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1. Introduction. LetM be an infinite-dimensional Banach manifold of class Ck, k≥
1, modelled on a Banach space E, and let ḡ1 be a symmetric bilinear form defined on

M , that is, ḡ1 ∈ L2(M ;R).

Definition 1.1 [2]. A metric ḡ1 is said to be a strongly nonsingular, if ḡ1 associates

a mapping

ḡ1∗ : x ∈M �→ ḡ1∗
x = ḡ1(x,·)∈ L(M ;R)≡M∗, (1.1)

which is bijective. Furthermore, M∗ is the dual space of M .

Now, let Γ̄ be the linear connection on M .

Definition 1.2 [2]. A differentiable Banach manifold (M, Γ̄) of class Ck, k ≥ 3, is

called locally affine if their curvature and torsion tensors are zero.

In general, it is proved in [2] that, a Banach manifold (M, Γ̄) is locally affine if and

only if there exists an atlas � on M , such that for any chart c ∈ �, Γ ≡ 0, where Γ is

the model of the linear connection Γ̄ .

Definition 1.3 [2]. In a space M with a first fundamental form ϕ = ḡ1
x(X̄1, X̄2),

the hypersurface N ⊂M , which is defined by the equation

ḡ1
x
(
X̄, X̄

)= er 2, e=±1, 0≠ r ∈R, (1.2)

is called an essential hypersurface of the second order in the space M .

2. Essential hypersurface in a locally affine Banach manifold. Let M be a locally

affine Banach manifold, and assume that ḡ1 is a strongly nonsingular metric on M ,

then the pair (M,ḡ1) is a Riemannian Banach manifold. Let N be a subset of M such

that

N =
{
x̄ ∈M : ḡ1

x
(
x̄, x̄

)= er 2, 0≠ r ∈R, e=±1
}
, (2.1)

that is, N is an essential hypersurface in M . Also, we can define N as follows:

N =
{
x̄ ∈M : F

(
x̄
)= ḡ1

x
(
x̄, x̄

)−er 2 = 0
}
, (2.2)
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where F : M → R is a differentiable function, such that for all x̄ ∈ N, 0 ≠ DFx̄ ∈
L(Tx̄M ;R) is a linear mapping on the tangent space Tx̄M .

Since DFx̄(Ȳ ) = 2ḡ1
x(x̄, Ȳ ) for all x̄ ∈N, and ḡ1 is nonsingular, then there exists a

vector Ȳ ∈ Tx̄M such that ḡ1
x(x̄, Ȳ )≠ 0, and consequently DFx̄ ≠ 0. Hence, N will be a

closed submanifold of M .

Denoting by ī : x̄ ∈N → ī(x̄)= x̄ ∈M the inclusion mapping.

Let c = (U,Φ,E) be a chart at x̄ ∈M , and let d = (V ,Ψ ,F ⊆ E) be a chart at x̄ ∈ N,

where the Banach spaces E and F are the models of the manifolds M and N with

respect to the charts c and d, respectively. Furthermore, we have that Ψ(x̄)= x is the

model of the point x̄ with respect to the chart d, z = Φ(x̄) is the model of x̄ with

respect to the chart c, and i is the model of ī with respect to the charts c and d. Then,

we obtain that

i : x = Ψ(x̄)∈ Ψ(V)⊂ F �→ i(x)= z = Φ(x̄)∈ Φ(V)⊂ E. (2.3)

In this case, (2.3) is called the local equation of the submanifold N ⊂M with respect

to the charts c and d. Also, N will be a Riemannian submanifold of M with induced

metric ḡ2, which is defined by the rule

ḡ2
x
(
X̄1, X̄2

)= ḡ1
i(x)
(
Txi

(
X̄1
)
,Txi

(
X̄2
))
, (2.4)

for all x̄ ∈N and X̄1, X̄2 ∈ Tx̄N, where Tx̄ī : Tx̄N → Tx̄M is the tangent mapping of ī at

the point x̄ ∈N (see [1]).

Assume that ḡ2 is strongly nonsingular metric on N. Also we have that, M and N
are Riemannian manifolds with free-torsion connections Γ̄ 1, Γ̄ 2, respectively such that

∇̄1ḡ1 = 0 and ∇̄2ḡ2 = 0 (see [3, 4]). Let X1,X2 ∈ F be the models of X̄1, X̄2 ∈ Tx̄N with

respect to the chart d on N. Then Y1 =Dix(X1), Y2 =Dix(X2) are the models of X̄1,

X̄2 with respect to the chart c on M .

