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The aim of this paper is to introduce the concept of weakly compatible maps in 2-non-
Archimedean Menger probabilistic metric (PM) spaces and to prove a theorem for these
mappings without appeal to continuity. We also provide an application.
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1. Introduction. In 1999, Chugh and Sumitra [2] introduced the concept of 2-N.A.
Menger PM-space as follows.

DEFINITION 1.1. Let X be any nonempty set and L the set of all left continuous
distribution functions. An ordered pair (X, F) is said to be a 2-non-Archimedean prob-
abilistic metric space (briefly 2-N.A. PM-space) if F is a mapping from X X X X X into
L satisfying the following conditions (where the value of F at x,y,z € X X X X X is
represented by Fy , . or F(x,y,z) for all x,y,z € X):

(i) Fx,y(t)=1forall t > 0if and only if at least two of the three points are equal,
(ii) Fx,y,z = Fx,z,y = FZ,y,Xy
(111) Fx,y,z(o) = 0,
(iv) if Fx,y,s(tl) =Fys2(t2) = Fs,y,z(tB) =1, then Fyy,z (max{ty,t2,t3}) = 1.

DEFINITION 1.2. A t-norm is a function A : [0,1] x[0,1] x[0,1] — [0,1] which
is associative, commutative, nondecreasing in each coordinate and A(a,1,1) = a for
every a € [0,1].

DEFINITION 1.3. A 2-N.A. Menger PM-space is an order triplet (X,F,A) where A is
a t-norm and (X, F) is 2-N.A. PM-space satisfying the following condition:

v) Fyy,z (max{ty,t2,t3}) = A(Fx,y,s(tl),Fx,s,z(t2)st,y,z(t3)) forall x,y,z,s € X and
ti,to,t3 = 0.

DEFINITION 1.4. Let (X,F,A) be a 2-N.A. Menger PM-space and A a continuous
t-norm, then (X,F,A) is a Hausdorff in the topology induced by the family of neigh-
bourhoods of x

{Ux(e,A,ay,a,...,ay), x,a;€X,€>0,i=1,2,....n, nE€Z"}, (1.1)
where 7" is the set of all positive integers and

Ux(€,A,a1,az,...,an) = {¥ €X; Fxya,(€)>1-A, 1 <i<n}
(1.2)

n
= {y eX; Feya () >1-A, 1 <i<n}.
i=1
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DEFINITION 1.5. A 2-N.A. Menger PM-space (X,F,A) is said to be of type (C)y if
there exists a g € Q such that

g(Fx,y,z(t)) = g(Fx,y,a(t)) +g(Fx,a,z(t)) +g(Fu,y,z(t)) (1.3)

for all x,y,z,a€ X and t > 0, where Q = {g;g:[0,1] — [0, 00)} is continuous, strictly
decreasing, g(1) =0 and g(0) < co.

DEFINITION 1.6. A 2-N.A. Menger PM-space (X, F,A) is said to be of type (D), if
there exists a g € Q such that

g(A(ty,t2,t3)) <g(t1) +g(t2) +g(t3) Vi, ta,t3€[0,1]. (1.4)

DEFINITION 1.7. Let (X,F,A) be a 2-N.A. Menger PM-space where A is a continuous
t-norm and A,S : X — X be mappings. The mappings A and S are said to be weakly
compatible if they commute at the coincidence point, that is, the mappings A and S
are weakly compatible if and only if Ax = Sx implies ASx = SAx.

REMARK 1.8. (1) If 2-N.A. PM-space (X,F,A) is of type (D)g4, then (X,F,A) is of
type (C)g.

2)If (X,F,A) is a 2-N.A. PM-space and A > A,,, where A, (v,s,t) =max{r +s+t—
1,0,0}, then (X,F,A) is of type (D), for g € Q defined by g(t) =1 —t.

Throughout this paper, let (X,F,A) be a complete 2-N.A. Menger PM-space of type
(D)4 with a continuous strictly increasing t-norm A.

Let ¢p:[0,0) — [0,00) be a function satisfying the condition (®):

(®) ¢ is upper semi-continuous from right and ¢ (t) <t for all t > 0.

