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We generalize the author’s formula for Gromov-Witten invariants of symplectic toric man-
ifolds (1999) to those needed to compute the quantum product of more than two classes
directly, that is, involving the pullback of the Poincaré dual of the point class in the Deligne-
Mumford spaces Mo, -
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1. Introduction. Let (X,w) be a symplectic manifold with compatible almost-
complex structure J. If g and m are nonnegative integers, we denote by Jly, the
Deligne-Mumford space of genus-g curves with m marked points. If, furthermore,
A € H>(X,Z) denotes a degree-2 homology class of X, Jlg (X, A) will be the space of
stable genus-g J-holomorphic maps to X with homology class A. The Gromov-Witten
invariants of X (cf. [2, 9]) are multilinear maps

X H* (Mgm, Q) ® H* (X,Q)°™ — Q (1.1)

that are defined as follows. Let 17 : g m (X, A) — Mg_m be the natural projection map
forgetting the map to X (and stabilizing the curve if necessary). Furthermore, let ev; :
Mgm(X,A) - X be the evaluation map at the ith marked point, that is, the map that
sends a stable map (C;x1,...,Xm; f) to f(x;) € X. Then for classes B € H* (Mg,m, Q)
and «; € H*(X,Q), the Gromov-Witten invariants are defined by

<I>§;;‘1([>’;0(1,...,0(m):J (B Aevi (1) A Aevi (o). 1.2)
[Mg,m (X,A) Vit

Here the integration on the right-hand side is not over the entire moduli space but
over the so-called virtual fundamental class.

For the case of (X, J) being a smooth projective variety with a (C*)-action, Graber
and Pandharipande [5] have proven that Bott-style localization techniques apply to
the integral in (1.2). Their techniques can easily be extended to torus actions, so in
particular they apply to smooth projective toric varieties (for toric varieties see, e.g.,
(4, 8]).

In [11] (also see [12]), using these localization techniques for the virtual fundamen-
tal class, we have proven an explicit combinatorial formula of the genus-0 Gromov-
Witten invariants for smooth projective toric varieties for the cases when B =1 €
HO (Mo, Q). In this paper, we derive a similar formula for the case where the class
is the maximal product of (the Chern class of) cotangent lines to the marked points,
that is for those classes 8 which are Poincaré dual to a finite number of points in g .
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Knowing the Gromov-Witten invariants for f = P.D.(pt) makes computations of
products in the (small) quantum cohomology ring easier. For two cohomology classes
Y1,Y2 € H*(X,Q), their quantum product is defined to be

Yixy:= > Z‘I’g,'sA(Yl,Yzﬁi)(Siqu, (1.3)
AcH (X,7) 1

where the inner sum runs over a basis (§;) of H*(X,Q). Here (5;) denotes the basis
of H*(X,Q) dual to (6;). It is easy to show that the product of more than two classes
is given by

Yixoooxyr= > >0 (P.D.PO; Y1, ¥, 61) ) at, (1.4)
AeH»(X,Z) i

where P.D.(pt) denotes the Poincaré dual of a point in MO,M—I- By Witten's conjecture
(see [14], proven by Kontsevich in [7]), we know that (a multiple of) the class P.D.(pt)
in H*(Mo,+1) can be expressed as the product of cotangent line classes, hence the
invariants in (1.4) can be computed directly by the formula proposed in this paper.

The techniques used in this paper also yield the invariants for S being a different
product of Chern classes of such cotangent line bundles. However, it seems to be
much more difficult to formalize such a more general approach. For the sake of a
(hopefully) better exposition of the key ideas, we leave the more general case to the
interested reader.

The structure of the paper is as follows: in Section 2, we recall some results on toric
varieties, mostly to fix our notation. In Section 3, we quickly describe the fixed point
components of Mo, (Xs,A) with respect to the action induced from Xs. In Section 4,
we recall the localization results for toric varieties, to apply them in Section 5 to the
case where S = P.D.(pt). In Section 6, we finally give the formula for the Gromov-
Witten invariants for symplectic toric manifolds in this case, and in Section 7, we
illustrate the formula on the example of Pp1 (0°"~2) @ 0(1) ®0(1)); as an interesting
byproduct, we derive the quantum cohomology ring of this variety (also using recent
results of [3]), which surprisingly coincides with Batyrev’s ring stated in [1].

