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1. Introduction. Symmetries play an important role in particle physics and quan-

tum field theory [1], nuclear physics [11], and mathematical physics [5]. Some recep-

tions are proposed for finding the symmetries, for example, the method of replacing

the variables [13], the Lie algorithm [5], and the theoretical-algebraic approach [9]. The

purpose of this work is the generalization of the method of replacing the variables.

We start from the following definition of symmetry.

2. Main results

Definition 2.1. Let a differential equation L̂′φ′(x′) = 0 be given. By symmetry

of this equation with respect to the variables replacement x′ = x′(x), φ′ = φ′(Φφ)
we will understand the compatibility of the engaging equations system Âφ′(Φφ)= 0,

L̂φ(x)= 0, where Âφ′(Φφ)= 0 is obtained from the initial equation by replacing the

variables, L̂′ = L̂, Φ(x) is some weight function. If the equation Âφ′(Φφ) = 0 can be

transformed into the form L̂(Ψφ) = 0, the symmetry will be named the standard Lie

symmetry, otherwise it will be named generalized symmetry.

2.1. Application of Definition 2.1. The elements of Definition 2.1 were used to

study the Maxwell equations symmetries [6, 7, 8]. In this paper, we apply this defi-

nition for investigation of symmetries of the one-component D’Alembert equation
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where ξ = Φφ. After replacing the variables we find that the equation �′φ′ = 0 trans-

forms into itself, if the system of the engaging equations is fulfilled
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Here x = (x1,x2,x3,x4), x4 = ict, where c is the speed of light and t is the time. We

substitute the solution of the D’Alembert equation φ into the first equation of the set

(2.3). If the obtained equation has a solution, then the set (2.3) will be compatible. Ac-

cording to Definition 2.1 this compatibility will mean that arbitrary reversible transfor-

mations x′ = x′(x) are the symmetry transformations of the initial equation�′φ′ = 0.

Owing to the presence of the expressions (∂Φφ/∂xj)2 and (∂Φφ/∂xj)(∂Φφ/∂xk) in

the first equation of (2.3), the latter has nonlinear character. Since the analysis of

nonlinear systems is difficult we suppose that

∂2φ′

∂ξ2
= 0. (2.4)

In this case, the nonlinear components in the set (2.3) turn to zero and the system will

be linear. As a result, we find the field transformation law by integrating (2.4)

φ′ = C1Φφ+C2 �→φ′ = Φφ. (2.5)

Here we suppose for simplicity that the constants of integration are C1 = 1, C2 = 0. It

is this law of field transformation that was used within the algorithm [7, 8]. It marks

the position of the algorithm in the generalized variables replacement method. Taking

into account formulae (2.4) and (2.5), we find the following form for system (2.3):
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(2.6)

Since here Φ(x) = φ′(x′ → x)/φ(x), where φ′(x′) and φ(x) are the solutions of

the D’Alembert equation, system (2.6) has a common solution and consequently is

compatible. This means that the arbitrary reversible transformations of coordinates

x′ = x′(x) are symmetry transformations for the one-component D’Alembert equa-

tion if the field is transformed with the help of the weight function Φ(x) according to

the law (2.5). The form of this function depends on the D’Alembert equation solutions

and the law of the coordinate transformations x′ = x′(x).
Next we consider the following examples.
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2.1.1. Poincaré group. Let the coordinate transformations belong to the Poincaré

group P10:

x′j = Ljkxk+aj, (2.7)

where Ljk is the matrix of the Lorentz group L6, aj are the parameters of the transla-

tion group T4. In this case, we have �′xj =
∑
k L′jk�′x

′
k = 0,

∑
i(∂xj/∂x′i)(∂xk/∂x

′
i) =∑

i L′jiL
′
ki = δjk. The last term in the second equation of (2.6) turns to zero. The set

reduces to the form

�Φφ= 0; �φ= 0. (2.8)

According to Definition 2.1 this is a sign of the Lie symmetry. The weight function

belongs to the set in [8]:
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φ′(x)
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1
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; . . .
}
, (2.9)

where Pj , Mjk are the generators of Poincaré group, j,k,l = 1,2,3,4. In the space of

the D’Alembert equation solutions the set defines a rule of transforming of a solution

φ(x) to another solution φ′(x). The weight function Φ(x)= 1∈ ΦP10(x) determines

the transformational properties of the solutionsφ′ =φ, which means the well-known

relativistic symmetry of the D’Alembert equation [4, 10].

