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1. Introduction. In 1956, Grothendieck [5], introduced the Banach-valued sequence

space �p(E), the space of absolutely p-summable sequences on a Banach space E,

where he discussed tensor products of �p and E, with 1 ≤ p ≤ ∞. Later, in 1969

Pietsch [8] used Banach-valued sequence spaces �p(E), to study p-summing opera-

tors between Banach spaces, also see Diestel et al. [2]. In this paper, we discuss how

local completeness and the strict Mackey convergence condition of E imply local com-

pleteness and the strict Mackey convergence condition in �p(E) in the case 1≤ p <∞.

The case p =∞ was studied in [1].

2. Definitions and notation. Throughout this paper, (E,t) denotes a Hausdorff lo-

cally convex space over K (R or C) and {ρj}j∈J denotes the family of continuous

seminorms associated with the topology t on E.

Let D ⊂ E be a bounded, closed, and absolutely convex set. Denote by ED =∪∞k=1kD,

and for eachx ∈ ED , ρD(x)= inf{r > 0 : x ∈ rD}, the Minkowski seminorm associated

with D. Now ED ⊂ E and the boundedness of D implies that i : (ED,ρD) → (E,t) is

continuous, and ρD is a norm so that, for every j ∈ J there exists rj ∈ R+ such that

ρj|ED ≤ rjρD .

Remark 2.1. For eachD ⊂ E bounded, closed, and absolutely convex, the family of

seminorms {ρj}j∈J can be replaced by an equivalent family {ρ′j}j∈J such that ρ′j ≤ ρD .

To construct the family {ρ′j}j∈J we know that there exists rj > 0 such that ρj(x) ≤
rjρD(x) for every x ∈ ED so it suffices to take ρ′j = (1/rj)ρj if rj > 1, and we will have

ρ′j ≤ ρD , for every j ∈ J. For simplicity we will always work with an equivalent family

of seminorms, also denoted by {ρj}j∈J such that ρj(x)≤ ρD(x) holds for every j ∈ J
and x ∈ ED .

A bounded, closed, and absolutely convex set D ⊂ E, called a disk, is a Banach disk

if (ED,ρD) is a Banach space. If every bounded set A⊂ E is contained in a Banach disk

we say that E is locally complete. Let (E,t) satisfies the strict Mackey convergence

condition if for every bounded set A ⊂ E, there exists a disk D that contains A such

that the topologies of (E,t) and (ED,ρD) agree on A.
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Every metrizable space satisfies the strict Mackey convergence condition, [7]. In

addition, the strict Mackey convergence condition is preserved under the formation

of closed subspaces, countable products, and countable direct sums, [6]. The strict

Mackey convergence condition for webbed spaces is studied in [3, 4].

Remark 2.2. Using the family of seminorms {ρj}j∈J it is easy to see that the strict

Mackey convergence condition is equivalent to: for each D there exists j0 ∈ J such

that ρj0|D = ρD .

Let p be a real number such that 1 ≤ p < ∞. The space �p(E) of absolutely p-

summable sequences on E is

�p(E)=
{(
xn
)⊂ E :

∞∑
n=1

ρpj
(
xn
)
<∞, ∀j ∈ J

}
. (2.1)

The family of seminorms ρρj ((xn)) = (
∑∞
n=1ρ

p
j (xn))1/p , j ∈ J, induce a topology of

locally convex space in �p(E); we will denote by τ this topology.

The space �p(ED) is defined by �p(ED) = {(xn) ⊂ ED :
∑∞
n=1ρ

p
D(xn) < ∞} and en-

dowed with the topology generated by the norm

ρρD
((
xn
))=

[ ∞∑
n=1

ρpD
(
xn
)]1/p

. (2.2)

We denote AD = {(xn)∈ �p(E) : (xn)n∈N ⊂D}.
Note that ρρj |�p(ED) ≤ ρρD for every j ∈ J since ρj|ED ≤ ρD .

3. Bounded sets. In this section, we characterize the bounded sets of �p(E) in terms

of the bounded sets of E.

Lemma 3.1. Let D be a disk in (E,t); then

(i) �p(ED)⊆ {(xn)∈ �p(E) : {xn} ⊂ kD for some k∈N};
(ii) if there exists j0 ∈ J, depending onD, such that ρj0|D = ρD (i.e., the strict Mackey

convergence condition holds), then {(xn) ∈ �p(E) : {xn} ⊂ kD for some k ∈
N} ⊂ �p(ED).

Proof. (i) Let (xn) ∈ �p(ED). Then
∑∞
n=1[ρD(xn)]p <∞ so that given ε = 1 there

existsn0 ∈N, such that for eachn>n0, we have ρD(xn)≤ (
∑∞
n0
ρpD(xn))1/p ≤ 1 which

means that xn ∈D for every n>n0.

