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We characterize complex strictly positive definite functions on spheres in two cases, the
unit sphere of Cq , q ≥ 3, and the unit sphere of the complex �2. The results depend
upon the Fourier-like expansion of the functions in terms of disk polynomials and, among
other things, they enlarge the classes of strictly positive definite functions on real spheres
studied in many recent papers.
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1. Introduction. This paper is concerned with positive definite kernels that are use-

ful to perform interpolation on spheres. Its main purpose is to study strictly positive

definite kernels on the unit sphere Ω2q of Cq, q ≥ 2, and the unit sphere Ω∞ of �2.

Specifically, we will provide an elementary description of strict positive definiteness

of kernels which are inner-product dependent, that is, of the form

(z,w)∈Ω2q×Ω2q � �→ f
(〈z,w〉), (1.1)

for some continuous complex function f (the shape function) defined at least on the

disk B2 := {z ∈ C : |z| ≤ 1}. Hereafter, 〈·,·〉 will denote the usual inner product in Cq

or �2.

A shape function whose associated kernel is positive definite on Ω2q will be termed

a positive definite function on Ω2q. Thus, a positive definite function f on Ω2q is a

continuous function such that

N∑

µ,ν=1

cµcνf
(〈
ξµ,ξν

〉)≥ 0 (1.2)

for N ≥ 1, {ξ1, . . . ,ξN} ⊂ Ω2q, and {c1, . . . ,cN} ⊂ C. The reader can refer to [1] for the

basic facts about positive definite and related kernels. If N has been fixed, we say that

the positive definite function f is strictly positive definite of order N on Ω2q if the

inequality above is strict when the points ξµ are pairwise distinct and
∑N
µ=1 |cµ| > 0.

Finally, f is strictly positive definite on Ω2q if it is strictly positive definite of order N
on Ω2q, N = 1,2, . . . .

If we are given distinct points ξ1, . . . ,ξN on Ω2q, complex numbers λ1, . . . ,λN , and a

strictly positive definite function f of order at least N on Ω2q, then there is a unique

function of the form

ξ ∈Ω2q � �→
N∑

ν=1

cνf
(〈
ξ,ξν

〉)
(1.3)

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


716 V. A. MENEGATTO AND A. P. PERON

that interpolates the data {(ξµ,λµ) : µ = 1, . . . ,N}. This interpolation procedure is a

complex version of what is often called spherical radial basis function interpolation

(see [4, 6, 8, 12]). In the latter, the ξµ belong to a sphere in some Rm and the function

f used in the generation of solutions is usually real valued. The method is well estab-

lished and has many applications in the handling of problems of global nature that

emerge in several areas such as meteorology, oceanography, satellite-related sciences,

and so forth, where the unit sphere in R3 is the standard model.

A strictly positive definite function on Ω2q is also strictly positive definite on every

real sphere embedded in it, in the sense considered in the references quoted above.

The results in this paper will then provide a concise way of constructing complex

strictly positive definite functions on the real spheres. As a matter of fact, since the

definitions of positive definiteness used here encompass those used in the real setting,

our results will amplify the classes of positive definite functions that can be used to

perform interpolation on the real spheres.

The outline of the paper is as follows. In Section 2, we collect basic results about

positive definite functions on spheres and disk polynomials. This is crucial in the

paper, because the analysis of strict positive definiteness is based on the expansion

of positive definite functions on Ω2q in terms of certain disk polynomials. Section 3

contains two technical results, one of them being an alternative to the concept of strict

positive definiteness on Ω2q. Section 4 contains the main part of the paper, including

characterizations of strict positive definiteness on Ω2q, q ≥ 3.

2. Prerequisites. The strict positive definiteness of a positive definite function on

Ω2q, q <∞, can be detected by looking at the series expansion of the function in terms

of certain disk polynomials. This section contains the basic facts about them along

with some basic properties needed in the sequel.

