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We generalize the author’s formula for Gromov-Witten invariants of symplectic toric man-
ifolds (1999) to those needed to compute the quantum product of more than two classes
directly, that is, involving the pullback of the Poincaré dual of the point class in the Deligne-
Mumford spaces �0,m.
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1. Introduction. Let (X,ω) be a symplectic manifold with compatible almost-

complex structure J. If g and m are nonnegative integers, we denote by �g,m the

Deligne-Mumford space of genus-g curves with m marked points. If, furthermore,

A∈H2(X,Z) denotes a degree-2 homology class of X, �g,m(X,A) will be the space of

stable genus-g J-holomorphic maps to X with homology class A. The Gromov-Witten

invariants of X (cf. [2, 9]) are multilinear maps

ΦX,Ag,m :H∗(�g,m,Q
)⊗H∗(X,Q)⊗m �→Q (1.1)

that are defined as follows. Let π : �g,m(X,A)→�g,m be the natural projection map

forgetting the map to X (and stabilizing the curve if necessary). Furthermore, let evi :

�g,m(X,A)→ X be the evaluation map at the ith marked point, that is, the map that

sends a stable map (C ;x1, . . . ,xm;f) to f(xi) ∈ X. Then for classes β ∈H∗(�g,m,Q)
and αi ∈H∗(X,Q), the Gromov-Witten invariants are defined by

ΦX,Ag,m
(
β;α1, . . . ,αm

)= ∫
[�g,m(X,A)]virt

π∗(β)∧ev∗1
(
α1
)∧···∧ev∗m

(
αm

)
. (1.2)

Here the integration on the right-hand side is not over the entire moduli space but

over the so-called virtual fundamental class.

For the case of (X,J) being a smooth projective variety with a (C∗)-action, Graber

and Pandharipande [5] have proven that Bott-style localization techniques apply to

the integral in (1.2). Their techniques can easily be extended to torus actions, so in

particular they apply to smooth projective toric varieties (for toric varieties see, e.g.,

[4, 8]).

In [11] (also see [12]), using these localization techniques for the virtual fundamen-

tal class, we have proven an explicit combinatorial formula of the genus-0 Gromov-

Witten invariants for smooth projective toric varieties for the cases when β = 1 ∈
H0(�0,m,Q). In this paper, we derive a similar formula for the case where the class β
is the maximal product of (the Chern class of) cotangent lines to the marked points,

that is for those classes βwhich are Poincaré dual to a finite number of points in �0,m.
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Knowing the Gromov-Witten invariants for β = P.D.(pt) makes computations of

products in the (small) quantum cohomology ring easier. For two cohomology classes

γ1,γ2 ∈H∗(X,Q), their quantum product is defined to be

γ1�γ2 =
∑

A∈H2(X,Z)

∑
i
ΦX,A0,3

(
γ1,γ2,δi

)
δ∨i q

A, (1.3)

where the inner sum runs over a basis (δi) of H∗(X,Q). Here (δ∨i ) denotes the basis

of H∗(X,Q) dual to (δi). It is easy to show that the product of more than two classes

is given by

γ1�···�γr =
∑

A∈H2(X,Z)

∑
i
ΦX,A0,r+1

(
P.D.(pt);γ1, . . . ,γr ,δi

)
δ∨i q

A, (1.4)

where P.D.(pt) denotes the Poincaré dual of a point in �0,r+1. By Witten’s conjecture

(see [14], proven by Kontsevich in [7]), we know that (a multiple of) the class P.D.(pt)
in H∗(M0,r+1) can be expressed as the product of cotangent line classes, hence the

invariants in (1.4) can be computed directly by the formula proposed in this paper.

The techniques used in this paper also yield the invariants for β being a different

product of Chern classes of such cotangent line bundles. However, it seems to be

much more difficult to formalize such a more general approach. For the sake of a

(hopefully) better exposition of the key ideas, we leave the more general case to the

interested reader.

The structure of the paper is as follows: in Section 2, we recall some results on toric

varieties, mostly to fix our notation. In Section 3, we quickly describe the fixed point

components of �0,m(XΣ,A) with respect to the action induced from XΣ. In Section 4,

we recall the localization results for toric varieties, to apply them in Section 5 to the

case where β = P.D.(pt). In Section 6, we finally give the formula for the Gromov-

Witten invariants for symplectic toric manifolds in this case, and in Section 7, we

illustrate the formula on the example of PP1(�⊕(r−2)⊕�(1)⊕�(1)); as an interesting

byproduct, we derive the quantum cohomology ring of this variety (also using recent

results of [3]), which surprisingly coincides with Batyrev’s ring stated in [1].