2.1.2. Weyl group. Let the transformations of coordinates belong to the Weyl Group

W11:

x′j = ρLjkxk+aj, (2.10)

where ρ = const is the parameter of the scale transformations of the group ∆1. In

this case we have �′xj = ρ′
∑
k L′jk�′x

′
k = 0,

∑
i(∂xj/∂x′i)(∂xk/∂x

′
i) =

∑
i ρ′2L′jiL

′
ki =

ρ′2δjk = ρ−2δjk. The set (2.6) reduces to the set (2.8) and has the solutionΦW11 = CΦP10 ,

where C = const. The weight function Φ(x)= C and the law φ′ = Cφ means the well-

known Weyl symmetry of the D’Alembert equation [4, 10]. Here C = ρl, where l is the

conformal dimension of the field φ(x) [2]. Consequently, the D’Alembert equation is

W11-invariant for the field φ with arbitrary conformal dimension l. This property is

essential for the Voigt [13] and Umov [12].

2.1.3. Inversion group. Let the coordinate transformations belong to the inversion

group I:

x′j =−
xj
x2

; x2 = x2
1+x2

2+x2
3+x2

4; x2x′2 = 1. (2.11)

In this case, we have�′xj = 4x′j/x′4 =−4xjx2,
∑
i(∂xj/∂x′i)(∂xk/∂x

′
i)= ρ′2(x′)δjk =

1/x′4δjk = x4δjk. The set (2.6) reduces to the set

−4xj
∂Φφ
∂xj

+x2�Φφ= 0; �φ= 0. (2.12)

The substitution of Φ(x)= x2Ψ(x) transforms equation (2.12) for Φ(x) into the equa-

tion �Ψφ= 0 for Ψ(x). It is a sign of the Lie symmetry. The equation has the solution

Ψ = 1. The result is Φ(x) = x2. Consequently, the field transforms according to the

law φ′ = x2φ(x) = ρ−1(x)φ(x). This means the conformal dimension l = −1 of the



152 GENNADII A. KOTEL’NIKOV

fieldφ(x) in the case of the D’Alembert equation symmetry with respect to the inver-

sion group I in agreement with [4, 9]. In a general case the weight function belongs to

the set

ΦI(x)= x2Ψ(x)∈
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x2
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;x2 Pjφ(x)

φ(x)
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}
. (2.13)

2.1.4. Special conformal group. Let the coordinate transformations belong to the

special conformal group C4:

x′j =
xj−ajx2

σ(x)
; σ(x)= 1−2a·x+a2x2; σσ ′ = 1. (2.14)
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The substitution of Φ(x) = σ(x)Ψ(x) transforms (2.15) into the equation �Ψφ = 0

which corresponds to the Lie symmetry. From this equation, we have Ψ = 1, Φ(x) =
σ(x). Therefore, φ′ = σ(x)φ(x) and the conformal dimension of the field is l = −1

as above. Analogously to (2.13), the weight function belongs to the set
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Thus, we can see that φ(x) = 1/σ(x) is the solution of the D’Alembert equation.

Combination ofW11, I, and C4 symmetries means the well-known D’Alembert equation

conformal C15-symmetry [4, 9, 10].

2.1.5. Galilei group. Let the coordinate transformations belong to the Galilei group

G1:

x′1 = x1+iβx4; x′2 = x2; x′3 = x3; x′4 = γx4; c′ = γc, (2.17)

where β′ = −β/γ, γ′ = 1/γ, β= V/c, γ = (1−2βnx+β2)1/2. In this case, we have

�′xj = 0;
∑
i

(
∂x1

∂x′i

)2

= 1−β′2;

∑
i

(
∂x2

∂x′i

)2

=
∑
i

(
∂x3

∂x′i

)2

= 1;
∑
i

(
∂x4

∂x′i

)2

= γ′2;

∑
i

∂x1

∂x′i

∂x2

∂x′i
=
∑
i

∂x1

∂x′i

∂x3

∂x′i
=
∑
i

∂x2

∂x′i

∂x3

∂x′i
=
∑
i

∂x2

∂x′i

∂x4

∂x′i
= 0;

∑
i

∂x1

∂x′i

∂x4

∂x′i
= iβ′γ′ = − iβ

γ2
.

(2.18)

After putting these expressions into the set (2.6) we find (see [8])
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In accordance with Definition 2.1 the Galilei symmetry of the D’Alembert equation is

the generalized symmetry (being the conditional one [8]). The weight function belongs

to the set (see [7])

ΦG1(x)=
φ′
(
x′ → x)
φ(x)

∈
{
φ
(
x′
)
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;

1
φ(x)
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(
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[
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φ
(
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)
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}
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where H′1 = it′∂x′ is the generator of the pure Galilei transformations. For the plane

waves the weight function Φ(x) is (see [6, 7, 8])

ΦG1(x)=
φ
(
x′ → x)
φ(x)

= exp
{
− i
γ

[
(1−γ)k·x−βω

(
nxt− xc

)]}
, (2.21)

where k= (k,k4), k=ωn/c is the wave vector, n is the wave front guiding vector, ω
is the wave frequency, k4 = iω/c, k′1 = (k1+ iβk4)/γ, k′2 = k2/γ, k′3 = k3/γ, k′4 = k4,

k′2 = k2-inv, where inv means invariant. (For comparison, in the relativistic case we

have k′1 = (k1+ iβk4)/(1−β2)1/2, k′2 = k2, k′3 = k3, k′4 = (k4− iβk1)/(1−β2)1/2, k′2+
k′24 = k2+k4

2-inv as is well known.)

