2)
ieN i=1

respectively.
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For a natural number n € N, we denote by f8,, a function from the set N of natural
numbers into the set N* = Nu {0} for which >’ B, (i) = n;, it is true that ,,(i) = 0 for
all i € N except a finite number, we write 8, (i) = n;.

By d(x,F) =inf,cr [l x — ¥ | we denote the distance between an element x € X and
a subset F of a Banach space X.

For the families ¢; of subsets of the Banach spaces X;, we denote by [];cy€é; the
product family {J[;cnyAi: A; € €;} in the product space [[;cn Xi.

DEFINITION 2.1 (rotational operators). An operator % from a normed space X into
itself is called a rotational operator if and only if it can be written as % = R1R» - - - Ry
with the following conditions:

(1) infpen IRF=I11=0,i=1,2,...,k,
() IRl =R " =1,i=1,2,...,k,
where I is the identity operator from X into itself.

REMARK 2.2. In [4], Pietsch has introduced the notion of approximation scheme
(satisfying conditions (S;), (S2), and (S3) in Definition 2.3). Here we give a slight modi-
fication of that definition and call it a rotational approximation scheme.

DEFINITION 2.3 (rotational approximation scheme). Let X be a normed space over
a field of scalars K, for each n € N, let Q,, = Q,(X) be a family of subsets of X
satisfying the following conditions:

$1) {0} =Qo(X) cQi(X)C---CQu(X)C---.

S2)If A€ Qn(X) and A € K, then AA € Q,,(X) for every n € N*,

S3)If A€ Qu(X) and B € Q1 (X), then A+ B € Q1 for every n,m € N*.

S4) If A€ Q,(X) and R is a rotational operator, then RA € Q, (X).

Then Q (X) = {Q,(X) }nenx is called a rotational approximation scheme (invariant
under rotation).

EXAMPLE 2.4. In any Banach space X, the scheme %(X) = (%, (X)),en consisting
of all finite-dimensional subspaces %, (X), where

Fn(X)={F<c X:dimF <n}, (2.3)

is a rotational approximation scheme in X.

EXAMPLE 2.5. The class o = {sd, (L(X))},en of all finite-dimensional operators on
a Banach space forms a rotational approximation scheme on the Banach space L(X)
of all bounded linear operators on X, where

An(L(X)) = {T € L(X) :rank T < n}. (2.4)

We only remark that an operator T € #,,(L(X)) is finite dimensional (of finite rank) if
and only if T has as a representation

Tx=> fix)yi; fieX*, yieX. (2.5)
i=1
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EXAMPLE 2.6. The class of all finite subsets T = [1,,(X) ]xen in any Banach space
X forms a rotational approximation scheme, where

Tn(X)={Ac X:cardA <2"}. (2.6)
For A € 7,,(X) and B € 1,,,(X), we note that
card(A+B) < (cardA) (cardB) = 2™, 2.7)

Hence A+ B € Tyim (X).

REMARK 2.7. In [4], Pietsch has given a generalized definition for Kolmogorov di-
ameters as follows.

DEFINITION 2.8. Let X be a Banach space with closed unit ball U ¢ X and equipped
with an approximation scheme Q(X). The nth Kolmogorov diameter 6, (D) of a
bounded subset D of X is defined by

6n(D) =inf{A>0:D c AU + A for some A € Q,(X)}. (2.8)

In fact, in case Q, (X) is the class of all finite-dimensional subspaces %,, (X), relation
(2.8) reduces to Kolmogorov diameters mentioned in [3].

REMARK 2.9. In[1], Aksoy has given a slight modification for Definition 2.8 namely,
the following definition.

DEFINITION 2.10. Let X be a Banach space with closed unitball U ¢ X and equipped
with an approximation scheme Q(X). The nth generalized diameter v, (D) of a
bounded subset D of X is defined by

V(D) =inf{A>0:D CAUx+TUg:TUr C A

2.9
for some Banach space E and some A € Q, (X)}. (2.9)

From now on, we are going to deal with the following notations to simplify our def-
initions and proofs: let X be a Banach space with a rotational approximation scheme
Q = (Qun(X))nen*, and let Ug be the unit ball of some Banach space E. We write

£(Qn(X),E,X) ={T € L(E,X), T(Ug) C A for some A € Q,(X)},
L(Qn(X)) = |J L(Qn(X),E, X), (2.10)

Eeyx

where x is the category of all Banach spaces.

REMARK 2.11. Using these notations we can write the space of all finite-dimensional
operators from E to X as £(%,(X),E,X), and £(%, (X)) as the collection of all finite-
dimensional operators with range in X, that is, £(%, (X),E,X) = %, (X,E).
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Definition 2.10 can be written in terms of the previous notations as follows:
vu(D) =inf{A>0:D cAUx+T(Ug) and T € £(Qn(X))}. (2.11)

In the following lemma, we give an equivalent definition for v, (D) as follows.