2. Preliminaries of toric varieties. We will quickly recall some facts about toric va-
rieties and mostly introduce our notation—our standard references for this section
are [1, 4, 8].

Let Xs be a smooth projective toric variety of complex dimension d, given by the fan
3. Choose a class w in the Kahler cone of Xx, and let A, be the corresponding moment
polytope. On the variety Xs, the d-dimensional torus Ty := (C*)4 acts effectively, and
the (irreducible) subvarieties of Xs that are left invariant under this action are in one-
to-one correspondence with the facets of the polytope A,. Moreover, the Ty-invariant
divisors (which are in one-to-one correspondence to the (d — 1)-dimensional faces
of A,) generate the cohomology ring H* (Xs,Z) of Xs—we will denote the (d —1)-
dimensional faces of A, by Z1,...,Z,. We also remind the reader that the relations
between these divisors in the cohomology ring are given by the combinatorics of A,
or equivalently, by that of the fan 3. For (higher-degree) cohomology classes, we will
sometimes use multi-index notation, that is, Z! expands to Zfl .- -Zi{‘.



MULTIPLE QUANTUM PRODUCTS IN TORIC VARIETIES 677

We will be using the weights of the torus action on the tangent bundle at fixed
points of Xs. The vertices of A, are in one-to-one correspondence with these fixed
points, and we will usually denote these vertices by the Greek letter o. For any vertex
o, there are exactly d edges e1,...,e; in A, that meet at o. Each edge of the polytope
Ay correspondents to Ty-invariant CP! in Xs. Then the tangent space T,Xs at o
splits Ty-invariantly into the tangent lines along these subvarieties. If we denote by
oi,...,04 the vertices that are connected by the edges ey,...,es to o, we will denote
by wg, the weight of the Ty-action on T, X5 into the direction of e;.

When referring to a degree-2 homology class A € H»(Xs,Z), we will usually give its
intersection vector (A;);-1,.» with the divisor classes Z;, that is, A; := (Z;,A). Note,
however, that the A; have to satisfy certain linear relations to represent a degree-2
homology class. In fact, we have that dimH» (Xs,Z) = dimH?(Xs,Z) = n—d.

3. Fixed-point components of the induced action on Jl ,, (X5, A). Remember that
an element of Mo, (Xx,A) is (up to isomorphisms) a tuple (C;xy,...,Xm;.f) where C
is an algebraic curve of genus zero with singularities at most ordinary double points,
Xi € Csmooth are marked points, and f : C — X5 is the map to the variety Xs. The Ty-
action on Xy then induces an action of Ty on Jlg , (Xs, A) by simple composition with
the map f, thatis, t- (C;x1,...,Xm;.f) = (C;X1,...,Xm;t o f), where

tof:C-L xs 2L Xy 3.1)

is the composition of f with the diffeomorphism @, given by the action of t on Xs.
It is then easy to see (cf. [11]) that the image of a fixed point (C;x; f) € Mom (X5, A)
must be left invariant by the Ty-action, or in other words, it has to live on the 1-
skeleton of A,. Moreover, the marked points x; of such a stable map will have to be
mapped to fixed points ¢; in Xs. The fixed-point components of (il (X5, A) can then
be characterized by the so-called /M, (Xs, A)-graphs T (see [11, Definition 6.4])—these
are graphs on the 1-skeleton on A, without loops, with decorations representing the
position of the marked points and the multiplicities of the map to Xs on the irreducible
components. If T is such a graph, we will usually denote by i the product of Deligne-
Mumford spaces corresponding to the graph I', which is up to a finite automorphism
group Ar isomorphic to the fixed-point component in ity (Xs,A) corresponding to T
We recall the following lemma from [13] describing the automorphism group Ar.