Now for i = 1,2, . . . ,n0 there exists ki ≥ 0 such that xi ∈ kiD. We take k =
max{1,k1, . . . ,kn0}. Then {xn} ⊂ kD and we have �p(ED) ⊂ {(xn) ∈ �p(E) : {xn} ⊂
kD for some k∈N}.

(ii) Let (xn) ∈ {(yn) ∈ �p(E) : {yn} ⊂ kD for some k ∈ N}. Thus xn ∈ ED for every

n∈N since {xn} ⊂ kD.

Now observe that
∑∞
n=1ρ

p
D(xn) =

∑∞
n=1ρ

p
j0(xn) < ∞ since (xn) ∈ �p(E). Hence in

this case we have the equality �p(ED) = {(xn) ∈ �p(E) : {xn} ⊂ kD for some k ∈ N}.

Remark 3.2. Note that kAD =AkD for every k∈N.
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Corollary 3.3. If E satisfies the strict Mackey convergence condition, then

�p(E)AD = �p(ED).
Proof. It follows from the equality in the proof of Lemma 3.1(ii) that �p(E)AD ⊂

�p(ED). Now let (xn) ∈ �p(ED). Then by Lemma 3.1(i), (xn) ⊂ kD for some k ∈ N so

{xn} ⊂AkD = kAD and (xn)∈ �p(E)AD .

Remark 3.4. If (E,t) satisfies the strict Mackey convergence condition, then

�p(E)AD = �p
(
ED
)= {(xn)∈ �p(E) :

{
xn
}⊂AkD for some k∈N}. (3.1)

Lemma 3.5. (i) ρAD((xn))= sup{ρD(xn) :n∈N};
(ii) ρAD((xn))≤ ρρD((xn)) for every (xn)∈ �p(ED).

Proof. (i) Let s = sup{ρD(xn) : n ∈ N}. Then {xn} ⊂ sD so {xn} ⊂ AsD = sAD
and then ρAD((xn)) ≤ s. Now take r = ρAD((xn)). Then {xn} ⊂ rAD = ArD and then

{xn} ⊂ rD which means that r ≥ s.
(ii) ρρD((xn)) = (

∑∞
n=1ρ

p
D(xn))1/p ≥ ρD(xn) for every n ∈ N. Using (i) we have

ρρD((xn))≥ ρAD((xn)).
Note that AD is not bounded in �p(E); we need to construct a “smaller” set, in the

sense of boundedness.

Define for each j ∈ J and m ∈N the set AD(j,m) = {(xn)n ∈ AD : ρρj ((xn)) ≤m}
and for each B ⊂ �p(E), let B∗ = {x ∈ E : x ∈ {xn} and (xn)∈ B}.

The next proposition gives a way to look at the bounded sets in �p(E).

Proposition 3.6. If β = {Dλ}λ∈∧ is a fundamental system of bounded disks in

E, then {C = ∩j∈J{ADλ(j,mj)} : λ ∈ Λ, (mj) ∈ NJ} is a fundamental system of τ-

bounded sets in �p(E).

Proof. Let B ⊂ �p(E) be a bounded set. Then B∗ is bounded in E so B∗ ⊂ Dλ for

some λ. For each x ∈ B∗, if x ∈ (xn) then given j ∈ J there is some sj such that

ρj(x) ≤ ρρj ((xn)) ≤ sj so that ρρj (B) ≤ sj . Now let mj ∈N be such that sj ≤mj . We

have B ⊂ C =∩j∈JADλ(j,mj).

Remark 3.7. (i) IfD is bounded in E, then for each j ∈ J, by Remark 2.1 ρj |ED ≤ ρD .

(ii) If C is bounded in �p(E), then for each j ∈ J, by Remark 2.1 ρρj | �p(E)C ≤ ρC .

4. Main results

Proposition 4.1. If for some D there exists j0 ∈ J, such that ρj0 |D = ρD in E, then

ρρj0 |C = ρC where C = ∩j∈JAD(j,mj) in �p(E). Equivalently, if E satisfies the strict

Mackey convergence condition, then �p(E) also satisfies the strict Mackey convergence

condition.

Proof. Let (xn)∈ C . Then s = ρρj0 (xn)= (
∑∞
n=1ρ

p
j0(xn))

1/p = (∑∞
n=1ρ

p
D(xn))1/p ≥

ρD(xn) ≥ ρρj (xn) for every j ∈ J and n ∈ N. So we have (xn) ∈ ∩j∈JAD(j,s) =
s[∩j∈JAD(j,1)]⊂ sC . Thus ρC((xn))≤ s = ρρj0 (xn) and since C is bounded in �p(E)
we have ρρj ≤ ρC for each j ∈ J; now ρρj |C ≤ ρC for every j ∈ J, so for j0 we have

ρρj0 |C = ρC .
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Notice that if B is a bounded set in �p(E), then ρρj (B)≤mj for all j ∈ J withmj ∈N
and then B ⊂∩j∈JAB∗(j,mj).