LEMMA 2.12. For a bounded subset D of a Banach space X, it is true that

vp(D) = inf  supd(x,TUg). (2.12)
Te£(Qn(X)) xeD

PROOF. Let 0, (D) = infrev (g, x)) SUpyep d(x, TUg). From the definition of v, (D)
and for every € > 0, there exists A > 0 such that

V(D) <A <vy(D)+e (2.13)
with
D C AUx +T(Ug) C (vy(D) +€)Ux + T (Ug). (2.14)

Then every element x € D can be written as

x = (vp(D) +€)uy+vy foruy €Uy, vy € T(Ug). (2.15)
Then
d(x,TUg) = yier%fUE lx =yl <||x=vx|| < vu(D) +€. (2.16)
Therefore,
on(D) = inf supd(x,TUg) < vy (D) +e. (2.17)

Te2(Qn(X)) xeD

From the definition of 0, (D) and for any positive number e > O andany T € £(Q, (X)),
we get

d(x,TUg) <supd(x,TUg) < 0, (D) +€. (2.18)

xeD

Then for x € D there exists an element Tu € TUg such that
on(D) > ||x — Tull. (2.19)
Since every element x € D can be written as x = (x — Tu) + Tu, then
D C (04 (D) +€)U + Tg, (2.20)
SO
vu(D) < on(D) +€. (2.21)

From (2.17) and (2.21), we get the proof. O
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DEFINITION 2.13. For an operator S € L(E,X), the sequence of Kolmogorov num-
bers {C,,(S)}nen is defined by

Cn(S) = v (SUE). (2.22)

2.1. Rotational product scheme. We suggest a construction of a rotational approx-
imation scheme in the product of Banach spaces with rotational schemes, using the
following definition of a base of a rotational approximation scheme.

2.2. Base of a rotational approximation scheme. In the Banach space %!, the
scheme of finite-dimensional subspaces consists only of the two trivial subspaces
{0}, ®. However in %2, the finite-dimensional subspaces are not only the four basic
subspaces {0} x {0}, {0} XR, & x {0}, R xR, but contains also all their rotations, for
example, L = {(x,x) : x € R} is a finite-dimensional subspace; L = I'r/4(% X 0) where

1 1 T LT
ﬁ _ﬁ - COSZ —Slnz (2 23)
11 sin n Cos Ly '
22 4 4
So we conclude from this example that, in general, to construct an approxima-
tion scheme in the product X XY of two Banach spaces with schemes (X,Q (X)) and
(Y,Q(Y)), it is not sufficient to take for Q, (X xXY) the set

Irys =

{AXB:A€Qi(X), BEQun_i(Y), 0<i<mn}. (2.24)

In fact, we will also consider all their rotations. This motivated the following definition.

DEFINITION 2.14. A base Qo (X) = (Q%(X))nen* of a rotational scheme Q(X) is a
subcollection of Q (X) satisfying the following conditions:

(1) Q%(X) € Qn(X) for every n € N*.

(2) For every A € Q,(X), there exist a rotational operator R4 and an element A, €
Q9% (X) such that A = RsA,.

In ®? the approximation scheme of finite-dimensional subspaces F(®?) has a base

Q°(R?) = {{0} x {0}, {0} xR, R x {0}, R X R}. (2.25)

All other subspaces of %2 can be obtained by rotations of subspaces in the base. For
example, L = {(x,x) : x € R} = Ir/4%R.

DEFINITION 2.15 (rotational product scheme). Let (Xj);en be a sequence of Ba-
nach spaces each of them equipped with a rotational approximation schemes Q (X;) =
{Qn(X;) }nenx for every i € N.

Now to construct the product scheme Q(X) in the product space [[X; we first
choose QY (X) as follows:

Q%(X)z{c:c=HAi:AieQni(Xi):Zni<n}. (2.26)

ieN
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We take (Q9% (X))nen to be abasis for arotational scheme namely, Q (X) = (Qy (X)) nen
where

Qu(X) = {B:B=RC, C€Q%(X), ReR(X)} (2.27)

and R(X) is the space of all rotational operators R € L(X).

2.3. Verification of rotational approximation scheme axioms. In fact,

(51) Qo(X) ={B:B=RC, C=[[{0}: {0} € Qo (X))} ={0} cQ:(X) C---.

(S2) Let B € Q,(X) and A € K then B = RC for some C = [[;en Ai, With A; € Qp, (X7),
> n; <n. Since AC € Q% (X), then AB=ARC =R(AC) € Qn(X).