LEMMA 1.9 (see [1]). If a function ¢ : [0,00) — [0, ) satisfies the condition (®), then

(1) forallt =0, lim,_ ¢"(t) =0 where ¢p"(t) is the nth iteration of ¢p(t);

(2) if {tn} is a nondecreasing sequence of real numbers and t,.1 < ¢p(t,), n =
1,2,..., thenlim,,_ t,, = 0. In particular, if t < ¢(t) forallt =0, thent =0.

LEMMA 1.10 (see [1]). Let{yy} be a sequence in X such thatlimy_.Fy, vy, ,a(t) =1
for all t > 0. If the sequence {yy} is not Cauchy sequence in X, then there exist €y > 0,
to > 0, and two sequences {m;} and {n;} of positive integers such that

(i) mi>ni+1andn; — o~ asi — o,
(ii) Fymi,yni,a(tO) <1-€9 and Fymifl,yn,r,a(t()) >1-€p,1=1,2,....

Chugh and Sumitra [2] proved the following theorem.

THEOREM 1.11. Let A, B, S, T : X — X be mappings satisfying the following condi-
tions:
(i) A(X) cT(X) and B(X) Cc S(X);
(ii) the pairs A, S and B, T are weak compatible of type (A);
(iii) S and T are continuous;
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(iv) forallae X andt > 0,

g(FAx,By,u(t)) = d)(l’l’laX {Q(FSx,Ty,u(t))sg(FSx,Ax,u(t))ag(FTy,By,a(t))a

1 (1.5)
> (9(Fsx,By,a(t)) +g(FTy,Ax,a(t)))}>:
where a function ¢ :[0,0) — [0, c0) satisfies the condition (®).
Then A, B, S, and T have a unique common fixed points in X.
Now we prove the following theorem.
THEOREM 1.12. Let A, B, S, T: X — X be mappings satisfying
A(X) Cc T(X), B(X) C S(X), (1.6)
the pairs A, S and B, T are weakly compatible, (1.7)
9(Facya®) < ¢(max g (Fsuaya(0).0 (Fseana(©),0(Frymya ),
(1.8)

1
2 (g(FSX,By,a(t)) ""g(FTy,Ax,a(t)))})

forallt > 0, a € X where a function ¢ : [0, ) — (0, 00) satisfies the condition (). Then
A, B, S, and T have a unique common fixed point in X.

PROOF. By (1.6)since A(X) C T(X), for any xo € X, there exists a point x; € X such
that Axo = Tx;. Since B(X) C S(X), for this x;, we can choose a point x, € X such
that Bx; = Sx» and so on, inductively, we can define a sequence {y,} in X such that

Yon = AXon = TXons1, Yon+1 = BXops1 = Sxopy2, forn=0,1,2,.... (1.9)
O

First we prove the following lemma.

LEMMA 1.13. LetA, B, S, T : X — X be mappings satisfying conditions (1.6) and (1.8),
then the sequence {yn} defined by (1.9), such that limy_. g(Fy, y,.,.a(t)) =0 for all
t>0,ae€X,isa Cauchy sequence in X.

PROOF. Since g € Q, it follows that limy_« (Fy,,y,,,a(t)) = 0 for all a € X and
t > 01if and only if limy, .. g (Fy,,,y,,,,a(t)) = 0 for all a € X and ¢ > 0. By Lemma 1.10,
if {v,} is not a Cauchy sequence in X, there exist €y > 0, top > 0, and two sequences
{m;}, {n;} of positive integers such that

(A) mi>n;+1and n; —» o« as i — oo,

(B) g(Fymi,yni_u(to)) > g(l—¢€p) and g(Fymi,l_yni,a(to)) <g(l-€p),i=1,2,....
Thus we have

g(1-¢€p) < g(Fymi,yni,a(tO)) = g(Fymi,yni,ymi—l (to))
"‘g(Fymi,ymi—l,u(tO)) +g(Fymi—1,yni,u(tO)) (1.10)
< G (Fym, vnyvm;~1(80)) + G (Fypn; ym, -1,a(t0)) + g (1 —€0).

Letting i — o0 in (1.10), we have

hmg(FJ’miuJ’ni,a(tO)) =g(1—€0). (111)

n—oo
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On the other hand, we have
g(l - 60) < g(FJ'miJ/niya(tO)) = g(Fymi,J’ni,yni+l (t()))
] (1.12)
+g(Fymi,yni+1,a(t0)) +g(Fyn,.+l,yni,a(t0))-

Now, consider g(Fymi,ynﬁ 1a(to)) in (1.12), without loss of generality, assume that
both n; and m; are even.

