CR-SUBMANIFOLDS OF A NEARLY TRANS-SASAKIAN MANIFOLD

FALLEH R. AL-SOLAMY

Received 26 September 2001

This paper considers the study of CR-submanifolds of a nearly trans-Sasakian manifold, generalizing the results of trans-Sasakian manifolds and thus those of Sasakian manifolds.

2000 Mathematics Subject Classification: 53C40.

1. Introduction. In 1978, Bejancu introduced the notion of CR-submanifold of a Kaehler manifold [1]. Since then several papers on CR-submanifolds of Kaehler manifold have been published. On the other hand, CR-submanifolds of a Sasakian manifold have been studied by Kobayashi [6], Shahid et al. [10], Yano and Kon [11], and others. Bejancu and Papaghuic [2] studied CR-submanifolds of a Kenmotsu manifold. In 1985, Oubina introduced a new class of almost contact metric manifold known as trans-Sasakian manifold [7]. This class contains α -Sasakian and β -Kenmotsu manifold [5]. Geometry of CR-submanifold of trans-Sasakian manifold was studied by Shahid [8, 9]. A nearly trans-Sasakian manifold [4] is a more general concept.

The results of this paper are the generalization of the results obtained earlier by several authors, namely [6, 8, 9] and others.

2. Preliminaries. Let \overline{M} be an n-dimensional almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g) satisfying [3]

$$\phi^{2}X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \ \phi \circ \xi = 0,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X),$$
(2.1)

where *X* and *Y* are vector fields tangent to \overline{M} .

An almost contact metric structure (ϕ, ξ, η, g) on \overline{M} is called trans-Sasakian if [7]

$$(\overline{\nabla}_X \phi)(Y) = \alpha \{ g(X, Y)\xi - \eta(Y)X \} + \beta \{ g(\phi X, Y)\xi - \eta(Y)\phi X \}, \tag{2.2}$$

where α and β are nonzero constants, $\overline{\nabla}$ denotes the Riemannian connection of g on \overline{M} , and we say that the trans-Sasakian structure is of type (α, β) .

Further, an almost contact metric manifold $\overline{M}(\phi, \xi, \eta, g)$ is called nearly trans-Sasakian if [4]

$$(\overline{\nabla}_X \phi)(Y) + (\overline{\nabla}_Y \phi)(X) = \alpha \{ 2g(X, Y)\xi - \eta(Y)X - \eta(X)Y \}$$

$$-\beta \{ \eta(Y)\phi X + \eta(X)\phi Y \}.$$
(2.3)

It is clear that any trans-Sasakian manifold, and thus any Sasakian manifold, satisfies the above relation.

Let M be an m-dimensional isometrically immersed submanifold of a nearly trans-Sasakian manifold \overline{M} and denote by the same g the Riemannian metric tensor field induced on M from that of \overline{M} .

DEFINITION 2.1. An m-dimensional Riemannian submanifold M of a nearly trans-Sasakian manifold \overline{M} is called a CR-submanifold if ξ is tangent to M and there exists a differentiable distribution $D: x \in M \to D_x \subset T_xM$ such that

- (1) the distribution D_x is invariant under ϕ , that is, $\phi D_x \subset D_x$ for each $x \in M$;
- (2) the complementary orthogonal distribution $D^{\perp}: x \in M \to D_{x}^{\perp} \subset T_{x}M$ of D is anti-invariant under ϕ , that is, $\phi D_{x}^{\perp} \subset T_{x}^{\perp}M$ for all $x \in M$, where $T_{x}M$ and $T_{x}^{\perp}M$ are the tangent space and the normal space of M at x, respectively.

If $\dim D_{X}^{\perp}=0$ (resp., $\dim D_{X}=0$), then the CR-submanifold is called an invariant (resp., anti-invariant) submanifold. The distribution D (resp., D^{\perp}) is called the horizontal (resp., vertical) distribution. Also, the pair (D,D^{\perp}) is called ξ -horizontal (resp., vertical) if $\xi_{X} \in D_{X}$ (resp., $\xi_{X} \in D_{X}^{\perp}$) [6].

For any vector field X tangent to M, we put [6]

$$X = PX + QX, (2.4)$$

where PX and QX belong to the distribution D and D^{\perp} .

For any vector field N normal to M, we put [6]

$$\phi N = BN + CN, \tag{2.5}$$

where BN (resp., CN) denotes the tangential (resp., normal) component of ϕN .

