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The aim of this paper is to introduce the concept of weakly compatible maps in 2-non-
Archimedean Menger probabilistic metric (PM) spaces and to prove a theorem for these
mappings without appeal to continuity. We also provide an application.
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1. Introduction. In 1999, Chugh and Sumitra [2] introduced the concept of 2-N.A.

Menger PM-space as follows.

Definition 1.1. Let X be any nonempty set and L the set of all left continuous

distribution functions. An ordered pair (X,F) is said to be a 2-non-Archimedean prob-

abilistic metric space (briefly 2-N.A. PM-space) if F is a mapping from X×X×X into

L satisfying the following conditions (where the value of F at x,y,z ∈ X×X×X is

represented by Fx,y,z or F(x,y,z) for all x,y,z ∈X):

(i) Fx,y,z(t)= 1 for all t > 0 if and only if at least two of the three points are equal,

(ii) Fx,y,z = Fx,z,y = Fz,y,x ,

(iii) Fx,y,z(0)= 0,

(iv) if Fx,y,s(t1)= Fx,s,z(t2)= Fs,y,z(t3)= 1, then Fx,y,z(max{t1, t2, t3})= 1.

Definition 1.2. A t-norm is a function ∆ : [0,1]× [0,1]× [0,1] → [0,1] which

is associative, commutative, nondecreasing in each coordinate and ∆(a,1,1) = a for

every a∈ [0,1].
Definition 1.3. A 2-N.A. Menger PM-space is an order triplet (X,F,∆) where ∆ is

a t-norm and (X,F) is 2-N.A. PM-space satisfying the following condition:

(v) Fx,y,z(max{t1, t2, t3})≥∆(Fx,y,s(t1),Fx,s,z(t2),Fs,y,z(t3)) for all x,y,z,s ∈X and

t1, t2, t3 ≥ 0.

Definition 1.4. Let (X,F,∆) be a 2-N.A. Menger PM-space and ∆ a continuous

t-norm, then (X,F,∆) is a Hausdorff in the topology induced by the family of neigh-

bourhoods of x
{
Ux
(
ε,λ,a1,a2, . . . ,an

)
, x, ai ∈X, ε > 0, i= 1,2, . . . ,n, n∈ Z+}, (1.1)

where Z+ is the set of all positive integers and

Ux
(
ε,λ,a1,a2, . . . ,an

)= {y ∈X; Fx,y,ai(ε) > 1−λ, 1≤ i≤n}

=
n⋂
i=1

{
y ∈X; Fx,y,ai(ε) > 1−λ, 1≤ i≤n}. (1.2)
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Definition 1.5. A 2-N.A. Menger PM-space (X,F,∆) is said to be of type (C)g if

there exists a g ∈Ω such that

g
(
Fx,y,z(t)

)≤ g(Fx,y,a(t))+g(Fx,a,z(t))+g(Fa,y,z(t)) (1.3)

for all x,y,z,a∈X and t ≥ 0, where Ω= {g;g : [0,1]→ [0,∞)} is continuous, strictly

decreasing, g(1)= 0 and g(0) <∞.

Definition 1.6. A 2-N.A. Menger PM-space (X,F,∆) is said to be of type (D)g if

there exists a g ∈Ω such that

g
(
∆
(
t1, t2, t3

))≤ g(t1)+g(t2)+g(t3) ∀t1, t2, t3 ∈ [0,1]. (1.4)

Definition 1.7. Let (X,F,∆) be a 2-N.A. Menger PM-space where ∆ is a continuous

t-norm and A,S : X → X be mappings. The mappings A and S are said to be weakly

compatible if they commute at the coincidence point, that is, the mappings A and S
are weakly compatible if and only if Ax = Sx implies ASx = SAx.

Remark 1.8. (1) If 2-N.A. PM-space (X,F,∆) is of type (D)g , then (X,F,∆) is of

type (C)g .

(2) If (X,F,∆) is a 2-N.A. PM-space and ∆≥∆m, where ∆m(r ,s,t)=max{r +s+t−
1,0,0}, then (X,F,∆) is of type (D)g for g ∈Ω defined by g(t)= 1−t.