3. Comparison of the results. Table 3.1 illustrates the results obtained above.

Table 3.1

Group P10 W11 I C4 G1

WFΦ(x) 1 ρl x2 σ(x) exp{−i[(1−γ)k·x−βω(nxt−x/c)]/γ}

For the different transformations x′ = x′(x), the weight functions Φ(x) may be

found in a similar way.

Note that in the symmetry theory of the D’Alembert equation, conditions (2.6) for

transforming this equation into itself combine the requirements formulated by vari-

ous authors, as can be seen in Table 3.2, where mα,m0 are some numbers, Dαβ and

Mαβ are the 6×6 numerical matrices.

According to Table 3.2 for the field φ′ =φ with conformal dimension l= 0 and the

linear homogeneous coordinate transformations from the group L6X�1 ∈ W11 with

ρ = (1−β2)1/2, the formulae were proposed by Voigt [13] and cited by Pauli [10]. In

the plain waves case, they correspond to the transformations of the 4-vector k= (k,k4)
and proper frequencyω0 according to the law k′1 = (k1+iβk4)/ρ(1−β2)1/2, k′2 = k2/ρ,

k′3 = k3/ρ, k′4 = (k4 − iβk1)/ρ(1−β2)1/2, ω′
0 = ω0/ρ, k′x′ = kx-inv. In the case of

the W11-coordinate transformations belonging to the set of arbitrary transformations

x′ = x′(x), the requirements for the one component field with l = 0 were found by

Umov [12]. The requirement that the second derivative ∂2φ′/∂φα∂φβ = 0 with Φ = 1

is turned into zero was introduced by Di Jorio [3]. The weight function Φ �= 1 and the

set (2.6) were proposed by the author of the present work [6, 7, 8].

By now only the D’Alembert equation symmetries corresponding to the linear sys-

tems of the type (2.8), (2.12), and (2.15) have been well studied. These are the well-

known relativistic and conformal symmetry of the equation. The investigations cor-

responding to the linear conditions (2.6) are much more scanty and presented only
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Table 3.2

Author Coordinates
transform.

Group Conditions of invariance Fields
transform.

Voigt [13] x′j =Ajkxk L6X∆1 A′jiA
′
ki = ρ′2δjk φ′ =φ

Umov [12] x′j = xj ′(x) W11
∂xj
∂x′i

∂xk
∂x′i

= ρ′2δjk φ′ =φ

�′xj = 0

Di Jorio [3] x′j=Ljkxk+aj P10 L′jiL
′
ki = δjk φ′ = mαφα +

m0;
∂2φ′

∂φα∂φβ
= 0 α= 1, . . . ,n

Kotel’nikov
[6, 7, 8]

x′j = x′j(x) C4
∂xj
∂x′i

∂xk
∂x′i

= ρ′2(x′)δjk φ′α =ψDαβφβ
∂2φ′α
∂ξβ∂ξγ

= 0 ξα =ψφα
�′φ′α = 0→
Âφ′α(ψφ1, . . . ,ψφ6)= 0, �φβ = 0 α,β= 1, . . . ,6

x′j = x′j(x) G1
∂2φ′α
∂ξβ∂ξγ

= 0 φ′α =ψMαβφβ
�′φ′α = 0→ ξα =ψφα
B̂φ′α(ψφ1, . . . ,ψφ6)= 0, �φβ = 0 α,β= 1, . . . ,6

in [6, 7, 8]. The publications corresponding to the nonlinear conditions (2.3) are com-

pletely absent. The difficulties arising here are connected with the analysis of com-

patibility of the set (2.3) containing the nonlinear partial differential equation.

4. Conclusion. It is shown that with the generalized understanding of the symme-

try according to Definition 2.1, the D’Alembert equation for one component field is in-

variant with respect to any arbitrary reversible coordinate transformationsx′ = x′(x).
In particular, they contain the transformations of the conformal and Galilei groups re-

alizing the type of standard and generalized symmetry for Φ(x)=φ′(x′ → x)/φ(x).
The concept of partial differential equations symmetry is conventional.
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