Let $\overline{\nabla}$ (resp., ∇) be the covariant differentiation with respect to the Levi-Civita connection on \overline{M} (resp., M). The Gauss and Weingarten formulas for M are respectively given by

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y); \qquad \overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \tag{2.6}$$

for $X, Y \in TM$ and $N \in T^{\perp}M$, where h (resp., A) is the second fundamental form (resp., tensor) of M in \overline{M} , and ∇^{\perp} denotes the normal connection. Moreover, we have

$$g(h(X,Y),N) = g(A_N X,Y).$$
 (2.7)

3. Some basic lemmas. First we prove the following lemma.

LEMMA 3.1. Let M be a CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . Then

$$P(\nabla_X \phi PY) + P(\nabla_Y \phi PX) - P(A_{\phi QX}Y) - P(A_{\phi QY}X)$$

$$= \phi P \nabla_X Y + \phi P \nabla_Y X + 2\alpha g(X, Y) P \xi - \alpha \eta(Y) PX$$

$$-\alpha \eta(X) PY - \beta \eta(Y) \phi PX + \beta \eta(X) \phi PY,$$
(3.1)

$$Q(\nabla_X \phi PY) + Q(\nabla_Y \phi PX) - Q(A_{\phi QX}Y) - Q(A_{\phi QY}X)$$

$$= 2Bh(X,Y) - \alpha \eta(Y)QX - \alpha \eta(X)QY + 2\alpha g(X,Y)Q\xi,$$
(3.2)

$$h(X, \phi PY) + h(Y, \phi PX) + \nabla_X^{\perp} \phi QY + \nabla_Y^{\perp} \phi QX$$

$$= \phi Q \nabla_Y X + \phi Q \nabla_X Y + 2Ch(X, Y) - \beta \eta(Y) \phi QX - \beta \eta(X) \phi QY$$
(3.3)

for $X, Y \in TM$.

PROOF. From the definition of the nearly trans-Sasakian manifold and using (2.4), (2.5), and (2.6), we get

$$\nabla_{X} \phi PY + h(X, \phi PY) - A_{\phi QY}X + \nabla_{X}^{\perp} \phi QY - \phi \left(\nabla_{X}Y + h(X, Y)\right)$$

$$+ \nabla_{Y} \phi PX + h(Y, \phi PX) - A_{\phi QX}Y + \nabla_{Y}^{\perp} \phi QX - \phi \left(\nabla_{Y}X + h(X, Y)\right)$$

$$= \alpha \{2g(X, Y)\xi - \eta(Y)X - \eta(X)Y\} - \beta \{\eta(Y)\phi X + \eta(X)\phi Y\}$$
(3.4)

for any $X, Y \in TM$.

Now using (2.4) and equaling horizontal, vertical, and normal components in (3.4), we get the result.

LEMMA 3.2. Let M be a CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . Then

$$2(\overline{\nabla}_X \phi)(Y) = \nabla_X \phi Y - \nabla_Y \phi X + h(X, \phi Y) - h(Y, \phi X) - \phi[X, Y]$$

$$+ \alpha \{2g(X, Y)\xi - n(Y)X - n(X)Y\} - \beta \{n(Y)\phi X + n(X)\phi Y\}$$
(3.5)

for any $X, Y \in D$.

PROOF. By Gauss formula (2.6), we get

$$\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = \nabla_X \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X). \tag{3.6}$$

Also, we have

$$\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = (\overline{\nabla}_X \phi)(Y) - (\overline{\nabla}_Y \phi)(X) + \phi[X, Y]. \tag{3.7}$$

From (3.6) and (3.7), we get

$$(\overline{\nabla}_{Y}\phi)(Y) - (\overline{\nabla}_{Y}\phi)(X) = \nabla_{Y}\phi Y + h(X,\phi Y) - \nabla_{Y}\phi X - h(Y,\phi X) - \phi[X,Y]. \quad (3.8)$$

Also for nearly trans-Sasakian manifolds, we have

$$(\overline{\nabla}_X \phi)(Y) + (\overline{\nabla}_Y \phi)(X) = \alpha \{ 2g(X, Y)\xi - \eta(Y)X - \eta(X)Y \} - \beta \{ \eta(Y)\phi X + \eta(X)\phi Y \}.$$
(3.9)

Combining (3.8) and (3.9), the lemma follows.

In particular, we have the following corollary.