Throughout this paper, let (X,F,∆) be a complete 2-N.A. Menger PM-space of type

(D)g with a continuous strictly increasing t-norm ∆.

Let φ : [0,∞)→ [0,∞) be a function satisfying the condition (Φ):
(Φ) φ is upper semi-continuous from right and φ(t) < t for all t > 0.

Lemma 1.9 (see [1]). If a functionφ : [0,∞)→ [0,∞) satisfies the condition (Φ), then

(1) for all t ≥ 0, limn→∞φn(t)= 0 where φn(t) is the nth iteration of φ(t);
(2) if {tn} is a nondecreasing sequence of real numbers and tn+1 ≤ φ(tn), n =

1,2, . . . , then limn→∞ tn = 0. In particular, if t ≤φ(t) for all t ≥ 0, then t = 0.

Lemma 1.10 (see [1]). Let {yn} be a sequence in X such that limn→∞Fyn,yn+1,a(t)= 1

for all t > 0. If the sequence {yn} is not Cauchy sequence in X, then there exist ε0 > 0,

t0 > 0, and two sequences {mi} and {ni} of positive integers such that

(i) mi >ni+1 and ni→∞ as i→∞,

(ii) Fymi ,yni ,a(t0) < 1−ε0 and Fymi−1,yni ,a
(t0) > 1−ε0, i= 1,2, . . . .

Chugh and Sumitra [2] proved the following theorem.

Theorem 1.11. Let A, B, S, T : X → X be mappings satisfying the following condi-

tions:

(i) A(X)⊂ T(X) and B(X)⊂ S(X);
(ii) the pairs A, S and B, T are weak compatible of type (A);

(iii) S and T are continuous;
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(iv) for all a∈X and t > 0,

g
(
FAx,By,a(t)

)≤φ
(

max
{
g
(
FSx,Ty,a(t)

)
,g
(
FSx,Ax,a(t)

)
,g
(
FTy,By,a(t)

)
,

1
2

(
g
(
FSx,By,a(t)

)+g(FTy,Ax,a(t)))
})
,

(1.5)

where a function φ : [0,∞)→ [0,∞) satisfies the condition (Φ).
Then A, B, S, and T have a unique common fixed points in X.

Now we prove the following theorem.

Theorem 1.12. Let A, B, S, T :X →X be mappings satisfying

A(X)⊂ T(X), B(X)⊂ S(X), (1.6)

the pairs A, S and B, T are weakly compatible, (1.7)

g
(
FAx,By,a(t)

)≤φ
(

max
{
g
(
FSx,Ty,a(t)

)
,g
(
FSx,Ax,a(t)

)
,g
(
FTy,By,a(t)

)
,

1
2

(
g
(
FSx,By,a(t)

)+g(FTy,Ax,a(t)))
}) (1.8)

for all t > 0, a∈X where a functionφ : [0,∞)→ (0,∞) satisfies the condition (Φ). Then

A, B, S, and T have a unique common fixed point in X.

Proof. By (1.6) sinceA(X)⊂ T(X), for any x0 ∈X, there exists a point x1 ∈X such

that Ax0 = Tx1. Since B(X) ⊂ S(X), for this x1, we can choose a point x2 ∈ X such

that Bx1 = Sx2 and so on, inductively, we can define a sequence {yn} in X such that

y2n =Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2, for n= 0,1,2, . . . . (1.9)

First we prove the following lemma.

Lemma 1.13. Let A, B, S, T :X →X be mappings satisfying conditions (1.6) and (1.8),

then the sequence {yn} defined by (1.9), such that limn→∞g(Fyn,yn+1,a(t)) = 0 for all

t > 0, a∈X, is a Cauchy sequence in X.