LEMMA 3.1. The automorphism group Ar of the universal curve stack 1 : 6y — My
fits into the following exact sequence of groups:

1— [] Za — Ar— Aut@) — 1, (3.2)
ecEdge(T)
where the group of graph automorphisms Aut(I') acts naturally on [[,Z4), Ar being
the semidirect product. Here d(e) is the multiplicity of the edge e in the graph T, and
the action of Z4) on My is induced by the usual action of Za, on a map P! — P! of
order d(e).
Furthermore, the map

)//AI‘Z./‘/LI‘/AF —n/'/toym(Xz,A) (33)
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induced by the obvious map y : Mr — Mom(Xs,A) is a closed immersion of Deligne-
Mumford stacks, and its image is a component of the Ty -fixed point stack of Mo m (Xs, A).

4. Localization for the genus-0 GW invariants of toric varieties. In the setup de-
scribed in the previous section, Graber and Pandharipande’s virtual localization for-
mula applies: if V is an equivariant vector bundle on the moduli space o m (Xs,A),
then

J ey =Y te™ (Vlr) @.1)
[t m (X, A) ¥t T et ()

where N7 is the so-called virtual normal bundle to .t and e~ denotes the equivariant
Euler class. Since each ev (Z;) is equal to the (standard) Euler class of an equivariant
line bundle over iy, (Xs,A), we obtain

m n a(j) gk
151 Tk (wk )
eTn (N}’irt)

1
dX=A(zl L 7im) = J 4.2
o,m ( ’ ’ ) % |AF| . ’ ( )

where wg(j ) is the following weight: suppose that the vertex o (j), the jth marked
point mapped to in Ay, is given by o (j) = Z;, - - - Z;, with i; # iy whenever | # ['. If
k ¢ {i1,...,iq}, then wg(‘i) := 0. Otherwise suppose that (without loss of generality)
ig = k and let 6(j) be the unique vertex given by 6 (j) = Z;, - -+ Zi,_, Zi,,, such that
igs1 # i for all L. Then w{ " := wgg;

By a careful analysis of the virtual normal bundle (see [11, Theorem 7.2]), we can
compute its equivariant Euler class—before we will give its formula here, we fix some

notation. For an edge e € Edge(I'), define

Cpyrpzn 4TI o (@8~ R/ - g, )

Ar(e) := (4.3)

(2 (w8,)™" 51 T (w8, - k/h) - w8, )

In this formula, we use the following notation: the edge e connects the two fixed points
o and o, with multiplicity h. The indices i; and i j are chosen pairwise different such
thato =Z2; ---Z;j; and 0 = Z;; - - -Z{j AN (Zij is replaced by Z{J_). The homology
class of the edge e is given by A = (Ay,...,A,), in particular Aij =e- Zij.

Furthermore, let Vert; ;(I') be the set of vertices v in the graph I' with ¢ edges and s
marked points. As usual, we will call the pair (v,e) of a vertex v and an edge e at the
vertex v a flag and denote it by F = (v, e). For a vertex v € Vert; ;(I'), we will denote
the t flags containing v by F (v),...,F:(v), and if t = 1 we will usually omit the index.
Moreover, for any flag F = (v, e), we can naturally associate a weight wp: if the other
vertex of the edge e is v’, and if the images by the moment map of vertices v and v’
are the vertices o, o’ of Ay, then wr := w.. Finally, let val(v) :=t, deg(v) 1= s +1t,
and define the class

WF(v) ift=1, s=0,
1 ift=s5=1,

w(v) = 1 . (4.4)
(WF (v) + WF W) ift=2,5=0,

-1 .
((Wr ) —er ) -+ (WE ) —er ) ift+s=3.
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Here the e are Euler classes of universal cotangent lines to marked points of iy =
[Ty evertr) Mo,deg(v), and the indices (from 1 through t, for val(v) = t) refer to the
different edges leaving the vertex v.

For notational convenience, we also define the weight polynomials w;{,(t’;f and wfo(f;{
as follows (see [13]). Let 0 (v) = Z;, - - - Z;, and 0 = Z;, - - -Z{j ---Z;, as above. Then
the two weight polynomials are defined to be

d
o) ._
Wiotal *= 1_[ ngl
Jj=1 (4.5)

Fy._ 1 1
Wiotal == RE

wF] (v) vaal(y)('U)

Note that wg,?;f only depends on the vertex o (v) € A, the vertex of A, where v is
mapped to.