2. Preliminaries of toric varieties. We will quickly recall some facts about toric va-

rieties and mostly introduce our notation—our standard references for this section

are [1, 4, 8].

LetXΣ be a smooth projective toric variety of complex dimension d, given by the fan

Σ. Choose a classω in the Kähler cone ofXΣ, and let∆ω be the corresponding moment

polytope. On the variety XΣ, the d-dimensional torus TN := (C∗)d acts effectively, and

the (irreducible) subvarieties of XΣ that are left invariant under this action are in one-

to-one correspondence with the facets of the polytope ∆ω. Moreover, the TN -invariant

divisors (which are in one-to-one correspondence to the (d− 1)-dimensional faces

of ∆ω) generate the cohomology ring H∗(XΣ,Z) of XΣ—we will denote the (d− 1)-
dimensional faces of ∆ω by Z1, . . . ,Zn. We also remind the reader that the relations

between these divisors in the cohomology ring are given by the combinatorics of ∆ω
or equivalently, by that of the fan Σ. For (higher-degree) cohomology classes, we will

sometimes use multi-index notation, that is, Zl expands to Zl11 ···Zlnn .
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We will be using the weights of the torus action on the tangent bundle at fixed

points of XΣ. The vertices of ∆ω are in one-to-one correspondence with these fixed

points, and we will usually denote these vertices by the Greek letter σ . For any vertex

σ , there are exactly d edges e1, . . . ,ed in ∆ω that meet at σ . Each edge of the polytope

∆ω correspondents to TN -invariant CP1 in XΣ. Then the tangent space TσXΣ at σ
splits TN -invariantly into the tangent lines along these subvarieties. If we denote by

σ1, . . . ,σd the vertices that are connected by the edges e1, . . . ,ed to σ , we will denote

by ωσ
σi the weight of the TN -action on TσXΣ into the direction of ei.

When referring to a degree-2 homology class λ∈H2(XΣ,Z), we will usually give its

intersection vector (λi)i=1,...,n with the divisor classes Zi, that is, λi := 〈Zi,λ〉. Note,

however, that the λi have to satisfy certain linear relations to represent a degree-2

homology class. In fact, we have that dimH2(XΣ,Z)= dimH2(XΣ,Z)=n−d.

3. Fixed-point components of the induced action on �0,m(XΣ,A). Remember that

an element of �0,m(XΣ,A) is (up to isomorphisms) a tuple (C ;x1, . . . ,xm;f) where C
is an algebraic curve of genus zero with singularities at most ordinary double points,

xi ∈ Csmooth are marked points, and f : C → XΣ is the map to the variety XΣ. The TN -

action on XΣ then induces an action of TN on �0,m(XΣ,A) by simple composition with

the map f , that is, t ·(C ;x1, . . . ,xm;f)= (C ;x1, . . . ,xm;t◦f), where

t◦f : C
f
������������������������������������������→XΣ ϕt��������������������������������������������→XΣ (3.1)

is the composition of f with the diffeomorphism ϕt given by the action of t on XΣ.

It is then easy to see (cf. [11]) that the image of a fixed point (C ;x;f)∈�0,m(XΣ,A)
must be left invariant by the TN -action, or in other words, it has to live on the 1-

skeleton of ∆ω. Moreover, the marked points xi of such a stable map will have to be

mapped to fixed points σi in XΣ. The fixed-point components of �0,m(XΣ,A) can then

be characterized by the so-called �0,m(XΣ,A)-graphs Γ (see [11, Definition 6.4])—these

are graphs on the 1-skeleton on ∆ω, without loops, with decorations representing the

position of the marked points and the multiplicities of the map toXΣ on the irreducible

components. If Γ is such a graph, we will usually denote by �Γ the product of Deligne-

Mumford spaces corresponding to the graph Γ , which is up to a finite automorphism

group AΓ isomorphic to the fixed-point component in �0,m(XΣ,A) corresponding to Γ .
We recall the following lemma from [13] describing the automorphism group AΓ .