Proof. Since g ∈ Ω, it follows that limn→∞(Fyn,yn+1,a(t)) = 0 for all a ∈ X and

t > 0 if and only if limn→∞g(Fyn,yn+1,a(t))= 0 for all a∈X and t > 0. By Lemma 1.10,

if {yn} is not a Cauchy sequence in X, there exist ε0 > 0, t0 > 0, and two sequences

{mi}, {ni} of positive integers such that

(A) mi >ni+1 and ni→∞ as i→∞,

(B) g(Fymi ,yni ,a(t0)) > g(1−ε0) and g(Fymi−1,yni ,a
(t0))≤ g(1−ε0), i= 1,2, . . . .

Thus we have

g
(
1−ε0

)
< g

(
Fymi ,yni ,a

(
t0
))≤ g(Fymi ,yni ,ymi−1

(
t0
))

+g(Fymi ,ymi−1,a
(
t0
))+g(Fymi−1,yni ,a

(
t0
))

≤ g(Fymi ,yni ,ymi−1
(
t0
))+g(Fymi ,ymi−1,a

(
t0
))+g(1−ε0

)
.

(1.10)

Letting i→∞ in (1.10), we have

lim
n→∞g

(
Fymi ,yni ,a

(
t0
))= g(1−ε0

)
. (1.11)
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On the other hand, we have

g
(
1−ε0

)
< g

(
Fymi ,yni ,a

(
t0
))≤ g(Fymi ,yni ,yni+1

(
t0
))

+g(Fymi ,yni+1,a
(
t0
))+g(Fyni+1,yni ,a

(
t0
))
.

(1.12)

Now, consider g(Fymi ,yni+1,a(t0)) in (1.12), without loss of generality, assume that

both ni and mi are even.

Then by (1.8), we have

g
(
Fymi ,yni+1,a

(
t0
))= g(FAxmi,Bxni+1,a

(
t0
))

≤φ
(

max
{
g
(
FSxmi,Txni+1,a

(
t0
))
,

g
(
FSxmi,Axmi,a

(
t0
))
,g
(
FTxni+1,Bxni+1,a

(
t0
))
,

1
2

(
g
(
FSxmi,Bxni+1,a

(
t0
))+g(FTxni+1,Axmi+1,a

(
t0
)))})

=φ
(

max
{
g
(
Fymi ,−1,yni ,a

(
t0
))
,

g
(
Fymi ,−1,ymi ,a

(
t0
))
,g
(
Fyni ,yni+1,a

(
t0
))
,

1
2

(
g
(
Fymi ,−1,yni+1,a

(
t0
))+g(Fyni ,ymi ,a

(
t0
)))})

.

(1.13)

By (1.11), (1.12), and (1.13), letting i→∞ in (1.13), we have

g
(
1−ε0

)≤φ(max
{
g
(
1−ε0

)
,0,0,g

(
1−ε0

)})=φ(g(1−ε0
))
< g

(
1−ε0

)
(1.14)

which is a contradiction. Therefore, {yn} is a Cauchy sequence in X.

Now, we are ready to prove our main theorem.

If we prove limn→∞g(Fyn,yn+1,a(t))= 0 for all a∈X and t > 0, then by Lemma 1.13,

the sequence {yn} defined by (1.9) is a Cauchy sequence in X. First we prove that

limn→∞g(Fyn,yn+1,a(t))= 0 for all a∈X and t > 0. In fact, by (1.8) and (1.9), we have

g
(
Fy2n,Y2n+1,a(t)

)= g(FAx2n,Bx2n+1,a(t)
)

≤φ
(

max
{
g
(
FSx2n,Tx2n+1,a(t)

)
,

g
(
FSx2n,Ax2n,a(t)

)
,g
(
FTx2n+1,Bx2n+1,a(t)

)
,

1
2

(
g
(
FSx2n,Bx2n+1,a(t)

)+g(FTx2n+1,Ax2n,a(t)
))})

=φ
(

max
{
g
(
Fy2n−1,y2n,a(t)

)
,g
(
Fy2n−1,y2n,a(t)

)
,

g
(
Fy2n,y2n+1,a(t)

)
,
1
2

(
g
(
Fy2n−1,y2n+1,a(t)

)+g(1))
})

≤φ
(

max
{
g
(
Fy2n−1,y2n,a(t)

)
,g
(
Fy2n,y2n+1,a(t)

)
,

1
2

(
g
(
Fy2n−1,y2n,a(t)

)+g(Fy2n,y2n+1,a(t)
))})

.