COROLLARY 3.3. Let M be a ξ -vertical CR-submanifold of a nearly trans-Sasakian manifold, then

$$2(\overline{\nabla}_X\phi)(Y) = \nabla_X\phi Y - \nabla_Y\phi X + h(X,\phi Y) - h(Y,\phi X) - \phi[X,Y] + 2\alpha g(X,Y)\xi$$
(3.10)

for any $X, Y \in D$.

Similarly, by Weingarten formula (2.6), we get the following lemma.

LEMMA 3.4. Let M be a CR-submanifold of a nearly trans-Sasakian manifold \overline{M} , then

$$2(\overline{\nabla}_{Y}\phi)(Z) = A_{\phi Y}Z - A_{\phi Z}Y + \overline{\nabla}_{Y}^{\perp}\phi Z - \overline{\nabla}_{Z}^{\perp}\phi Y - \phi[Y,Z] + \alpha\{2g(Y,Z)\xi - \eta(Y)Z - \eta(Z)Y\} - \beta\{\eta(Y)\phi Z + \eta(Z)\phi Y\}$$
(3.11)

for any $Y, Z \in D^{\perp}$.

COROLLARY 3.5. Let M be a ξ -horizontal CR-submanifold of a nearly trans-Sasakian manifold, then

$$2(\overline{\nabla}_{Y}\phi)(Z) = A_{\phi Y}Z - A_{\phi Z}Y + \nabla_{Y}^{\perp}\phi Z - \nabla_{Z}^{\perp}\phi Y - \phi[Y, Z] + 2\alpha g(Y, Z)\xi \tag{3.12}$$

for any $Y, Z \in D^{\perp}$.

LEMMA 3.6. Let M be a CR-submanifold of a nearly trans-Sasakian manifold \overline{M} , then

$$2(\overline{\nabla}_X \phi)(Y) = \alpha \{2g(X, Y)\xi - \eta(Y)X - \eta(X)Y\} - \beta \{\eta(Y)\phi X + \eta(X)\phi Y\} - A_{\phi Y}X + \overline{\nabla}_X^{\perp}\phi Y - \overline{\nabla}_Y\phi X - h(Y, \phi X) - \phi[X, Y]$$
(3.13)

for any $X \in D$ and $Y \in D^{\perp}$.

4. Parallel distributions

DEFINITION 4.1. The horizontal (resp., vertical) distribution D (resp., D^{\perp}) is said to be parallel [1] with respect to the connection ∇ on M if $\nabla_X Y \in D$ (resp., $\nabla_Z W \in D^{\perp}$) for any vector field $X, Y \in D$ (resp., $W, Z \in D^{\perp}$).

Now we prove the following proposition.

PROPOSITION 4.2. Let M be a ξ -vertical CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . If the horizontal distribution D is parallel, then

$$h(X, \phi Y) = h(Y, \phi X) \tag{4.1}$$

for all $X, Y \in D$.

PROOF. Using parallelism of horizontal distribution D, we have

$$\nabla_X \phi Y \in D, \quad \nabla_Y \phi X \in D \quad \text{for any } X, Y \in D.$$
 (4.2)

Thus using the fact that QX = QY = 0 for $Y \in D$, (3.2) gives

$$Bh(X,Y) = g(X,Y)Q\xi \quad \text{for any } X,Y \in D. \tag{4.3}$$

Also, since

$$\phi h(X,Y) = Bh(X,Y) + Ch(X,Y), \tag{4.4}$$

then

$$\phi h(X,Y) = g(X,Y)Q\xi + Ch(X,Y) \quad \text{for any } X,Y \in D. \tag{4.5}$$

Next from (3.3), we have

$$h(X, \phi Y) + h(Y, \phi X) = 2Ch(X, Y) = 2\phi h(X, Y) - 2g(X, Y)Q\xi,$$
 (4.6)

for any $X, Y \in D$. Putting $X = \phi X \in D$ in (4.6), we get

$$h(\phi X, \phi Y) + h(Y, \phi^2 X) = 2\phi h(\phi X, Y) - 2g(\phi X, Y)Q\xi$$
 (4.7)

or

$$h(\phi X, \phi Y) - h(Y, X) = 2\phi h(\phi X, Y) - 2g(\phi X, Y)Q\xi.$$
 (4.8)

Similarly, putting $Y = \phi Y \in D$ in (4.6), we get

$$h(\phi Y, \phi X) - h(X, Y) = 2\phi h(X, \phi Y) - 2g(X, \phi Y)Q\xi.$$
 (4.9)

Hence from (4.8) and (4.9), we have

$$\phi h(X, \phi Y) - \phi h(Y, \phi X) = g(X, \phi Y)Q\xi - g(\phi X, Y)Q\xi. \tag{4.10}$$

Operating ϕ on both sides of (4.10) and using $\phi \xi = 0$, we get

$$h(X, \phi Y) = h(Y, \phi X) \tag{4.11}$$

for all
$$X, Y \in D$$
.