PROPOSITION 4.1 (see [11]). With this notation, the inverse of the equivariant Euler
class of the virtual normal bundle has the following expression:

v =TT 1T (i) ow | TTwe. ao

t,s veVert s (T) ecEdge(I)

PROPOSITION 4.2 (see [12, 13]). The integral over My of the inverse of the equivari-
ant Euler class of the virtual normal bundle equals

o) t-1 ] F(v) t+s-3
JMF eTN (Nr)—l _ [l_[ 1—[ (wtotal ) (wtotal) 1—[ Ar(e). 4.7)

i w
t,s veVert s (I) i=1 WF;(v) ecEdge(T)

In particular, we see that if we want to generalize formula (4.2) to nontrivial classes
BeH* (Mo,m, Q), the localization formula (4.1) tells us that it suffices to compute the
equivariant Euler classes of the restrictions of the equivariant bundles on g (Xs, A)
representing the class 8, combine this class with the equivariant Euler class of the
virtual normal bundle, and integrate over ..

5. Cotangent line bundles and their restrictions to the fixed point components.
In this section, we study how pullbacks of certain classes 8 € H* (Mlo,,) localize to
fixed-point components Jlr.

Let @om — Mo, be the universal curve, and let x; : Mom — Gom be the marked
point sections (i = 1,...,m). We will denote by [.; — Mo,m the ith universal cotangent
line, that is, the pullback by x; of the relative cotangent bundle K%,m [Tom"

[Li:=xl?“ (qu,m/ﬁo,m)' (5.1)
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For simplicity, we restrict ourselves here to maximal sums of the line bundles L;,
that is, to those of which the rank is equal to dimﬁo,m = m — 3. By Kontsevich’s
theorem [7], we know that in this case

odi g, ., &dm _M
J%me([Ll @@L )_dll---dm!' (5.2)

that is, the Euler class of this bundle is Poincaré dual to (m —3)!/(d;!- - - d,!) points;
it is exactly this kind of classes 8 we need in order to compute quantum products of
more than two factors (see (1.4)). Note that the d;’s fulfill the equation d; + - - - +dy, =
m-—3.

LEMMA 5.1. The map 1 : Mo m(Xs,A) — Mo,m forgetting the map to Xs is equivari-
ant with respect to the induced Ty -action on Mo, (Xs,A) and the trivial action on Mo,m.

PROOF. Since the Ty-action on Jlg ., (Xs,A) is induced from the action on the image
of the curve in Xs (and which is discarded by the mayp ), this is obvious. d

COROLLARY 5.2. The pullback by 1t of any bundle E on Mo, is an equivariant
bundle on Mg (Xs,A) with trivial fiber action.

REMARK 5.3. Corollary 5.2 implies, in particular, that the equivariant and the non-
equivariant Euler classes of such pullback bundles coincide; we will therefore use them
interchangeably in these cases.

LEMMA 5.4. LetE — Mo,m be a vector bundle of a vector bundle of rankrk E = m — 3.
If T (Mr) # Mo, m, then e(TT*E| 4;) = 0.

PROOF. If 1r(Mr) # Mo, then the codimension of 7 (Mr) C Mo, is at least one.
Therefore

e(m*Ely) = m*e(Elrwn) =T*(0) =0, (5.3)
since rkE > dim 7t (UMy). O

The lemma implies that if e(rm*E| ;) # O for a bundle E with rkE = m — 3, the
graph I' contains only one vertex vr that corresponds to a stable component under
the projection 1t to ﬁo,m. In other words, if we fix vr as a root of the graph T, all its
branches contain at most one marked point. We will call such graphs I' simple.

THEOREM 5.5. LetT be a simple My, (Xs,A)-graph, and let vr be the unique stable
vertex of T and m = deg(vr) its degree. The indices of the marked points X1,...,X of
Mo, are chosen such that X, ...,%, are mapped by Tt to the marked points x1,...,Xm
in Mo, respectively. Furthermore, let £; — Mo » be the cotangent lines to the marked
points of Mo . Then

(o) o)

= e(&del @ -0Fing... @i%dm)

wheneverd,+---+dym=m-3 andd, +---+d;u =m—3.
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PROOE. First of all notice that 7t factors through the projection map Jy — o 7 to
the factor corresponding to the vertex vr. Hence it suffices to consider the behaviour
of cotangent line bundles under 1 m : Mo,m — Mo,m, forgetting the last (i — m)
points. This map ,» again factors into