Positive definite functions on Ω2q are representable in the form

f(z)=
∑

(m,n)∈Z2+

am,n(f)R
q−2
m,n(z), z ∈ B2, (2.1)

in which am,n(f) ≥ 0 for all m and n and
∑
(m,n)∈Z2+ am,n(f) <∞. The symbol Rq−2

m,n

stands for the disk polynomial of degreem+n associated to the integer q−2 when q
is finite while R∞m,n(z)= zmzn (see [7, 11]). The disk polynomial of degree m+n in x
and y associated with a nonnegative real number α is the polynomial Rαm,n given by

Rαm,n(z) := r |m−n|ei(m−n)θR(α,|m−n|)m∧n
(
2r 2−1

)
, z = reiθ = x+iy, (2.2)

where R(α,|m−n|)m∧n is the usual Jacobi polynomial of degree m∧n :=min{m,n} associ-

ated with the numbers α and |m−n|. The normalization for the Jacobi polynomials

adopted here is R(α,|m−n|)m∧n (1)= 1. The expansion (2.1) is then possible due to the fol-

lowing two facts (see [2, 9]): Rq−2
m,n is a zonal surface harmonic of degree m+n in 2q

real variables in the classical sense and the set {Rαm,n : 0 ≤m, n <∞} is a complete

orthogonal set in L2(B2,dwα), where dwα is the measure on B2 given by

dwα(z)= α+1
π

(
1−x2−y2)αdxdy, z = x+iy. (2.3)
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The following properties of disk polynomials are straightforward [9].

Lemma 2.1. Let m and n be nonnegative integers and α a nonnegative real. The

following properties hold:

(i) Rαm,n(eiϕz)= ei(m−n)ϕRαm,n(z), ϕ ∈ [0,2π), z ∈ B2;

(ii) Rαm,n(1)= 1;

(iii) |Rαm,n(z)| ≤ 1, z ∈ B2;

(iv) Rαm,n(z)= Rαm,n(z)= Rαn,m(z), z ∈ B2;

(v) Rαm,n is an even function if m−n is even, and an odd function otherwise.

Next, we list the less elementary properties of disk polynomials to be used in this

work. The first one is the so-called addition formula (see [9, 14]), which is quoted here

in a version adapted to our purposes.

Lemma 2.2. Ifm and n are nonnegative integers, q is an integer at least 3, θ1,θ2 ∈
[0,π/2], φ1,φ2 ∈ [0,2π), and w ∈ B2, then

Rq−2
m,n
(
cosθ1 cosθ2ei(φ1−φ2)+sinθ1 sinθ2w

)

=
m∑

k=0

n∑

l=0

bk,lm,n,q−2Q
k,l
m,n
(
θ1,φ1

)
Qk,lm,n

(
θ2,φ2

)
Rq−3
k,l (w),

(2.4)

in which

Qk,lm,n(θ,φ) := (sinθ)k+lRq−2+k+l
m−k,n−l

(
cosθeiφ

)
, (θ,φ)∈ [0,π/2]×[0,2π), (2.5)

and the constants bk,lm,n,q−2 are all positive.

Before stating the next lemma, we need some additional notation. We need to deal

with elements from the space Πq composed of complex polynomials in the indepen-

dent complex variables z ∈ Cq and z. A typical element of Πq is of the form

p(z,z)=
∑

|r |≤m

∑

|s|≤n
ar,szrzs, z ∈Cq, ar,s ∈ C, r ,s ∈ Zq+, m,n∈ Z+, (2.6)

where standard multi-index notation is in force. The subset of Πq, composed of poly-

nomials with the property that

p(λz,λz)= λmλnp(z,z), λ∈ C, (2.7)

becomes a subspace. The elements of this subspace which are in the kernel of the

complex Laplacian also form a subspace of Πq. The set of restrictions of elements of

this subspace to Ω2q will be denoted by �
q
m,n. It is also a vector space over C and its

dimension will be written as N(q;m,n).
Lemma 2.3 is the summation formula for disk polynomials (see [9, 14]).