Now, for the distribution D^{\perp} , we prove the following proposition.

PROPOSITION 4.3. Let M be a ξ -vertical CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . If the distribution D^{\perp} is parallel with respect to the connection on M, then

$$(A_{\phi Y}Z + A_{\phi Z}Y) \in D^{\perp} \quad \text{for any } Y, Z \in D^{\perp}. \tag{4.12}$$

PROOF. Let $Y, Z \in D^{\perp}$, then using Gauss and Weingarten formula (2.6), we obtain

$$-A_{\phi Z}Y + \nabla_{Y}^{\perp}\phi Z - A_{\phi Y}Z + \nabla_{Z}^{\perp}\phi Y$$

$$= \phi \nabla_{Y}Z + \phi \nabla_{Z}Y + 2\phi h(Y, Z)$$

$$+ \alpha \{2g(X, Y)\xi - \eta(Y)Z - \eta(Z)Y\} - \beta \{\eta(Y)\phi Z + \eta(Z)\phi Y\}$$

$$(4.13)$$

for any $Y, Z \in D^{\perp}$. Taking inner product with $X \in D$ in (4.13), we get

$$g(A_{\phi Y}Z,X) + g(A_{\phi Z}Y,X) = g(\nabla_Y Z,\phi X) + g(\nabla_Z Y,\phi X). \tag{4.14}$$

If the distribution D^{\perp} is parallel, then $\nabla_Y Z \in D^{\perp}$ and $\nabla_Z Y \in D^{\perp}$ for any $Y, Z \in D^{\perp}$. So from (4.14) we get

$$g(A_{\phi Y}Z, X) + g(A_{\phi Z}Y, X) = 0$$
 or $g(A_{\phi Y}Z + A_{\phi Z}Y, X) = 0$ (4.15)

which is equivalent to

$$(A_{\phi Y}Z + A_{\phi Z}Y) \in D^{\perp} \quad \text{for any } Y, Z \in D^{\perp}, \tag{4.16}$$

and this completes the proof.

DEFINITION 4.4 [6]. A CR-submanifold is said to be mixed totally geodesic if h(X,Z) = 0 for all $X \in D$ and $Z \in D^{\perp}$.

The following lemma is an easy consequence of (2.7).

LEMMA 4.5. Let M be a CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . Then M is mixed totally geodesic if and only if $A_NX \in D$ for all $X \in D$.

DEFINITION 4.6 [6]. A normal vector field $N \neq 0$ is called D-parallel normal section if $\nabla_X^{\perp} N = 0$ for all $X \in D$.

Now we have the following proposition.

PROPOSITION 4.7. Let M be a mixed totally geodesic ξ -vertical CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . Then the normal section $N \in \phi D^{\perp}$ is D-parallel if and only if $\nabla_X \phi N \in D$ for all $X \in D$.

PROOF. Let $N \in \phi D^{\perp}$. Then from (3.2) we have

$$Q(\nabla_Y \phi X) = 0 \quad \text{for any } X \in D, Y \in D^{\perp}. \tag{4.17}$$

In particular, we have $Q(\nabla_Y X) = 0$. By using it in (3.3), we get

$$\nabla_X^{\perp} \phi Q Y = \phi Q \nabla_X Y \qquad \text{or} \qquad \nabla_X^{\perp} N = -\phi Q \nabla_X \phi N. \tag{4.18}$$

Thus, if the normal section $N \neq 0$ is D-parallel, then using Definition 4.6 and (4.18), we get

$$\phi Q(\nabla_X \phi N) = 0 \tag{4.19}$$

which is equivalent to $\nabla_X \phi N \in D$ for all $X \in D$. The converse part easily follows from (4.18).

5. Integrability conditions of distributions. First we calculate the Nijenhuis tensor $N_{\phi}(X,Y)$ on a nearly trans-Sasakian manifold \overline{M} . For this, first we prove the following lemma.