Tim - MOm—’MOmIM"'MMO,m- (5.5)

We will prove the statement for the map 71,,, 1 —the theorem then follows by induction
and Kontsevich’s theorem (see (5.2)).
So we want to show that (in the case d1 + - - - +dy, = m—3)

e(mi (811 e 0sim) oLy ) =e(4] M @ 0 Lo M@ L), (5.6)
It is well known (see, e.g., [6]) that
e(%i) = e(my 1 (%)) + D, (5.7)

where D; = Jlo3 X Mo, is the divisor in Alo 41 wWhere the Jly3-bubble contains the
marked points x; and x,,+1. Now note that £,,.1|p, is constant for any i = 1,...,m,
hence e(¥,,1+1) - D; = 0. This yields (5.6). O

6. The formula for the Gromov-Witten invariants. The next corollary summarizes
what we have shown so far.

COROLLARY 6.1. Let E be the vector bundle E = [LM1 -® [Li'ifl’” on Mo, such that

dy+---+dy =m-—3. Let B = e(E) be the Euler class ofE. Then

o Lik
m,n a(j)\ ik
7T*E|Mr)njyk:1 (wk )

Xz A 1 1
Z0 .72 = J -
(B ) |AF | iy eTn (N}urt>

Tslmple

(6.1)

We will now compute the integral over the fixed-point components to obtain an
explicit formula for these Gromov-Witten invariants.

THEOREM 6.2. LetT be a simple Mo (Xs,A)-graph, and let vr be the unique stable
vertex of T. Let v : Vert(I') — N be the map defined by

m-3 ifv=ur,
rv):= (6.2)
0 otherwise.
As before let d; be nonnegative integers such thatd, +---+d,, = m—-3.IfE = I]_M1

-® I]_e)d"’ then the following formula holds:

N (0% (E) |y ) (deg(vr) 3)!
_ . Ar(e)
Jf/{r eTN(Nr) dil- - dm! (deg(vr) m)' eGEld_g[e(F) '
t-1 t+s-r(v)-3 (6.3)
(wined) - (i)

|

t
t,s veVerty s (T) Hizl WF;(v)
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PROOF. By Kontsevich’s formula (5.2), it suffices to consider d, =m—-3,d, = - - - =
dy, = 0. In this case, by Theorem 5.5, the left-hand side of (6.3) equals

UMF (#m)TT TT (wf)™ w(v)] [T Acte). (6.4

t,s veVerty 5(T) ecEdge(I)

We therefore have to prove that

J, ) J1, oo

veVert(I)
F(v) t+s—r(v)-3 (6.5)
( deg (vl" 1—[ 1—[ (wtot1:11>
(m 3)!(deg ( Ur -m)! t,s veVert s (I) Hi=1 WF;(v)

For the case that v € Vert; ((I') is different from vr, we have shown in the proof of
Proposition 4.2 (see [13]) that

F(v) t+s-3
total

L o) Dea) (6.6)
J:Mo,deg(v) Hizl wFi(U)

Hence we only have to consider the case when v = vr; since it is very similar to the pre-

d.
vious case, we will only outline its proof. Asin [13], let P, (x1,...,Xk) = ZZidi,:" ]_[j ij.
Let ¢ :=val(vr), m = deg(vr), and v := m — 3. We will also write F; instead of F;(vr).
Note that for the vertex vr, we always have m —v — 3 > 0. Therefore

jmwm)e(sgfr) _ Jm e(#5) ] o e

t = dy dy
1 (1 —3)! 1 1
1_[ WEF; - dl!'-'dt!T!(wpl) (wFt) (by(5.2))
m-r-3
on-3) (@)
ri(m—-r=-3)!' T, wrwp

(6.7)
which finishes the proof. a

7. Example: the quantum cohomology of Ppi (0°"~2 ¢ (1) @ 0(1)). In this sec-
tion, we want to illustrate how useful the extension of the formula to the case where
B = P.D.(pt) really is for the computation of the quantum cohomology ring of a toric
manifold.
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In [10], Siebert and Tian have shown that if the ordinary cohomolgy ring of a sym-
plectic manifold X is given by

H*(X,Q) =Q[Z,...,Z]/(Ry,...,Ry), (7.1)
where Ry,...,R; are relations, then the quantum ring is given by
QH*(X,Q) = Q[Z1,..., Zk) / (R}, ..., R}, (7.2)

where R} are the relations R;, but evaluated with respect to the quantum product
instead of the cup product.