Lemma 2.3. Let q be an integer at least 2 and {Yq1 , . . . ,Y qN(q;m,n)} an orthonormal

basis of �
q
m,n. Then

Rq−2
m,n
(〈
ξ,ζ

〉)= ω2q

N(q;m,n)

N(q;m,n)∑

k=1

Yqk (ξ)Y
q
k (ζ), ξ,ζ ∈Ω2q, (2.8)

where ω2q denotes the surface area of Ω2q.
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For further information on disk polynomials we suggest [2, 3, 13, 14, 16] and the

references therein.

3. Basic technical results. In this section, we present a crucial formulation of strict

positive definiteness (SPD) on Ω2q to be used in the proofs of the main results of the

paper. Before that, we formulate two elementary technical lemmas.

Lemma 3.1. Let q be an integer at least 2 and ζ an element of Ω2q. Then, every

element ξ of Ω2q is uniquely representable in the form

ξ = teiϕζ+
√

1−t2ξ′, 0≤ t ≤ 1, ϕ ∈ [0,2π), (3.1)

in which ξ′ is an element of Ω2q in the hyperplane of Cq orthogonal to ζ. The coefficient

teiϕ is precisely 〈ξ,ζ〉.
Lemma 3.2. If λ1, . . . ,λn are n distinct complex numbers and A is a subset of C with

an accumulation point, then the functions

z ∈A � �→ exp
(
λkz

)
, k= 1, . . . ,n (3.2)

form a linearly independent set.

Proof. See [5, page 87].

Before stating our first result, we introduce a new terminology. It comes from the

fact that the strict positive definiteness of a positive definite function f on Ω2q does

not depend on the actual values of the coefficients am,n(f) (see [10]). We say that a

subset K of Z2+ induces SPD of order N on Ω2q if every positive definite function f for

which

Kq(f) := {(m,n) : am,n(f) > 0
}=K (3.3)

is strictly positive definite of order N on Ω2q.

Theorem 3.3 below is the major result in this section and it yields different formu-

lations for the concept of SPD on Ω2q. The results in Section 4 will only require the

fact that condition (i) implies condition (iv). The other implications in Theorem 3.3

are of independent interest at this moment.

Theorem 3.3. Let K be a subset of Z2+, q a positive integer at least 3, f a positive

definite function on Ω2q satisfying Kq(f) = K, ξ1, . . . ,ξN distinct points on Ω2q, and

c1, . . . ,cN complex numbers. The following assertions are equivalent:

(i)
∑N
µ,ν=1 cµcνf (〈ξµ,ξν〉)= 0;

(ii)
∑N
µ=1 cµYq(ξµ)= 0, Yq ∈�

q
m,n, (m,n)∈K;

(iii)
∑N
µ=1 cµR

q−2
m,n(〈ξµ,η〉)= 0, (m,n)∈K, η∈Ω2q;

(iv)
∑N
µ=1 cµQ

k,l
m,n(θµ,ϕµ)R

q−3
k,l (〈ξ′µ,η′〉) = 0, (m,n) ∈ K, 0 ≤ k ≤m, 0 ≤ l ≤ n, η′ ∈

Ω2q−2.

Proof. The equivalence among (i), (ii), and (iii) follows directly from the definitions

and Lemma 2.3. A direct application of Lemma 2.2 reveals that (iv) implies (iii). Next,

we use induction to prove that (iii) implies (iv). We use Lemma 3.1 to write

ξµ = cosθµeiϕµε1+sinθµξ
′
µ, θµ ∈ [0,π/2], ϕµ ∈ [0,2π), µ = 1, . . . ,N. (3.4)
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Given η∈Ω2q written as η= cosθeiψε1+sinθη′, θ ∈ [0,π/2],ψ∈ [0,2π), Lemma 2.2

yields

N∑

µ=1

cµR
q−2
m,n
(〈
ξµ,η

〉)=
N∑

µ=1

cµ
m∑

k=0

n∑

l=0

bk,lm,n,q−2Q
k,l
m,n
(
θµ,ϕµ

)
Qk,lm,n(θ,ψ)R

q−3
k,l
(〈
ξ′µ,η′

〉)