Lemma 3.1. The automorphism group AΓ of the universal curve stack π : �Γ →�Γ

fits into the following exact sequence of groups:

1 �→
∏

e∈Edge(Γ)
Zde �→AΓ �→Aut(Γ) �→ 1, (3.2)

where the group of graph automorphisms Aut(Γ) acts naturally on
∏
eZd(e), AΓ being

the semidirect product. Here d(e) is the multiplicity of the edge e in the graph Γ , and

the action of Zd(e) on �Γ is induced by the usual action of Zd(e) on a map P1 → P1 of

order d(e).
Furthermore, the map

γ
/
AΓ : �Γ

/
AΓ �→�0,m

(
XΣ,A

)
(3.3)
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induced by the obvious map γ : �Γ → �0,m(XΣ,A) is a closed immersion of Deligne-

Mumford stacks, and its image is a component of the TN -fixed point stack of �0,m(XΣ,A).

4. Localization for the genus-0 GW invariants of toric varieties. In the setup de-

scribed in the previous section, Graber and Pandharipande’s virtual localization for-

mula applies: if V is an equivariant vector bundle on the moduli space �0,m(XΣ,A),
then ∫

[�0,m(XΣ,A)]virt
eTN (V)=

∑
Γ

ι∗eTN
(
V |�Γ

)
eTN

(
�virt
Γ

) , (4.1)

where �Γ is the so-called virtual normal bundle to �Γ and eTN denotes the equivariant

Euler class. Since each ev∗i (Zj) is equal to the (standard) Euler class of an equivariant

line bundle over �0,m(XΣ,A), we obtain

ΦXΣ,A0,m
(
Zl1 , . . . ,Zlm

)=∑
Γ

1∣∣AΓ
∣∣
∫

�Γ

∏m
j=1

∏n
k=1

(
ωσ(j)
k

)lj,k
eTN

(
�virt
Γ

) , (4.2)

where ωσ(j)
k is the following weight: suppose that the vertex σ(j), the jth marked

point mapped to in ∆ω, is given by σ(j) = Zi1 ···Zid with il ≠ il′ whenever l ≠ l′. If

k ∉ {i1, . . . , id}, then ωσ(j)
k := 0. Otherwise suppose that (without loss of generality)

id = k and let σ̂ (j) be the unique vertex given by σ̂ (j) = Zi1 ···Zid−1Zid+1 such that

id+1 ≠ il for all l. Then ωσ(j)
k :=ωσ(j)

σ̂(j).

By a careful analysis of the virtual normal bundle (see [11, Theorem 7.2]), we can

compute its equivariant Euler class—before we will give its formula here, we fix some

notation. For an edge e∈ Edge(Γ), define

ΛΓ (e) := (−1)hh2h

(h!)2
(
ωσ
σd

)2h

d−1∏
j=1

∏−1
k=λij+1

(
ωσ
σj −(k/h)·ωσ

σd

)
∏λij
k=0

(
ωσ
σj −(k/h)·ωσ

σd

) . (4.3)

In this formula, we use the following notation: the edge e connects the two fixed points

σ and σd with multiplicity h. The indices ij and îj are chosen pairwise different such

that σ = Zi1 ···Zid and σj = Zi1 ···Zîj ···Zid (Zij is replaced by Zîj ). The homology

class of the edge e is given by λ= (λ1, . . . ,λn), in particular λij = e·Zij .
Furthermore, let Vertt,s(Γ) be the set of vertices v in the graph Γ with t edges and s

marked points. As usual, we will call the pair (v,e) of a vertex v and an edge e at the

vertex v a flag and denote it by F = (v,e). For a vertex v ∈ Vertt,s(Γ), we will denote

the t flags containing v by F1(v), . . . ,Ft(v), and if t = 1 we will usually omit the index.

Moreover, for any flag F = (v,e), we can naturally associate a weight ωF : if the other

vertex of the edge e is v′, and if the images by the moment map of vertices v and v′

are the vertices σ , σ ′ of ∆ω, then ωF :=ωσ
σ ′ . Finally, let val(v) := t, deg(v) := s+ t,

and define the class

ω(v) :=



ωF(v) if t = 1, s = 0,

1 if t = s = 1,(
ωF1(v)+ωF2(v)

)−1
if t = 2, s = 0,((

ωF1(v)−eF1(v)
)···(ωFt(v)−eFt(v)

))−1
if t+s ≥ 3.