LEMMA 5.1. Let \overline{M} be a nearly trans-Sasakian manifold, then

$$(\overline{\nabla}_{\phi X}\phi)(Y) = 2\alpha g(\phi X, Y)\xi - \eta(Y)\phi X + \beta \eta(Y)X - \beta \eta(X)\eta(Y)\xi - \eta(X)\overline{\nabla}_{Y}\xi + \phi(\overline{\nabla}_{Y}\phi)(X) + \eta(\overline{\nabla}_{Y}X)\xi$$
(5.1)

for any $X, Y \in T\overline{M}$.

PROOF. From the definition of nearly trans-Sasakian manifold \overline{M} , we have

$$(\overline{\nabla}_{\phi X}\phi)(Y) = 2\alpha g(\phi X, Y)\xi - \eta(Y)\phi X + \beta \eta(Y)X -\beta \eta(Y)\eta(X)\xi - (\overline{\nabla}_{Y}\phi)(\phi X).$$
(5.2)

Also, we have

$$(\overline{\nabla}_{Y}\phi)(\phi X) = \overline{\nabla}_{Y}\phi^{2}X - \phi\overline{\nabla}_{Y}\phi X$$

$$= \overline{\nabla}_{Y}\phi^{2}X - \phi\overline{\nabla}_{Y}\phi X + \phi(\phi\overline{\nabla}_{Y}X) - \phi(\phi\overline{\nabla}_{Y}X)$$

$$= -\overline{\nabla}_{Y}X + \eta(X)\overline{\nabla}_{Y}\xi - \phi(\overline{\nabla}_{Y}\phi X - \phi\overline{\nabla}_{Y}X) - \phi(\phi\overline{\nabla}_{Y}X)$$

$$= -\overline{\nabla}_{Y}X + \eta(X)\overline{\nabla}_{Y}\xi - \phi(\overline{\nabla}_{Y}\phi)(X) - \overline{\nabla}_{Y}X - \eta(\overline{\nabla}_{Y}X)\xi.$$

$$(5.3)$$

Using (5.3) in (5.2), we get

$$(\overline{\nabla}_{\phi X}\phi)(Y) = 2\alpha g(\phi X, Y)\xi - \eta(Y)\phi X + \beta \eta(Y)X - \beta \eta(X)\eta(Y)\xi - \eta(X)\overline{\nabla}_{V}\xi + \phi(\overline{\nabla}_{V}\phi)(X) + \eta(\overline{\nabla}_{V}X)\xi$$
(5.4)

for any $X, Y \in T\overline{M}$, which completes the proof of the lemma.

On a nearly trans-Sasakian manifold \overline{M} , Nijenhuis tensor is given by

$$N_{\phi}(X,Y) = \left(\overline{\nabla}_{\phi X}\phi\right)(Y) - \left(\overline{\nabla}_{\phi Y}\phi\right)(X) - \phi\left(\overline{\nabla}_{X}\phi\right)(Y) + \phi\left(\overline{\nabla}_{Y}\phi\right)(X) \tag{5.5}$$

for any $X, Y \in T\overline{M}$.

From (5.1) and (5.5), we get

$$N_{\phi}(X,Y) = 4\alpha g(\phi X,Y)\xi - \eta(Y)\phi X + \eta(X)\phi Y + \beta \eta(Y)X$$
$$-\beta \eta(X)Y - \eta(X)\overline{\nabla}_{Y}\xi + \eta(Y)\overline{\nabla}_{X}\xi + \eta(\overline{\nabla}_{Y}X)\xi$$
$$-\eta(\overline{\nabla}_{X}Y)\xi + 2\phi(\overline{\nabla}_{Y}\phi)(X) - 2\phi(\overline{\nabla}_{X}\phi)(Y).$$
 (5.6)

Thus using (2.3) in the above equation and after some calculations, we obtain

$$N_{\phi}(X,Y) = 4\alpha g(\phi X,Y)\xi + (2\alpha - 1)\eta(Y)\phi X + (2\alpha + 1)\eta(X)\phi Y - \beta\eta(Y)X$$
$$-3\beta\eta(X)Y + 4\beta\eta(X)\eta(Y)\xi - \eta(X)\overline{\nabla}_{Y}\xi + \eta(Y)\overline{\nabla}_{X}\xi$$
$$+\eta(\overline{\nabla}_{Y}X)\xi - \eta(\overline{\nabla}_{X}Y)\xi + 4\phi(\overline{\nabla}_{Y}\phi)(X)$$
(5.7)

for any $X, Y \in T\overline{M}$.