Consider the toric manifolds of the form Pp: (02~2 @0(1) ®0(1)).In [3], Costa and
Mir6-Roig have studied the three-point Gromov-Witten invariants of these manifolds
and announced that they will derive the quantum cohomology ring of these manifolds
in an upcoming paper. We have chosen the same example to illustrate how the formula
derived in this note can make computations much easier.

We will recall some properties of Pp1 (0°~2 ¢ 0(1) ®0(1)), where ¥ is an integer
greater than or equal to three (for more details see [3]). Its cohomology ring is given
by

H*(Xs,Q) =Q[Z1,..., Zr+2]/{L1,L3,...,Lys1,P1,P2), (7.3)

where the relations are given by Ly = Z1 — Z», Ly = Z3 — Zyy2,.. ., L1 = Zypy 1 — Zy 42,
Ly =2Z2+Zy —Zyi2, Lyi1 = Zo+ Zyi1 — Zyi2, Pr = 2122, P2 = Z3 -+ - Zy 2.

To see this, consider the fan whose one-dimensional cones are (with respect to some

basis eq,...,e, in the lattice Z") v; = ey, Vp = —e1 +e,_1+ €y, U3 = €2,...,Vrs1 = €, and
Vys2 = —€p — - - - — ey, and whose set of primitive collections is given by

W= {{vi,v2},{v3,..., Urs2}}. (7.4)

In [3, Proposition 3.6], Costa and Mir6-Roig obtain (in what follows, we will freely use
their notation)

Zyx Zy = (Zyo * Zyso =22y % Zyi2) D 4l (7.5)

i=1

Hence, we will only have to compute the quantum product Z3 x - - - x Z,,» to get a
presentation of the quantum cohomology ring. To do so, we will have to compute the
Gromov-Witten invariants of the form

NN (PD.(DY); Z3, o, Zrs2, ¥). (7.6)

In formula (7.6), the two homology classes A; and A, are given by the intersection
vectors

A =(1,1,0,...,0,-1,-1,0), A2 =(0,0,1,...,1). (7.7)

LEMMA 7.1. If b + 1, then all invariants of the form (7.6) are zero.
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PROOF. Suppose that for given a, b, and y, the invariant (7.6) is nonzero. Since
(c1(Xs),ad1 + bAy) = 2rb, we must have 2v + degy = 2vb + 2r. However, the real
dimension of Xx is equal to 27, hence 0 < degy < 27, and therefore b < 1.

Now suppose b is zero and therefore degy = 0 as well, that is y is a multiple of the
trivial class 1 € H(Xs). If a = 0 as well, then the invariant is zero since it just equals
the cup product of the cohomology classes Z3,...,Z, 2. So suppose a > 1. Then

oM (P.D.(pV); Z3, ..., Zy12,1)

= GV (P.D.PY; 25, Zr1, Zy+2, Zyy Zrs1)
= Z (I)g,l;\l (ZS:ZVH;)’J‘I)CI)SEM (Z4! y;/layu) t .4)3572 (Zr+2,Zr, y};,73)s
ayr+---+ay-2=a
J1sensdr=3
(7.8)

where the y;, run over a basis of H*(Xs,Z). Since a > 0, at least one of a; has to be
positive. On the other hand, we have

(Z3,A1) = -+ - =(Zy_1,A1) = (Zy+2,A1) = 0. (7.9)

So, as soon as a; > 0, the corresponding three-point invariant in the sum above is
zero. This proves the lemma. a

LEMMA 7.2. Ifa > 0, then all invariants of the form (7.6) are zero.

PROOF. Suppose that for given a, b and y, the invariant (7.6) is nonzero. Then, by
the previous lemma, b = 1. Hence we have to consider homology classes aA; + A, and
y being a multiple of the class of top degree, say Z1Z3 - - - Z, Zy 5.