(4.4)
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Here the eF are Euler classes of universal cotangent lines to marked points of �Γ =∏
v∈Vert(Γ)�0,deg(v), and the indices (from 1 through t, for val(v) = t) refer to the

different edges leaving the vertex v .

For notational convenience, we also define the weight polynomialsωσ(v)
total andωF(v)

total

as follows (see [13]). Let σ(v) = Zi1 ···Zid and σj = Zi1 ···Zîj ···Zid as above. Then

the two weight polynomials are defined to be

ωσ(v)
total :=

d∏
j=1

ωσ
σj ,

ωF(v)
total := 1

ωF1(v)
+···+ 1

ωFval(v)(v)
.

(4.5)

Note that ωσ(v)
total only depends on the vertex σ(v) ∈ ∆ω, the vertex of ∆ω where v is

mapped to.

Proposition 4.1 (see [11]). With this notation, the inverse of the equivariant Euler

class of the virtual normal bundle has the following expression:

eTN
(
�Γ
)−1 =

∏
t,s

∏
v∈Vertt,s (Γ)

(
ωσ(v)

total

)t−1 ·ω(v)
· ∏

e∈Edge(Γ)
ΛΓ (e). (4.6)

Proposition 4.2 (see [12, 13]). The integral over �Γ of the inverse of the equivari-

ant Euler class of the virtual normal bundle equals

∫
�Γ
eTN

(
�Γ
)−1 =

[∏
t,s

∏
v∈Vertt,s (Γ)

(
ωσ(v)

total

)t−1 ·
(
ωF(v)

total

)t+s−3

∏t
i=1ωFi(v)

] ∏
e∈Edge(Γ)

ΛΓ (e). (4.7)

In particular, we see that if we want to generalize formula (4.2) to nontrivial classes

β∈H∗(�0,m,Q), the localization formula (4.1) tells us that it suffices to compute the

equivariant Euler classes of the restrictions of the equivariant bundles on �0,m(XΣ,A)
representing the class β, combine this class with the equivariant Euler class of the

virtual normal bundle, and integrate over �Γ .

5. Cotangent line bundles and their restrictions to the fixed point components.

In this section, we study how pullbacks of certain classes β ∈ H∗(�0,m) localize to

fixed-point components �Γ .

Let �0,m → �0,m be the universal curve, and let xi : �0,m → �0,m be the marked

point sections (i= 1, . . . ,m). We will denote by Li →�0,m the ith universal cotangent

line, that is, the pullback by xi of the relative cotangent bundle K�0,m/�0,m :

Li := x∗i
(
K�0,m/�0,m

)
. (5.1)
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For simplicity, we restrict ourselves here to maximal sums of the line bundles Li,
that is, to those of which the rank is equal to dim�0,m = m− 3. By Kontsevich’s

theorem [7], we know that in this case∫
�0,m

e
(
L⊕d1

1 ⊕···⊕L⊕dmm

)
= (m−3)!
d1!···dm!

, (5.2)

that is, the Euler class of this bundle is Poincaré dual to (m−3)!/(d1!···dm!) points;

it is exactly this kind of classes β we need in order to compute quantum products of

more than two factors (see (1.4)). Note that the di’s fulfill the equation d1+···+dm =
m−3.

Lemma 5.1. The map π : �0,m(XΣ,A)→�0,m forgetting the map to XΣ is equivari-

ant with respect to the induced TN -action on �0,m(XΣ,A) and the trivial action on �0,m.

Proof. Since the TN -action on �0,m(XΣ,A) is induced from the action on the image

of the curve in XΣ (and which is discarded by the map π ), this is obvious.

Corollary 5.2. The pullback by π of any bundle E on �0,m is an equivariant

bundle on �0,m(XΣ,A) with trivial fiber action.

Remark 5.3. Corollary 5.2 implies, in particular, that the equivariant and the non-

equivariant Euler classes of such pullback bundles coincide; we will therefore use them

interchangeably in these cases.

Lemma 5.4. Let E→�0,m be a vector bundle of a vector bundle of rank rkE =m−3.

If π(�Γ )≠�0,m, then e(π∗E|�Γ )= 0.

Proof. If π(�Γ ) ≠ �0,m, then the codimension of π(�Γ ) ⊂ �0,m is at least one.