Now we prove the following proposition.

PROPOSITION 5.2. Let M be a ξ -vertical CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . Then, the distribution D is integrable if the following conditions are satisfied:

$$S(X,Z) \in D$$
, $h(X,\phi Z) = h(\phi X,Z)$ (5.8)

for any $X, Z \in D$.

PROOF. The torsion tensor S(X,Y) of the almost contact structure (ϕ,ξ,η,g) is given by

$$S(X,Y) = N_{\phi}(X,Y) + 2d\eta(X,Y)\xi = N_{\phi}(X,Y) + 2g(\phi X,Y)\xi.$$
 (5.9)

Thus, we have

$$S(X,Y) = [\phi X, \phi Y] - \phi [\phi X, Y] - \phi [X, \phi Y] + 2g(\phi X, Y)\xi$$
 (5.10)

for any $X, Y \in TM$.

Suppose that the distribution D is integrable. So for $X,Y \in D$, Q[X,Y] = 0 and $\eta([X,Y]) = 0$ as $\xi \in D^{\perp}$.

If $S(X,Y) \in D$, then from (5.7) and (5.9) we have

$$\{2(2\alpha+1)g(\phi X,Y)\xi+\eta([X,Y])\xi+4(\phi\nabla_Y\phi X+\phi h(Y,\phi X)+Q\nabla_YX+h(X,Y))\}\in D$$
(5.11)

or

$$2(2\alpha+1)g(\phi X,Y)Q\xi+\eta([X,Y])Q\xi+4(\phi Q\nabla_Y\phi X+\phi h(Y,\phi X)+Q\nabla_Y X+h(X,Y))=0 \tag{5.12}$$

for any $X, Y \in D$.

Replacing *Y* by ϕZ for $Z \in D$ in the above equation, we get

$$2(2\alpha+1)g(\phi X,\phi Z)Q\xi+4(\phi Q \nabla_{\phi Y}\phi X+\phi h(\phi Z,\phi X)+Q \nabla_{\phi Z}X+h(X,\phi Z))=0. \tag{5.13}$$

Interchanging *X* and *Z* for $X, Z \in D$ in (5.13) and subtracting these relations, we obtain

$$\phi Q[\phi X, \phi Z] + Q[X, \phi Z] + h(X, \phi Z) - h(Z, \phi X) = 0$$
 (5.14)

for any $X, Z \in D$ and the assertion follows.

Now, we prove the following proposition.

PROPOSITION 5.3. Let M be a CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . Then

$$A_{\phi Y}Z - A_{\phi Z}Y = \alpha (\eta(Y)Z - \eta(Z)Y) + \frac{1}{3}\phi P[Y, Z]$$
 (5.15)

for any $Y, Z \in D^{\perp}$.

PROOF. For $Y, Z \in D^{\perp}$ and $X \in T(M)$, we get

$$2g(A_{\phi Z}Y,X) = 2g(h(X,Y),\phi Z)$$

$$= g(h(X,Y),\phi Z) + g(h(X,Y),\phi Z)$$

$$= g(\overline{\nabla}_X Y,\phi Z) + g(\overline{\nabla}_Y X,\phi Z)$$

$$= g(\overline{\nabla}_X Y + \overline{\nabla}_Y X,\phi Z)$$

$$= -g(\phi(\overline{\nabla}_X Y + \overline{\nabla}_Y X),Z)$$

$$= -g(\overline{\nabla}_Y \phi X + \overline{\nabla}_X \phi Y + \alpha \eta(X)Y + \alpha \eta(Y)X - 2\alpha g(X,Y)\xi,Z)$$

$$= -g(\overline{\nabla}_Y \phi X,Z) - g(\overline{\nabla}_X \phi Y,Z) - \alpha \eta(X)g(Y,Z)$$

$$-\alpha \eta(Y)g(X,Z) + 2\alpha \eta(Z)g(X,Y)$$

$$= g(\overline{\nabla}_Y Z,\phi X) + g(A_{\phi Y} Z,X) - \alpha \eta(X)g(Y,Z)$$

$$-\alpha \eta(Y)g(X,Z) + 2\alpha \eta(Z)g(X,Y).$$
(5.16)