(S3) If A € Qu(X), B € Qn(X), then there exist rotational operators R!, R? € L(X)
and A° = [[A; € Q) (X), B° =[B; € Qf,(X) with A; € Qu,(Xi), X n; <m and B; €
Qm, (Xi), X m; <m such that A = R'A°, B = R?B°. Therefore,

A+B=R'([TA))+R*([]B:). (2.28)
Therefore,
A+B € Quim(X). (2.29)

(S4) If A € Qn(X) then A = RC = R][;enAi and if S is a rotational operator, then
SA=SRC =TC, where T is a rotational operator in L(X), then SA € Q,(X).
We need the following lemma.

LEMMA 2.16. Let {X;}ien be a sequence of Banach spaces, with closed unit balls
{Ui}ien. The unit balls of the Banach spaces ¥ (X;) and {/’f, (Xi) satisfy the following
conditions:

(1) Up,x) = e (Up);

(2) (1/k1/”)€'§,(Ui) C U€§<X1) Cﬁ’;,(Ui)-

The proof follows by simple verifications.

THEOREM 2.17. For the Banach spaces £« (X;) and €% (X;),
(1) LQn(le(Xi))) = Usn;<n [Tien £(Qun, (X));
(2) LQn(. (X)) D (1/kYP) Us p;<n [Tien L(Qn, (X)).

PROOF. From Remark 2.2 and Lemma 2.16 we get

£(Qn (0 (X7))) = { [1Ti: ( [ Ti) (Utegien) € An}

ieN ieN
for some A, € Q, (900 (Xi)ieN)
[1{Ti: Ti € £(Qun, (Xi),Ei, Xi), Ti(Ug,) C An, }

ieN

for some Ay, € Qn, (Xi), Zni <n

U TT#@Qun (x2),

Ynj<nieN
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E(Qn (05 (Xi) {]E[ (ﬁn)(%wi)) CAn);

for some A, € Qn (€% (X;))
1 k
> s [T T € £(Qu (X0) B0 X0), Ti(Ug,) € An}
i=1

for some Ay, € Qu, (Xi), D ni<n

kl/p U TT12(Qu, (X:)). (2.30)
Snij<nieN O
THEOREM 2.18. Let {D;}icn be a sequence of bounded subsets of the Banach spaces
{Xi}ien With D; C X;, then for the bounded subsets £, (D;) and E’; (D;) of the Banach
spaces €« (X;) and €5 (X;),
(1) 00 (e (D})) = infs p, < SUPjepy On, (Di);
(2) infs pyen X4y Oy (D) < 00 (LK (D)) < KNP infs o Shy 0, (D)),

PROOF. (1) For the bounded subset £« (D;);en of the Banach space £« (X;)ien and
by using Lemma 2.16, we get

On (Lo (D)) jeny = inf sup d(x, [ Ti(Ufoo(Ei)ieN))

[TienTi€2(Qn (s (Xi)ien)) xelos (D;) ieN

= inf sup d( ,HTiﬁm(UEi)>

HIENT €L(Qnw (X; iien)) XEBW(D i) ieN

= inf inf sup supd (x;i, T;Ug,) (2.31)
>ni=n T;€£(Qn; (X)) x;{€D; ieN

= inf sup inf sup d(xi, T;Ug,)
Ynj<n ieN T;€4(Qn; (X1)) X;€D;

= inf supoy, (Di)ien-
>ni<n ieN

The proof of (2) is similar to (1). O

COROLLARY 2.19. Let {R;}ien be a sequence of bounded linear operators with R; €
L(E;,X;). For the bounded linear operators (®icnRi) € L(fo(Ei)ien, o (Xi)icn) and
(®%Ri) € L(EX(E), 0% (X)),

(1) T (®ienRi) = Infs p,<n SUPjen Cn, (Ri);

(2) iannisn lezl Eni (Ry) < gn(@?lei) = kl/piannisn le;:l En,' (R;).

PROOEF. (1) Let for every i € N, the subset M; = R;Ug, be the image of the unit ball

of the Banach space E; under the operator R;. Then from Definition 2.13 and by using
Lemma 2.16 and Theorem 2.18, we get

Cn(®ienRi) = on(®ien Ri(Upy (g)cn)) (2.32)

= 0on(®ienRi(Up,k)))

= inf supoy, (RiUg)cn
>ni=n ieN

= inf supQy, (Ri) jen

Yni=n ieN
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Cu(®f Ri) = on( @} Ri(Upk ) (2.33)
S0'n<€Bi:1Ri1€n(UEi))

K
< kP inf ZO’ (RiUg,)

Z"1<n

=kY? inf Z Tn, (R

an<n
(2.34)
Similarly, we can prove that
zl,?ﬁnzg"r ) <Tu(e*  Ry). (2.35D)
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