Therefore

e
(
π∗E|�Γ

)=π∗e(E|π(�Γ ))=π∗(0)= 0, (5.3)

since rkE > dimπ(�Γ ).

The lemma implies that if e(π∗E|�Γ ) ≠ 0 for a bundle E with rkE = m− 3, the

graph Γ contains only one vertex vΓ that corresponds to a stable component under

the projection π to �0,m. In other words, if we fix vΓ as a root of the graph Γ , all its

branches contain at most one marked point. We will call such graphs Γ simple.

Theorem 5.5. Let Γ be a simple �0,m(XΣ,A)-graph, and let vΓ be the unique stable

vertex of Γ and m̃= deg(vΓ ) its degree. The indices of the marked points x̃1, . . . , x̃m̃ of

�0,m̃ are chosen such that x̃1, . . . , x̃m are mapped by π to the marked points x1, . . . ,xm
in �0,m, respectively. Furthermore, let �i→�0,m̃ be the cotangent lines to the marked

points of �0,m̃. Then

e
(
π∗

(
L⊕d1

1 ⊕···⊕L⊕dmm

)∣∣∣
�Γ

)
e
(

�
⊕dm+1
m+1 ⊕···⊕�

⊕dm̃
m̃

)
= e

(
�
⊕d1
1 ⊕···⊕�⊕dm

m ⊕···⊕�
⊕dm̃
m̃

) (5.4)

whenever d1+···+dm =m−3 and d1+···+dm̃ = m̃−3.
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Proof. First of all notice that π factors through the projection map �Γ →�0,m̃ to

the factor corresponding to the vertex vΓ . Hence it suffices to consider the behaviour

of cotangent line bundles under πm̃,m : �0,m̃ → �0,m, forgetting the last (m̃−m)
points. This map πm̃,m again factors into

πm̃,m : �0,m̃
πm̃�����������������������������������������������������������→�0,m̃−1

πm̃−1�������������������������������������������������������������������������������������������������→ ··· πm+1�������������������������������������������������������������������������������������������������→�0,m. (5.5)

We will prove the statement for the mapπm+1—the theorem then follows by induction

and Kontsevich’s theorem (see (5.2)).

So we want to show that (in the case d1+···+dm =m−3)

e
(
π∗m

(
�
⊕d1
1 ⊕···⊕�⊕dm

m

)
⊕�m+1

)
= e

(
�
⊕d1
1 ⊕···⊕�⊕dm

m ⊕�m+1

)
. (5.6)

It is well known (see, e.g., [6]) that

e
(
�i
)= e(π∗m+1

(
�i
))+Di, (5.7)

where Di � �0,3×�0,m is the divisor in �0,m+1 where the �0,3-bubble contains the

marked points xi and xm+1. Now note that �m+1|Di is constant for any i = 1, . . . ,m,

hence e(�m+1)·Di = 0. This yields (5.6).

6. The formula for the Gromov-Witten invariants. The next corollary summarizes

what we have shown so far.

Corollary 6.1. Let E be the vector bundle E = L⊕d1
1 ⊕···⊕L⊕dmm on �0,m such that

d1+···+dm =m−3. Let β= e(E) be the Euler class of E. Then

ΦXΣ,A0,m
(
β;Zl1 , . . . ,Zlm

)= ∑
Γ simple

1∣∣AΓ
∣∣
∫

�Γ

e
(
π∗E|�Γ

)∏m,n
j,k=1

(
ωσ(j)
k

)lj,k
eTN

(
�virt
Γ

) . (6.1)

We will now compute the integral over the fixed-point components to obtain an

explicit formula for these Gromov-Witten invariants.

Theorem 6.2. Let Γ be a simple �0,m(XΣ,A)-graph, and let vΓ be the unique stable

vertex of Γ . Let r : Vert(Γ)→N be the map defined by

r(v) :=
m−3 if v = vΓ ,

0 otherwise.
(6.2)

As before let di be nonnegative integers such that d1+···+dm =m−3. If E = L⊕d1
1 ⊕

···⊕L⊕dmm , then the following formula holds:∫
�Γ

eTN
(
π∗(E)|�Γ

)
eTN

(
�Γ
) =

(
deg

(
vΓ
)−3

)
!

d1!···dm!
(
deg

(
vΓ
)−m)

!
·

∏
e∈Edge(Γ)

ΛΓ (e)

·
[∏
t,s

∏
v∈Vertt,s (Γ)

(
ωσ(v)

total

)t−1 ·
(
ωF(v)

total

)t+s−r(v)−3

∏t
i=1ωFi(v)

]
.