=
m∑

k=0

n∑

l=0

bk,lm,n,q−2Q
k,l
m,n(θ,ψ)

N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)

= b0,0
m,n,q−2R

q−2
m,n
(
cosθeiψ

) N∑

µ=1

cµR
q−2
m,n
(
cosθµeiϕµ

)
Rq−3

0,0
(〈
ξ′µ,η′

〉)

+
m∑

k=0

n∑

l=0
l+k≠0

bk,lm,n,q−2Q
k,l
m,n(θ,ψ)

N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)
.

(3.5)

Hence, if condition (iii) holds,

b0,0
m,n,q−2R

q−2
m,n
(
cosθeiψ

) N∑

µ=1

cµR
q−2
m,n
(
cosθµeiϕµ

)
Rq−3

0,0
(〈
ξ′µ,η′

〉)

+
m∑

k=0

n∑

l=0
l+k≠0

bk,lm,n,q−2Q
k,l
m,n(θ,ψ)

N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)= 0,
(3.6)

for (m,n) ∈ K, θ ∈ [0,π/2], ψ ∈ [0,2π), and η′ ∈ Ω2q−2. Choosing θ = ψ = 0, we

obtain

b0,0
m,n,q−2R

q−2
m,n(1)

N∑

µ=1

cµR
q−2
m,n
(
cosθµeiϕµ

)
Rq−3

0,0
(〈
ξ′µ,η′

〉)= 0, (m,n)∈K, η′ ∈Ω2q−2.

(3.7)

Since each coefficient b0,0
m,n,q−2 is positive, this reduces to

N∑

µ=1

cµR
q−2
m,n
(
cosθµeiϕµ

)= 0, (m,n)∈K. (3.8)

This equation corresponds to condition (iv) in the case k= l= 0. Next, we assume that

condition (iv) holds when k+ l < p (> 0) and show it holds when k+ l = p. Recalling

(3.6) and using the induction hypotheses, we see that

0=
m∑

k=0

n∑

l=0
l+k≥p

bk,lm,n,q−2Q
k,l
m,n(θ,ψ)

N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)

= (sinθ)p
m∑

k=0

n∑

l=0
l+k≥p

bk,lm,n,q−2(sinθ)k+l−pRq−2+k+l
m−k,n−l

(
cosθe−iψ

)

×
N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)
,

(3.9)
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for (m,n)∈K, θ ∈ [0,π/2], ψ∈ [0,2π), and η′ ∈Ω2q−2. Hence,

m∑

k=0

n∑

l=0
l+k≥p

bk,lm,n,q−2(sinθ)k+l−pRq−2+k+l
m−k,n−l

(
cosθe−iψ

)

×
N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)= 0,

(3.10)

for (m,n) ∈ K, θ ∈ (0,π/2], ψ ∈ [0,2π), and η′ ∈ Ω2q−2. Due to Lemma 2.1, this

reduces to

m∑

k=0

n∑

l=0
k+l≥p

bk,lm,n,q−2(sinθ)k+l−pe−i(m−n−k+l)ψRq−2+k+l
m−k,n−l(cosθ)

×
N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)= 0

(3.11)

for (m,n)∈K, θ ∈ (0,π/2], ψ∈ [0,2π), and η′ ∈Ω2q−2. Letting θ→ 0+, we obtain

m∑

k=0

n∑

l=0
l+k=p

bk,lm,n,q−2e
−i(m−n−k+l)ψRq−2+k+l

m−k,n−l(1)
N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)= 0,

(3.12)

for (m,n) ∈ K, ψ ∈ [0,2π), and η′ ∈ Ω2q−2. Next, we use Lemma 3.2 to see that, for

each (m,n)∈K, the functions

ψ � �→ e−i(m−n−k+l)ψ, k= 0, . . . ,m, l= 0, . . . ,n, k+l= p (3.13)

form a linearly independent set over [0,2π). It follows that

bk,lm,n,q−2R
q−2+k+l
m−k,n−l(1)

N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)= 0, (m,n)∈K, k+l= p,
(3.14)

that is,

N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)= 0, (m,n)∈K, k+l= p. (3.15)

The proof is now complete.