(1.15)



WEAKLY COMPATIBLE MAPS IN 2-NON-ARCHIMEDEAN . . . 371

If g(Fy2n−1,y2n,a(t))≤ g(Fy2n,y2n+1,a(t)) for all t > 0, then by (1.8),

g
(
Fy2n,y2n+1,a(t)

)≤φ(g(Fy2n,y2n+1,a(t)
))

(1.16)

and thus, by Lemma 1.9, g(Fy2n,y2n+1,a(t)) = 0 for all a ∈ X and t > 0. Similarly, we

have g(Fy2n+1, y2n+2, a(t)) = 0, thus we have limn→∞g(Fyn,yn+1,a(t)) = 0 for all a ∈ X
and t > 0. On the other hand, if g(Fy2n−1,y2n,a(t)) ≥ g(Fy2n,y2n+1,a(t)), then by (1.8),

we have

g
(
Fy2n,y2n+1,a(t)

)≤φ(g(Fy2n−1,y2n,a(t)
)) ∀a∈X, t > 0. (1.17)

Similarly, g(Fy2n+1,y2n+2,a(t))≤φ(g(Fy2n,y2n+1,a(t))) for all a∈ X and t > 0. Thus we

have g(Fyn,yn+1,a(t)) ≤φ(g(Fyn−1,yn,a(t))) for all a ∈ X and t > 0 and n = 1,2,3, . . . ,
therefore by Lemma 1.9, limn→∞g(Fyn,yn+1,a(t)) = 0 for all a ∈ X and t > 0, which

implies that {yn} is a Cauchy sequence in X by Lemma 1.13. Since (X,F,∆) is com-

plete, the sequence {yn} converges to a point z ∈X and so the subsequences {Ax2n},
{Bx2n+1}, {Sx2n}, {Tx2n+1} of {yn} also converge to the limit z. Since B(X)⊂ S(X),
there exists a point u∈X such that z = Su.

Now

g
(
FAu,z,a(t)

)≤ g(FAu,Bx2n+1,Z(t)
)+g(FBx2n+1,z,a(t)

)+g(FAu,Bx2n+1,a(t)
)
. (1.18)

From (1.8), we have

g
(
FAu,Bx2n+1,a(t)

)≤φ
(

max
{
g
(
FSu,Tx2n+1,a(t)

)
,g
(
FSu,Au,a(t)

)
,g
(
FTx2n+1,Bx2n+1,a(t)

)
,

1
2

(
g
(
FSu,Bx2n+1,a(t)

)+g(FTx2n+1,Au,a(t)
))})

.

(1.19)

From (1.18) and (1.19), letting n→∞, we have

g
(
FAu,z,a(t)

)≤φ
(

max
{
g
(
FSu,z,a(t)

)
,g
(
FSu,Au,a(t)

)
,g
(
Fz,z,a(t)

)
,

1
2

(
g
(
FSu,z,a(t)

)+g(Fz,Au,a(t)))
})

=φ(g(Fz,Au,a(t))) ∀a∈X, t > 0,

(1.20)

which means z = Au = Su. Since A(X) ⊂ T(X), there exists a point v ∈ X such that

z = Tv . Then, again using (1.8), we have

g
(
Fz,Bv,a(t)

)= g(FAu,Bv,a(t))

≤φ
(

max
{
g
(
FSu,Tv,a(t)

)
,g
(
FSu,Au,a(t)

)
,g
(
FTv,Bv,a(t)

)
,

1
2

(
g
(
FSu,Bv,a(t)

)+g(FTv,Au,a(t)))
})

=φ(g(Fz,Bv,a(t))), ∀a∈X, t > 0,

(1.21)

which implies that Bv = z = Tv .
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Since pairs of maps A and S are weakly compatible, then ASu= SAu, that is, Az =
Sz. Now we show that z is a fixed point of A. If Az ≠ z, then by (1.8),

g
(
FAz,z,a(t)

)= g(FAz,Bv,a(t))

≤φ
(

max
{
g
(
FSz,Tv,a(t)

)
,g
(
FSz,Az,a(t)

)
,g
(
FTv,Bv,a(t)

)
,

1
2

(
g
(
FSz,Bv,a(t)

)+g(FTv,Az,a(t)))
})

=φ(max
{
g
(
FAz,z,a(t)

)})
, implies Az = z.