This gives the property we need to characterize the bounded sets in �p(E).

Theorem 4.2. If E is locally complete and satisfies the strict Mackey convergence

condition, then (�p(E)C,ρC) where C = ∩j∈JAD(j,mj) in �p(E), is a Banach space so

�p(E) is locally complete.

Proof. Let D be a bounded closed disk such that (ED,ρD) is a Banach space and

let C = ∩j∈JAD(j,mj). By Remark 2.1 there is a j0 ∈ J such that ρj0 |D = ρD . We

will show that (�p(E)C,ρC) is a Banach space. By Corollary 3.3 we have �p(E)AD =
�p(ED) and since C ⊂ AD , �p(E)C ⊂ �p(E)AD . Let (xkn)k∈N ⊂ �p(E)C be a ρC -Cauchy

sequence. Thus for every ε > 0 there existsN ∈N such that for everyn,m≥N we have

ρC((xkn)−(xkm)) < ε. Using Remark 3.7(ii) we have that ρρj | �(E)C ≤ ρC . Hence (xkn)
is also a ρρj -Cauchy sequence and then a ρρj0 -Cauchy sequence. Thus ρD(xkn−xkm)=
ρj0(xkn−xkm) ≤ ρρj0 ((xkn)−(xkm)), then the sequence (xkn)k∈N for every n∈N is also

a ρD-Cauchy sequence in (ED,ρD) which is a Banach space, so there exists zk in ED
such that (xkn) converges to zk with respect to the norm ρD . Using Remark 3.7(i) we

have ρj|ED ≤ ρD . Hence, we have the following claims.

Claim 1. We have that (xkn) converges to zk with respect to the seminorm ρj for

every j ∈ J.

Claim 2. Consider the sequence formed by the (zk)k∈N ∈ �p(ED). We compute

∞∑
k=1

(
ρD
(
zk
))p = lim

m→∞

m∑
k=1

(
ρD
(
zk
))p

= lim
m→∞

m∑
k=1

(
ρj0
(
zk
))p

= lim
m→∞

m∑
k=1

ρj0
(

lim
n→∞x

k
n

)p

= lim
m→∞ lim

n→∞

m∑
k=1

ρj0
(
xkn
)p

≤ lim
m→∞ lim

n→∞

∞∑
k=1

ρj0
(
xkn
)p

= lim
n→∞

∞∑
k=1

ρj0
(
xkn
)p

≤ lim
n→∞ρρj0

((
xn
))

≤ ε+ρρj0
((
xN
))
<∞, for some N ∈N.

(4.1)

In this last inequality we used xn = (xkn)k∈N and since it is a ρρj0-Cauchy sequence,

given ε > 0, ρρj0 (x
k
n)− ρρj0 (xkm) ≤ ρρj0 ((x

k
n)− (xkm)) < ε for every n,m > N, so

ρρj0 ((xn))≤ ε+ρρj0 ((xN)). Notice that (xn) is a ρρj-Cauchy sequence for every j ∈ J.
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Therefore for j0 and consequently for ρρD , then for every ε > 0 there is an N ∈N such

that ρD(xkn−zk)= ρD(xkn− limm→∞xkm)= limm→∞ρD(xkn−xkm) < ε.
Claim 3. The sequence (xkn) converges to (zk)k∈N in �p(ED). Since

ρρD
(
xkn−

(
zk
)
k

)
=

 ∞∑
k=1

ρpD
(
xkn−zk

)1/p

≤

 N∑
k=1

ρpD
(
xkn−zk

)+ εp
2




1/p

≤


 ε

p

2N
+···+ εp

2N︸ ︷︷ ︸
N factors

+ ε
p

2




1/p

= ε, for n>N.

(4.2)

In the first inequality we used Claim 2. This completes the proof of the convergence.

Claim 4. We have (zk)k∈N ∈ �p(E)C . (xkn)k∈N is a ρC -Cauchy sequence so it is

bounded and there is an s ∈ N such that (xkn) ⊂ sC . Using Claim 3, (xkn) converges

to (zk) in �p(E)C with respect to ρρD and since ρρj |�p(ED) ≤ ρρD for every j ∈ J the

sequence (xkn) is τ-convergent to (zk), it is convergent for each ρρj . Now for each

ε > 0 there exists Nj such that ρρj ((z
k))≤ ρρj ((zk)−(xkn))+ρρj ((xkn)) < ε+smj for

every j ∈ J and n≥Nj , this means that (zk)∈ sC ⊂ �p(E)C .