4. Main results. In this section, we use Theorem 3.3 to obtain an elementary char-

acterization of SPD of all orders on Ω2q, q ≥ 3. We begin with a necessary condition

for SPD proved in [10].

Lemma 4.1. Let q be an element of {2,3, . . .}∪{∞},K a subset of Z2+, andN a positive

integer. If K induces SPD of order N on Ω2q then {m−n : (m,n) ∈ K} intersects the

sets NZ+j, j = 0,1, . . . ,N−1.
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Theorem 4.2. Let q be an integer at least 3 and K a subset of Z2+. Then K induces

SPD of all orders on Ω2q if and only if the set {m−n : (m,n) ∈ K} contains infinitely

many even and infinitely many odd integers.

Proof. The condition is certainly necessary, by Lemma 4.1. Conversely, let N be

a positive integer, ξ1, . . . ,ξN distinct points on Ω2q, and f a positive definite function

on Ω2q such that Kq(f) = K. We will show that the matrix with entries (f (〈ξµ,ξν〉))
is positive definite under the hypothesis that {m−n : (m,n)∈ K} contains infinitely

many even and infinitely many odd integers. To do that we will assume that

N∑

µ,ν=1

cµcνf
(〈
ξµ,ξν

〉)= 0, (4.1)

and will show that cµ = 0 for all µ. Let j ∈ {1, . . . ,N} and choose an orthogonal trans-

formation such that Tj(ξj)= (0,1,0, . . . ,0). Next, use Lemma 3.1 to write

Tj
(
ξµ
)= cosθµeiψµε1+sinθµξ′µ, θµ ∈ [0,π/2], ψµ ∈ [0,2π), µ = 1, . . . ,N, (4.2)

where ξ′µ ∈Ω2q−2, µ = 1, . . . ,N. Due to our choice of Tj , θj =π/2 and ξ′j = Tj(ξj). Since

N∑

µ,ν=1

cµcνf
(〈
Tj
(
ξµ
)
,Tj
(
ξν
)〉)=

N∑

µ,ν=1

cµcνf
(〈
ξµ,ξν

〉)= 0, (4.3)

we may use Theorem 3.3 to conclude that

N∑

µ=1

cµQk,lm,n
(
θµ,ϕµ

)
Rq−3
k,l
(〈
ξ′µ,η′

〉)= 0, (m,n)∈K, 0≤ k≤m, 0≤ l≤n, η′ ∈Ω2q−2.

(4.4)

In particular,

N∑

µ=1

cµ
(
sinθµ

)m+nRq−3
m,n
(〈
ξ′µ,η′

〉)= 0, (m,n)∈K, η′ ∈Ω2q−2. (4.5)

We now split the proof into two cases. If 〈Tj(ξµ),Tj(ξj)〉 ≠ −1, µ ≠ j, we use our

hypothesis to select a sequence {(mν,nν)} from {(m,n) ∈ K : m−n is even} such

that {mν+nν} is increasing. The inequality

∣∣∣
(
sinθµ

)mν+nνRq−3
mν,nν

(〈
ξ′µ,η′

〉)∣∣∣≤ ∣∣sinθµ
∣∣mν+nν , µ ≠ j, ν = 1,2, . . . , η′ ∈Ω2q−2

(4.6)

and the fact that |sinθµ|< 1, µ ≠ j, imply that

lim
ν→∞

(
sinθµ

)mν+nνRq−3
mν,nν

(〈
ξ′µ,η′

〉)= 0, µ ≠ j, η′ ∈Ω2q−2. (4.7)
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Using this information with η′ = ξ′j , we obtain

0= lim
ν→∞

N∑

µ=1

cµ
(
sinθµ

)mν+nνRq−3
mν,nν

(〈
ξ′µ,ξ

′
j
〉)

= cj+ lim
ν→∞

N∑

µ=1
µ≠j

cµ
(
sinθµ

)mν+nνRq−3
mν,nν

(〈
ξ′µ,ξ

′
j
〉)

= cj.