(1.22)

Similarly, pairs of maps B and T are weakly compatible, we have Bz = Tz. Therefore,

g
(
FAz,z,a(t)

)= g(FAz,Bz,a(t))

≤φ
(

max
{
g
(
FSz,Tz,a(t)

)
,g
(
FSz,Az,a(t)

)
,g
(
FTz,Bz,a(t)

)
,

1
2

(
g
(
FSz,Bz,a(t)

)+g(FTz,Az,a(t)))
})

=φ(max
{
g
(
Fz,Tz,a(t)

)})
.

(1.23)

Thus we have Bz = Tz = z.

Therefore, Az = Bz = Sz = Tz and z is a common fixed point of A, B, S, and T . The

uniqueness follows from (1.8).

2. Application

Theorem 2.1. Let (X,F,∆) be a complete 2-N.A. Menger PM-space and A, B, S, and

T be the mappings from the product X×X to X such that

A
(
X×{y})⊆ T(X×{y}), B

(
X×{y})⊆ (X×{y}),

g
(
FA(T(x,y),y),T(A(x,y),y),a(t)

)≤ g(FA(x,y),T(x,y),a(t)),
g
(
FB(S(x,y),y),S(B(x,y),y),a(t)

)≤ g(FB(x,y),S(x,y),a(t))
(2.1)

for all a∈X and t > 0 and

g
(
FA(x,y),B(x′,y′),a(t)

)

≤φ
(
max

{
g
(
FS(x,y),T(x′,y′),a(t)

)
,g
(
FS(x,y),A(x,y),a(t)

)
,g
(
FT(x′,y′),B(x′,y′),a(t)

)
,

1
2

(
g
(
FS(x,y),B(x′,y′),a(t)

)+g(FT(x′,y′),A(x,y),a(t)))
}) (2.2)

for alla∈X, t>0, andx,y ,x′,y ′ inX, then there exists only one point b in X such that

A(b,y)= S(b,y)= B(b,y)= T(b,y) ∀y in X. (2.3)

Proof. By (2.2),

g
(
FA(x,y),B(x′,y′)(t)

)

≤φ
(
max

{
g
(
FS(x,y),T(x′,y′),a(t)

)
,g
(
FS(x,y),A(x,y),a(t)

)
,g
(
FT(x′,y′),B(x′,y′),a(t)

)
,

1
2

(
g
(
FS(x,y),B(x′,y′),a(t)

)+g(FT(x′,y′),A(x,y),a(t)))
}) (2.4)
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for all a∈ X and t > 0; therefore by Theorem 1.12, for each y in X, there exists only

one x(y) in X such that

A
(
x(y),y

)= S(x(y),y)= B(x(y),y)= T(x(y),y)= x(y) (2.5)

for every y,y ′ in X,

g
(
Fx(y),x(y′),a(t)

)
=g(FA(x(y),y),A(x(y′),y′),a(t))

≤φ
(
max

{
g
(
FA(x,y),A(x′,y′),a(t)

)
,g
(
FA(x,y),A(x,y),a(t)

)
,g
(
FT(x′,y′),A(x′,y′),a(t)

)
,

1
2

(
g
(
FA(x,y),A(x′,y′),a(t)

)+g(FA(x′,y′),A(x,y),a(t)))
})

=g(Fx(y),x(y′),a(t)).

(2.6)

This implies x(y)= x(y ′) and hence x(y) is some constant b ∈X so that

A(b,y)= b = T(b,y)= S(b,y)= B(b,y) ∀y in X. (2.7)
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