The above equation is true for all $X \in T(M)$, therefore, transvecting the vector field X both sides, we obtain

$$2A_{\phi Z}Y = A_{\phi Y}Z - \phi \overline{\nabla}_{Y}Z - \alpha g(Y, Z)\xi - \alpha \eta(Y)Z + 2\alpha \eta(Z)Y \tag{5.17}$$

for any $Y, Z \in D^{\perp}$. Interchanging the vector fields Y and Z, we get

$$2A_{\phi Y}Z = A_{\phi Z}Y - \phi \overline{\nabla}_{Z}Y - \alpha g(Y, Z)\xi - \alpha \eta(Z)Y + 2\alpha \eta(Y)Z. \tag{5.18}$$

Subtracting (5.17) and (5.18), we get

$$A_{\phi Y}Z - A_{\phi Z}Y = \alpha \left(\eta(Y)Z - \eta(Z)Y \right) + \frac{1}{3}\phi P[Y, Z]$$
 (5.19)

for any $Y, Z \in D^{\perp}$, which completes the proof.

THEOREM 5.4. Let M be a CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . Then, the distribution D^{\perp} is integrable if and only if

$$A_{\phi Y}Z - A_{\phi Z}Y = \alpha(\eta(Y)Z - \eta(Z)Y), \quad \text{for any } Y, Z \in D^{\perp}. \tag{5.20}$$

PROOF. First suppose that the distribution D^{\perp} is integrable. Then $[Y,Z] \in D^{\perp}$ for any $Y,Z \in D^{\perp}$. Since P is a projection operator on D, so P[Y,Z] = 0. Thus from (5.15) we get (5.20). Conversely, we suppose that (5.20) holds. Then using (5.15), we have $\phi P[Y,Z] = 0$ for any $Y,Z \in D^{\perp}$. Since rank $\phi = 2n$. Therefore, either P[Y,Z] = 0 or $P[Y,Z] = k\xi$. But $P[Y,Z] = k\xi$ is not possible as P is a projection operator on D. Thus, P[Y,Z] = 0, which is equivalent to $[Y,Z] \in D^{\perp}$ for any $Y,Z \in D^{\perp}$ and hence D^{\perp} is integrable.

COROLLARY 5.5. Let M be a ξ -horizontal CR-submanifold of a nearly trans-Sasakian manifold \overline{M} . Then, the distribution D^{\perp} is integrable if and only if

$$A_{\phi Y}Z - A_{\phi Z}Y = 0 \tag{5.21}$$

for any $Y, Z \in D^{\perp}$.

REFERENCES

- [1] A. Bejancu, CR *submanifolds of a Kaehler manifold. I*, Proc. Amer. Math. Soc. **69** (1978), no. 1, 135–142.
- [2] A. Bejancu and N. Papaghuic, *CR-submanifolds of Kenmotsu manifold*, Rend. Mat. 7 (1984), no. 4, 607–622.
- [3] D. E. Blair, *Contact Manifolds in Riemannian Geometry*, Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, 1976.
- [4] C. Gherghe, *Harmonicity on nearly trans-Sasaki manifolds*, Demonstratio Math. **33** (2000), no. 1, 151–157.
- [5] D. Janssens and L. Vanhecke, *Almost contact structures and curvature tensors*, Kodai Math. J. 4 (1981), no. 1, 1–27.
- [6] M. Kobayashi, *CR submanifolds of a Sasakian manifold*, Tensor (N.S.) **35** (1981), no. 3, 297–307.
- [7] J. A. Oubiña, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
- [8] M. H. Shahid, CR-submanifolds of a trans-Sasakian manifold, Indian J. Pure Appl. Math. 22 (1991), no. 12, 1007–1012.
- [9] _____, CR-submanifolds of a trans-Sasakian manifold. II, Indian J. Pure Appl. Math. 25 (1994), no. 3, 299–307.
- [10] M. H. Shahid, A. Sharfuddin, and S. A. Husain, CR-submanifolds of a Sasakian manifold, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 15 (1985), no. 1, 263–278.
- [11] K. Yano and M. Kon, Contact CR submanifolds, Kodai Math. J. 5 (1982), no. 2, 238-252.

FALLEH R. AL-SOLAMY: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KING ABDUL AZIZ UNIVERSITY, P.O. BOX 80015, JEDDAH 21589, SAUDI ARABIA