(6.3)
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Proof. By Kontsevich’s formula (5.2), it suffices to consider d1 =m−3, d2 = ··· =
dm = 0. In this case, by Theorem 5.5, the left-hand side of (6.3) equals

[∫
�Γ
e
(

�⊕m−3
1,vΓ

)
·
∏
t,s

∏
v∈Vertt,s (Γ)

(
ωσ(v)

total

)t−1 ·ω(v)
]
·

∏
e∈Edge(Γ)

ΛΓ (e). (6.4)

We therefore have to prove that

∫
�Γ
e
(

�⊕m−3
1,vΓ

)
·

∏
v∈Vert(Γ)

ω(v)

=
(
deg

(
vΓ
)−3

)
!

(m−3)!
(
deg

(
vΓ
)−m)

!

∏
t,s

∏
v∈Vertt,s (Γ)

(
ωF(v)

total

)t+s−r(v)−3

∏t
i=1ωFi(v)

.

(6.5)

For the case that v ∈ Vertt,s(Γ) is different from vΓ , we have shown in the proof of

Proposition 4.2 (see [13]) that

∫
�0,deg(v)

ω(v)=
(
ωF(v)

total

)t+s−3

∏t
i=1ωFi(v)

. (6.6)

Hence we only have to consider the case when v = vΓ ; since it is very similar to the pre-

vious case, we will only outline its proof. As in [13], let Pn(x1, . . . ,xk)=
∑∑

i d̃i=n
∏
j x

d̃j
j .

Let t := val(vΓ ), m̃ := deg(vΓ ), and r :=m−3. We will also write Fj instead of Fj(vΓ ).
Note that for the vertex vΓ , we always have m̃−r −3≥ 0. Therefore

∫
�0,m̃

ω
(
vΓ
)
e
(

�⊕r
1

)
=
∫

�0,m̃
e
(

�⊕r
1

) t∏
j=1

1
ωFj −eFj

=
∫

�0,m̃
e
(

�⊕r
1

) t∏
j=1

1
ωFj

∞∑
i=0

(
eFj
ωFj

)i

=
t∏
j=1

1
ωFj

∑
∑
d̃i=m̃−r−3

(
m̃−3

)
!

d̃1!··· d̃t !r !

(
1
ωF1

)d̃1

···
(

1
ωFt

)d̃t
(by(5.2))

=
(
m̃−3

)
!

r !
(
m̃−r −3

)
!
·
(
ωF(vΓ )

total

)m̃−r−3

∏t
i=1ωFi(vΓ )

(6.7)

which finishes the proof.

7. Example: the quantum cohomology of PP1(�⊕(r−2)⊕�(1)⊕�(1)). In this sec-

tion, we want to illustrate how useful the extension of the formula to the case where

β= P.D.(pt) really is for the computation of the quantum cohomology ring of a toric

manifold.
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In [10], Siebert and Tian have shown that if the ordinary cohomolgy ring of a sym-

plectic manifold X is given by

H∗(X,Q)=Q[Z1, . . . ,Zk
]
/
〈
R1, . . . ,Rl

〉
, (7.1)

where R1, . . . ,Rl are relations, then the quantum ring is given by

QH∗(X,Q)=Q[Z1, . . . ,Zk
]
/
〈
R∗1 , . . . ,R

∗
l
〉
, (7.2)

where R∗i are the relations Ri, but evaluated with respect to the quantum product

instead of the cup product.

Consider the toric manifolds of the form PP1(�⊕(r−2)⊕�(1)⊕�(1)). In [3], Costa and

Miró-Roig have studied the three-point Gromov-Witten invariants of these manifolds

and announced that they will derive the quantum cohomology ring of these manifolds

in an upcoming paper. We have chosen the same example to illustrate how the formula

derived in this note can make computations much easier.