Claim 5. The sequence (xkn) converges to (zk)k∈N in �p(E)C . Let ε > 0, since (xkn) is

a ρC -Cauchy sequence, there is N ∈N such that (xkn)−(xkm)∈ εC for every n,m≥N.

C is τ-closed so (xkn)− (τ − lim(xkm)) ∈ εC ; then (xkn)− (zk) ∈ εC for every n ≥ N
which means ρC((xkn)−(zk))≤ ε for every n≥N.

Notice that this is true for every 1 ≤ p <∞. The case p =∞ also follows from this

and we get the characterization given in [1], although under a stronger hypothesis.

Here we need E to satisfy the strict Mackey convergence condition.

Lemma 4.3. If D ⊂ E is t-complete and the net {xλ}Λ is a τ-Cauchy net bounded

with respect to ρC , that is if there exists s ∈ N such that {xλ}Λ ⊂ sC then there exists

z ∈ 2sC such that xλ converges to z with respect to the τ topology in �p(E).

Proof. Let {xλ}Λ be a τ-Cauchy net, xλ = (x1
λ,x

2
λ, . . .), then for every ε > 0 there

exists λj ∈ Λ such that for every j ∈ J, ρj(xkλ −xkλ′) ≤ ρρj (xλ −xλ′) < ε for every

λ,λ′ ≥ λj and k∈N. So {xkλ}Λ ⊂D is t-Cauchy for each k∈N, and since D is complete

there is a zk such that xkλ converges to zk with respect to the topology t for each k∈N.

Let z = {z1,z2, . . .}. Then z ⊂ D, and for each j ∈ J and k ∈ N we have ρj(xkλ−zk) =
ρj(xkλ− (ρj − limλ′ xkλ′)) = limλ′ ρj(xkλ−xkλ′), so raising to the pth power and adding

with respect to k we have

∞∑
k=1

ρj
(
xkλ−zk

)p = lim
n→∞

n∑
k=1

ρj
(
xkλ−zk

)p

= lim
n→∞

n∑
k=1

lim
λ′
ρj
(
xkλ−xkλ′

)p



656 C. BOSCH ET AL.

= lim
n→∞ lim

λ′

n∑
k=1

ρj
(
xkλ−zk

)p

≤ lim
λ′

∞∑
k=1

ρj
(
xkλ−zk

)p
= lim

λ′
ρρj
(
xλ−xλ′

)
< εp,

(4.3)

for every λ≥ λj .
So we have ρρj (xλ−z)p =

∑∞
k=1ρj(x

k
λ−zk)p < εp , for every λ≥ λj . This means that

xλ converges to z with respect to the topology τ . We still need to prove that z ∈ �p(E)

ρρj (z)
p =

∞∑
k=1

ρj
(
zk
)p

=
∞∑
k=1

ρj
(
zk+xkλ−xkλ

)p

≤
∞∑
k=1

2p
[
ρj
(
zk−xkλ

)p+ρj(xkλ)p]

= 2p
∞∑
k=1

ρj
(
zk−xkλ

)p+2p
∞∑
k=1

ρj
(
xkλ
)p

< 2pεp+2pρρj
(
xλ
)p

≤ 2pεp+2pmj

(4.4)

(xλ ∈ C = ∩j∈JAD(j,mj)), then if we let ε → 0 we get ρρj (z) ≤ 2mj , and finally

z ∈ 2C ⊂ �p(E).
Theorem 4.4. If D is t-complete, then �p(E)C is ρC -complete.

Proof. Let (xkn) be a ρC -Cauchy sequence; it is clearly ρC -bounded and τ-Cauchy,

so (xkn)⊂ sC for some s ∈N. Then by Lemma 4.3, there is a z = (zk)∈ 2sC ⊂ �p(E)C
such that the sequence (xkn) converges to z with respect to the topology τ . Note

that AD is τ-closed so AD(j,m) is also τ-closed for every j ∈ J and m ∈ N; then

C =∩j∈JAD(j,mj) is τ-closed. For ε > 0 there isN ∈N such that (xkn)−(xkm)∈ εC for

every n,m≥N, and since C is τ-closed (xkn)−(τ− lim(xkm))∈ εC then (xkn)−(zk)∈
εC for every n≥N. This means that (xkn) converges to (zk) with respect to ρC .

Theorem 4.5. If E is t-complete, then �p(E) is τ-complete.

Proof. The proof of Lemma 4.3 can be repeated here to get the τ-completeness

of �p(E).
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