The vertices of the moment polytope of Xs are oy := Z;- Z3 - - Z -« Zy 42> Where
i€ {1,2} and j € {3,...,7 + 2}. As usual, the hat on top of Z; signals its omission.
Hence, the 1-skeleton of the moment polytope of Xs has the following edges:

(1) for 3 <t <s <r+2, edges between oy and o 5, and between 0, ; and 03, all
having homology class As;

(2) for3<t<r-1ort=7r+2, an edge between o7, and 0, ; of homology class
At;

(3) for t =7, +1, an edge between o0, and o>, of homology class A; + A».

The readers will now easily convince themselves that there is no simple graph I in
this class such that Zs3,...,Z, 1, Zy+1, Zy 41, Zyip and Z1 Z3 - - - Z,, Z, o all have nonzero
equivariant Euler class on Jlr, unless a = 0. Finally note that Z, = Z,.,1 as cohomology
classes, which finishes the proof. |

LEMMA 7.3. The following equation holds: (I)(/}i,+1(P.D.(pt);23,...,Zy_],Zy+],Zy+1,
Zr+212123 " 'ZrZr+2) =1

PROOF. The only simple graph I such that Zs,...,Z,-1, Zyi1, Zy+1, Zr+2 and
Z1Z3---ZyZy.» all have nonzero equivariant Euler class on I' is the one with one
edge between 0,41 and o7, where all but the last marked point are at o . Applying
the formula derived in this note yields the following for the Gromov-Witten invariant
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¢ = ‘I)S,Zr+1 (P.D.(p0); Z3,..., Zy 1, Zys1, Zy i1, Zyi2, Z1 23 -+ - Ly Ly 2):

2
T1,r+1 O1r+1 O1r+1 O1,r+1 O1,r O1,r O1,r O1,r
® Woy 1 Woyz =7 Woyy o2 Waoyz 7 Woyp (wﬂl,rn) Woy 2
- 2
O1,r Ol,r O1,r O1,r O1,r Olr+1
Way 41 (w01,y+1 ) Woyy 2 (wlfl,r+2 - wUl,r)w(Tl,r+2
1
! Ol,r Ol,r O1,r Ol,r O1,r a1y
Wo 3 (00013 - wgl,rﬂ) o Woypyg (wo'l,r—l - w01,y+1> (7.10)
O1,r+1 Olr+1, Olr+1
_ 01,3 TP Wo - aWoree
- O1,r O1,r O1,r O1,r O1,r O1,r
(wgl,3 _wo'l,r+1) e (wa'l,r—l - wa’l,r+l) (wo'l,v+2 - wo’l,r+l)
=1,
Olr+1 o1, o1, , L.
where we have used wg,}" = Wg,’ — Wgy,,, for i = 3,...,¥ — 1,7 + 2 by a similar
argument as in [3, Lemma 2.1}, that is by applying [11, Lemma 6.7]. a

COROLLARY 7.4. The quantum cohomology ring of Xs = Pp1 (0°" 2 ¢ 0(1) ®0(1))
(for v = 3) is given by

QH*(Xs,2) = Z[Z1,..., Zy+2,01,@2]/ (L1, L3, Ly 1, R} R ), (7.11)
where the relations Ry and R are given by

Ry =Zy % Zo—Zy * Zy 141,

* (7.12)
Ry =Z3» - %xZri2—q,

that is, this quantum ring coincides with Batyrev’s ring in [1].

PROOF. The relation Z3 * - - - x Z,,» = g» follows directly from the previous three
lemmas. Now consider the other multiplicative relation

Z1xZr=71x71 since Z; =2»

=D (Zriax Zys2—2Z1 x Zyi2)al by (7.5)

= (7.13)
=(Zy * Zys1-Z1% Z>) >.4} by the linear relations.
i=1
Hence we obtain
Zyx 22> a4 =Zr x Zyi1 D dl, (7.14)
i=0 i=1
and by comparing the coefficients of the qﬁ, the relation follows. a

REMARK 7.5. Note that although we derive the same presentation for the quantum
cohomology ring as the one stated by Batyrev in [1], the Gromov-Witten invariants
that enter as structure constants into the computation of the quantum products are
different from those numbers considered by Batyrev.
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