(4.8)

If 〈Tj(ξj),Tj(ξs)〉 = −1 for some s then θs = π/2 and ξ′s = (0,−1,0, . . . ,0). Repeating

the procedure used in the previous case and recalling that Rq−3
m,n is an even function

when m−n is even, we obtain

0= lim
ν→∞

N∑

µ=1

cµ
(
sinθµ

)mν+nνRq−3
mν,nν

(〈
ξ′µ,ξ

′
j
〉)= cj+cs. (4.9)

To complete the argument, we extract a sequence {(rν ,sν)} from the set {(m,n)∈K :

m−n is odd} such that {rν + sν} is increasing. Since Rq−3
m,n is an odd function when

m−n is odd, we arrive at

0= lim
ν→∞

N∑

µ=1

cµ
(
sinθµ

)rν+sν Rq−3
rν ,sν

(〈
ξ′µ,ξ

′
j
〉)= cj−cs. (4.10)

It is now clear that cj = 0.

We conclude the paper by proving a version of Theorem 4.2 for the case q =∞. A

result of this sort was the main goal intended, but not reached, in [15]. The following

lemma is the only additional result needed.

Lemma 4.3. If q is a positive integer at least 2 andm andn are nonnegative integers,

then there are positive constants cjq,m,n, j = 0, . . . ,m∧n, such that

zmzn =
m∧n∑

j=0

cjq,m,nR
q−2
m−j,n−j(z), z ∈ B2. (4.11)

Proof. A proof, including exact values of the constants cjq,m,n, can be found in [2,

page 28].

Theorem 4.4. A subset K of Z2+ induces SPD of all orders onΩ∞ if and only if the set

{m−n : (m,n)∈K} contains infinitely many even and infinitely many odd integers.

Proof. One half follows from Lemma 4.1. For the other, let K be a subset of Z2+
such that {m−n : (m,n)∈K} contains infinitely many even and infinitely many odd

integers. We will show that K induces SPD of order N ≥ 3 on Ω∞. Let ξ1, . . . ,ξN be

distinct points on Ω∞ and f a positive definite function on Ω∞ such that K∞(f )= K.
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Without loss of generality, we can assume that {ξ1, . . . ,ξN} ⊂Ω2N . By Lemma 4.3,

f
(〈
ξµ,ξν

〉)=
∑

(m,n)∈K
am,n(f )

〈
ξµ,ξν

〉m〈ξµ,ξν
〉n

=
∑

(m,n)∈K
am,n(f )

m∧n∑

j=0

cjN,m,nR
N−2
m−j,n−j

(〈
ξµ,ξν

〉)

=
∑

(α,β)∈L
dNα,β(f )R

N−2
α,β

(〈
ξµ,ξν

〉)

= g(〈ξµ,ξν
〉)
,

(4.12)

where L :=⋃(m,n)∈K{(m−j,n−j) : j = 0, . . . ,m∧n} and g is a positive definite func-

tion on Ω2N satisfying KN(g)= L. Since
{
α−β : (α,β)∈ L}= {m−n : (m,n)∈K}, (4.13)

L contains infinitely many even and infinitely many odd integers. Thus, Theorem 4.2

implies that L induces SPD of all orders on Ω2N . This guarantees that (g(〈ξµ,ξν〉)) is

positive definite and, consequently, so is (f (〈ξµ,ξν〉)). Therefore, K induces SPD of

order N on Ω∞, completing the proof.
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