Then by (1.8), we have
9(Fyp;yn;+1,a(to)) = g (Faxmpxni+1,a(to))
< d)(max {Q(FSxmi,Txni+l,a(t0)),
9 (Fsxm;axmia(t0)), g (Fran;+1,8xn;+1.a(t0)),

1
2 (g (FSxmi,ani+l,a (to)) +g(FTxni+l,AxmL-+l,u (tO) ) ) })

= ¢><max {Q(Fymi,—l,yni,u(tO))a

g(Fymi,—l,ymi,a(tO))ag(Fyni,yniH,a(tO));
5@yt 10 (80)) + 0y alto) ] )

(1.13)
By (1.11), (1.12), and (1.13), letting i — o in (1.13), we have

g(1-eo) < p(max{g(1-€),0,0,g(1-¢€o)}) = p(g(l-€9)) <g(1-€) (1.14)

which is a contradiction. Therefore, {y,} is a Cauchy sequence in X. O

Now, we are ready to prove our main theorem.

If we prove limy, .« g(Fy,,y,,,1,a(t)) = 0 foralla € X and ¢ > 0, then by Lemma 1.13,
the sequence {y,} defined by (1.9) is a Cauchy sequence in X. First we prove that
limy—ew g(Fy, yp.1,a(t)) =0 foralla € X and t > 0. In fact, by (1.8) and (1.9), we have

9(FyznYon1.a () = G(Faxyy Brop1.a(t))
< (max {9 (Fsxa, rxzper.a (1),
9 (Fsxyn axom.a(t)) 9 (Frxyn.1 Bxop.ra (1)),
30 Fsx s a(0) 40 (Frasys acs,a®) ]
= (max {9 (Fra, s vena©),0 By a0,
9(Frapnera(®) 5 (0P s na®) +a (D) ])

= ¢) (maX <zg(FJ’ZVL—L}’ZVL,&(t))!g(FJ/Zn:erHl:a-(t-))’

1
E (g (FyZn—lxyz'nvﬂ(t)) +g (Fy2n,y2n+1,a(t)) ) }) -

(1.15)
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If g(Fyyp_1,voma(t)) < g(Fyyy yoniq,a(t)) for all t > 0, then by (1.8),

g(FJ’Zn|y2n+1,a(t)) = d)(g(FyZn,yan,a(t))) (116)

and thus, by Lemma 1.9, g(Fy,, y,,,1,a(t)) = 0 for all a € X and ¢ > 0. Similarly, we
have g(Fy,, .1, vans2, a(t)) = 0, thus we have limy . g(Fy, y,,,.a(t)) =0 foralla € X
and t > 0. On the other hand, if g(Fy,, |,v:.a(£)) = G(Fy,, von.1.a(t)), then by (1.8),
we have

9(Fyopvonir,a®) < P(G(Fyoy 1 yoma(t))) YaeX, t>0. (1.17)

Similarly, g(Fy,,,1,vsns0.a(£)) < P(G(Fyspy yon.r,a(t))) forall a € X and t > 0. Thus we
have g(Fy,,v,.1,a(t) < (g(Fy, | ynal(t))) foralac Xandt >0and n =1,2,3,...,
therefore by Lemma 1.9, limy o g(Fy,, y,,,,a(f)) = 0 for all a € X and ¢ > 0, which
implies that {y,} is a Cauchy sequence in X by Lemma 1.13. Since (X,F,A) is com-
plete, the sequence {y;,} converges to a point z € X and so the subsequences {Ax>,},
{Bxon+1}, {Sxont, {Txons1} of {yy} also converge to the limit z. Since B(X) C S(X),
there exists a point u € X such that z = Su.
Now

g(FAu,z,a(t)) = g(FAu,Bx2n+1,Z(t)) +g(FBx2n+1,z,u(t)) +g(FAu,Bx2n+1,a(t))- (1.18)
From (1.8), we have
g(FAu,B)Qn“,a(t)) = ¢(maX {Q(FSu,TXZnH,a(t));g(FSu,Au,a(t));g(FTXZnH,Bx2n+1,a(t));