We will recall some properties of PP1(�⊕(r−2)⊕�(1)⊕�(1)), where r is an integer

greater than or equal to three (for more details see [3]). Its cohomology ring is given

by

H∗(XΣ,Q)=Q[Z1, . . . ,Zr+2
]
/
〈
L1,L3, . . . ,Lr+1,P1,P2

〉
, (7.3)

where the relations are given by L1 = Z1−Z2, L3 = Z3−Zr+2, . . . ,Lr−1 = Zr−1−Zr+2,

Lr = Z2+Zr −Zr+2, Lr+1 = Z2+Zr+1−Zr+2, P1 = Z1Z2, P2 = Z3 ···Zr+2.

To see this, consider the fan whose one-dimensional cones are (with respect to some

basis e1, . . . ,er in the lattice Zr ) v1 = e1, v2 =−e1+er−1+er , v3 = e2, . . . ,vr+1 = er and

vr+2 =−e2−···−er , and whose set of primitive collections is given by

P= {{
v1,v2

}
,
{
v3, . . . ,vr+2

}}
. (7.4)

In [3, Proposition 3.6], Costa and Miró-Roig obtain (in what follows, we will freely use

their notation)

Z1�Z1 =
(
Zr+2�Zr+2−2Z1�Zr+2

)∑
i≥1

qi1. (7.5)

Hence, we will only have to compute the quantum product Z3� ···�Zr+2 to get a

presentation of the quantum cohomology ring. To do so, we will have to compute the

Gromov-Witten invariants of the form

Φaλ1+bλ2
0,r+1

(
P.D.(pt);Z3, . . . ,Zr+2,γ

)
. (7.6)

In formula (7.6), the two homology classes λ1 and λ2 are given by the intersection

vectors

λ1 = (1,1,0, . . . ,0,−1,−1,0), λ2 = (0,0,1, . . . ,1). (7.7)

Lemma 7.1. If b ≠ 1, then all invariants of the form (7.6) are zero.
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Proof. Suppose that for given a, b, and γ, the invariant (7.6) is nonzero. Since

〈c1(XΣ),aλ1 +bλ2〉 = 2rb, we must have 2r + degγ = 2rb+ 2r . However, the real

dimension of XΣ is equal to 2r , hence 0≤ degγ ≤ 2r , and therefore b ≤ 1.

Now suppose b is zero and therefore degγ = 0 as well, that is γ is a multiple of the

trivial class 1∈H0(XΣ). If a= 0 as well, then the invariant is zero since it just equals

the cup product of the cohomology classes Z3, . . . ,Zr+2. So suppose a> 1. Then

Φaλ1
0,r+1

(
P.D.(pt);Z3, . . . ,Zr+2,1

)
= Φaλ1

0,r
(
P.D.(pt);Z3, . . . ,Zr−1,Zr+2,Zr ,Zr+1

)
=

∑
a1+···+ar−2=a

j1,...,jr−3

Φa1λ1
0,3

(
Z3,Zr+1,γj1

)
Φa2λ1

0,3
(
Z4,γ∨j1 ,γj2

)···Φar−2
0,3

(
Zr+2,Zr ,γ∨jr−3

)
,

(7.8)

where the γji run over a basis of H∗(XΣ,Z). Since a > 0, at least one of ai has to be

positive. On the other hand, we have

〈
Z3,λ1

〉= ··· = 〈
Zr−1,λ1

〉= 〈
Zr+2,λ1

〉= 0. (7.9)

So, as soon as ai > 0, the corresponding three-point invariant in the sum above is

zero. This proves the lemma.

Lemma 7.2. If a> 0, then all invariants of the form (7.6) are zero.

Proof. Suppose that for given a, b and γ, the invariant (7.6) is nonzero. Then, by

the previous lemma, b = 1. Hence we have to consider homology classes aλ1+λ2, and

γ being a multiple of the class of top degree, say Z1Z3 ···ZrZr+2.

The vertices of the moment polytope of XΣ are σi,j := Zi ·Z3 ··· Ẑj ···Zr+2 where

i ∈ {1,2} and j ∈ {3, . . . ,r +2}. As usual, the hat on top of Zj signals its omission.

Hence, the 1-skeleton of the moment polytope of XΣ has the following edges:

(1) for 3≤ t < s ≤ r +2, edges between σ1,t and σ1,s , and between σ2,t and σ2,s , all

having homology class λ2;

(2) for 3 ≤ t ≤ r −1 or t = r +2, an edge between σ1,t and σ2,t of homology class

λ1;

(3) for t = r ,r +1, an edge between σ1,t and σ2,t of homology class λ1+λ2.