1
5 (g (FSu,BXZnH,a(t)) +g(FTX2n+1,Au,u(t)))})-

2
(1.19)
From (1.18) and (1.19), letting n — o, we have
9(Fauza®) = b(max] 9 (Fsuza (0,9 (Fsua0),0 (- za (1),
2@ (Fsuza(0) +0(Foua®) }) (1.20

= d)(g(Fz,Au,a(t))) VaeX, t>0,

which means z = Au = Su. Since A(X) C T(X), there exists a point v € X such that
z = Tv. Then, again using (1.8), we have

g(Fz,Bv,a(t)) = g(FAu,Bv,a(t))

< ¢ (max {9 (Fsurua(0),0 (Fsuiua (0),0 (Froua (1),
(1.21)

1
E (g(FSu,Bv,a(t)) +g(FTv,Au,a(t)))}>

=¢(g(Fz,Bv,a(t))), VaeX,t>0,

which implies that Bv =z = Tv.
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Since pairs of maps A and S are weakly compatible, then ASu = SAu, thatis, Az =
Sz. Now we show that z is a fixed point of A. If Az # z, then by (1.8),

g(FAz,z,a(t)) = g(FAz,Bv,a(t))

=< d)(max {g(FSz,Tv,a(t));g(FSz,Az,a(t));Q(FTU,Bv,a(t)),
(1.22)

1
E (g(FSz,Bv,u(t)) +g(FTv,Az,u(t)))}>
= d)(max {g (FAz,z,a(t))})y imphes Az =z.
Similarly, pairs of maps B and T are weakly compatible, we have Bz = Tz. Therefore,

g(FAz,z,a(t)) = g(FAz,Bz,a(t))

= d)(max {g(FSz,Tz,a(t));g(FSZ,Az,a(t));g(FTz,Bz,u(t));
(1.23)

%(Q(FSZ,Bz,a(t)) +g(FTz,Az,a(t)))})
= ¢p(max{g(Fzrza(1))}).

Thus we have Bz =Tz = z.
Therefore, Az = Bz = Sz = Tz and z is a common fixed point of A, B, S, and T. The
uniqueness follows from (1.8).

2. Application

THEOREM 2.1. Let (X,F,A) be a complete 2-N.A. Menger PM-space and A, B, S, and
T be the mappings from the product X x X to X such that

AXx{y}) e T(Xx{y}), BXx{y})c(Xxiy}),
(Farie o, raxym,a(t)) < g(Faxy,rem,ald)), (2.1)
I (FB(s(x)).5Bx).a(t)) < G(FBix,y)s(¢0).a(t))
foralla e X andt > 0 and

9 (Fax.).x'y.a(l))

< d)(max{g(ngy 170 y0a (D), G (Fseeaceya (), g (Froe o secyna (b)), (2.2

1
Z(Q(FSxy)B(xy a(0) +g(Frie vy Axa (t)))})

forallae X,t>0,andx, y,x’,y" inX, then there exists only one point b in X such that
A(b,y)=S(b,y)=B(b,y)=T(b,y) VyinX. (2.3)
PROOF. By (2.2),
9(Fax,y),8x,y) (1))

<¢ (max {g (FS(x,y),T(x’,y’),a(t)) :g(FS(X,y),A(x,y),a(t)) ag(FT(XHy’),B(x’,y’),a(t))s (2.4)

1
5 (9(Fs(x).8(x' v).a()) +g(FT(x’,y’),A(x,y),a(t)))})
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for all a € X and t > 0O; therefore by Theorem 1.12, for each y in X, there exists only
one x(y) in X such that

Ax(¥),y) =S(x(¥),y) =B(x(¥),y) =T(x(¥),y) =x(¥) (2.5)
for every y,y’ in X,

Q(Fx(y),X(y’),a(t))
=9 (Fax(») ) .ax(v),).a(t))

<¢ (maX {g (Faxanaw'yna(t),g(Faceyaxya (), g(Fra ynac yn.a D), (2.6

1
> (g (Fax,),ax,y,a(t)) +g(FA(X’,y’),A(x,y),a(t)))})
=9 (Fx(3)x(ya(t)).

This implies x(y) = x(»’) and hence x () is some constant b € X so that

A(b,y)=b=T(b,y)=5(b,y)=B(b,y) VyinX. (2.7)
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