The readers will now easily convince themselves that there is no simple graph Γ in

this class such that Z3, . . . ,Zr−1, Zr+1, Zr+1, Zr+2 and Z1Z3 ···Zr ,Zr+2 all have nonzero

equivariant Euler class on �Γ , unless a= 0. Finally note that Zr = Zr+1 as cohomology

classes, which finishes the proof.

Lemma 7.3. The following equation holds: Φλ2
0,r+1(P.D.(pt);Z3, . . . ,Zr−1,Zr+1,Zr+1,

Zr+2,Z1Z3 ···ZrZr+2)= 1.

Proof. The only simple graph Γ such that Z3, . . . ,Zr−1, Zr+1, Zr+1, Zr+2 and

Z1Z3 ···ZrZr+2 all have nonzero equivariant Euler class on Γ is the one with one

edge between σ1,r+1 and σ1,r where all but the last marked point are at σ1,r . Applying

the formula derived in this note yields the following for the Gromov-Witten invariant
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Φ := Φλ2
0,r+1(P.D.(pt);Z3, . . . ,Zr−1,Zr+1,Zr+1,Zr+2,Z1Z3 ···ZrZr+2):

Φ =−
ωσ1,r+1
σ2,r+1ω

σ1,r+1
σ1,3 ···ωσ1,r+1

σ1,r ωσ1,r+1
σ1,r+2ω

σ1,r
σ1,3 ···ω

σ1,r
σ1,r−1

(
ωσ1,r
σ1,r+1

)2
ωσ1,r
σ1,r+2

ωσ1,r
σ1,r+1

(
ωσ1,r
σ1,r+1

)2
ωσ1,r
σ1,r+2

(
ωσ1,r
σ1,r+2−ω

σ1,r
σ1,r

)
ωσ1,r+1
σ1,r+2

· 1

ωσ1,r
σ1,3

(
ωσ1,r
σ1,3 −ω

σ1,r
σ1,r+1

)
···ωσ1,r

σ1,r−1

(
ωσ1,r
σ1,r−1−ω

σ1,r
σ1,r+1

)
= ωσ1,r+1

σ1,3 ···ωσ1,r+1
σ1,r−1ω

σ1,r+1
σ1,r+2(

ωσ1,r
σ1,3 −ω

σ1,r
σ1,r+1

)
···

(
ωσ1,r
σ1,r−1−ω

σ1,r
σ1,r+1

)(
ωσ1,r
σ1,r+2−ω

σ1,r
σ1,r+1

)
= 1,

(7.10)

where we have used ωσ1,r+1
σ1,i = ωσ1,r

σ1,i −ω
σ1,r
σ1,r+1 for i = 3, . . . ,r − 1,r + 2 by a similar

argument as in [3, Lemma 2.1], that is by applying [11, Lemma 6.7].

Corollary 7.4. The quantum cohomology ring of XΣ = PP1(�⊕(r−2)⊕�(1)⊕�(1))
(for r ≥ 3) is given by

QH∗(XΣ,Z)= Z[Z1, . . . ,Zr+2,q1,q2
]
/
〈
L1,L3, . . . ,Lr−1,R∗1 ,R

∗
2

〉
, (7.11)

where the relations R�1 and R�2 are given by

R�1 = Z1�Z2−Zr �Zr+1q1,

R�2 = Z3�···�Zr+2−q2,
(7.12)

that is, this quantum ring coincides with Batyrev’s ring in [1].

Proof. The relation Z3� ···�Zr+2 = q2 follows directly from the previous three

lemmas. Now consider the other multiplicative relation

Z1�Z2 = Z1�Z1 since Z1 = Z2

=
∑
i≥1

(
Zr+2�Zr+2−2Z1�Zr+2

)
qi1 by (7.5)

= (
Zr �Zr+1−Z1�Z2

)∑
i≥1

qi1 by the linear relations.

(7.13)

Hence we obtain

Z1�Z2

∑
i≥0

qi1 = Zr �Zr+1

∑
i≥1

qi1, (7.14)

and by comparing the coefficients of the qi1, the relation follows.

Remark 7.5. Note that although we derive the same presentation for the quantum

cohomology ring as the one stated by Batyrev in [1], the Gromov-Witten invariants

that enter as structure constants into the computation of the quantum products are

different from those numbers considered by Batyrev.
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