In this case, the local equation of (2.4) takes the form

g2
x
(
X1,X2

)= g1
x
(
Dix

(
X1
)
,Dix

(
X2
))
. (2.5)

Now, we are ready to introduce our main theorem.

Theorem 2.1. An essential hypersurface of order two in an infinite-dimensional lo-

cally affine Riemannian Banach manifold is a Riemannian manifold of constant nonzero

curvature.

Proof. Let N ⊂M be an essential hypersurface of order two in a Banach manifold

M . Then, for any arbitrary charts c = (U,Φ,E) on M at the point x̄ ∈ N, and d =
(V ,Ψ ,F) on N at the same point x̄, the equation of the submanifold N takes the form

g1
x(y,y)= er 2. (2.6)

This means that y = i(x), x ∈ Ψ(V) is the model of x̄ ∈N with respect to the chart d.

In other words, the equation of the submanifold N, with respect to the charts c and

d, can be rewritten as follows:

g1
x
(
i(x),i(x)

)= er 2, (2.7)
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for all 0 ≠ r ∈ R, and x ∈ Ψ(V), e = ±1. Differentiating (2.7) with respect to x in the

direction X ∈ F , we obtain

g1
x
(
i(x),Dix(X)

)= 0, ∀x ∈ Ψ(V)⊂ F, X ∈ F. (2.8)

Once again differentiating (2.8) with respect to x in the direction Y ∈ F we obtain

g1
x
(
Dix(Y),Dix(X)

)+g1
x
(
i(x),D2ix(Y ;X)

)= 0. (2.9)

By using (2.5) and (2.8) in the above equation, we obtain

g2
x(X,Y)=−g1

x

(
i(x),D2ix(Y ;X)−Dix

(
Γ 2
x(X,Y)

))
, (2.10)

where Γ 2 is the model of the linear connection Γ̄ 2 with respect to the chart d on N,

that is,

g1
x

(
i(x),∇2Dix(Y ;X)

)
=−g2

x(X,Y), (2.11)

for all x ∈ Ψ(V)⊂ F and all X,Y ∈ F , where ∇2 is the covariant differentiation corre-

sponding to Γ 2 on N.

Now, the first differential equation of the hypersurface N ⊂ M takes the form

(see [5])

∇2Dix(X,Y)= eAx(X,Y)ξx, (2.12)

where ξ̄x ∈ T 1
0 (M) is a unit vector in M orthogonal to N at the point x̄ ∈M , that is,

ḡ1(ξ̄x, ξ̄x)= e, ḡ1(ξ̄x, X̄)= 0, (2.13)

for all x̄ ∈ N ⊂M , and for all X̄ ∈ TxN, and Ax is the second fundamental form for

the hypersurface N, such that

Ax(X,Y)= g1
x
(
D2ix(X,Y),ξx

)=−g1
x
(
Dix(X),Dξx(Y)

)
. (2.14)

Taking into account that Txī∈ T 1
0 (N), ξ̄x ∈ T 1

0 (M), and (2.12) we conclude that Ax is

a symmetric tensor of type (0,2) on N at the point x̄ ∈N.

Now let ξ : x = Ψ(x̄)∈ Ψ(V)⊂ F → ξx ∈ E be the model of the vector field

ξ̄ : x̄ ∈N �→ ξ̄x̄ ∈ Tx̄M, (2.15)

with respect to the charts c and d at the point x̄. Then the local equation of equality

(2.13) takes the form

g1(ξx,ξx)= e, g1(Dix(X),ξx)= 0, (2.16)

for all x ∈ Ψ(V)⊂ F and for all X ∈ F .

Now from (2.8) and (2.16), we deduce that the unit normal vector ξx̄ on N can be

defined as follows:

ξx = λi̇(x); λ∈R. (2.17)
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Also from (2.7) and the first equality of (2.16) and using (2.17), we obtain

g1
x
(
λi̇(x),λi̇(x)

)= e, (2.18)

that is,

λ2g1
x
(
i(x),i(x)

)= λ2(er 2)= e, (2.19)

which implies that λ=±1/r . It is convenient to take λ=+1/r . Then

ξx =
(

1
r

)
i(x). (2.20)

Substituting by (2.7), (2.12), and (2.20) in (2.11), we obtain

g1
x
(
i(x),eAx(X,Y)ξ̇x

)=−g2
x(X,Y), (2.21)

which implies that

Ax(X,Y)=−1
r
g2
x(X,Y). (2.22)

From the above we conclude that, the first and the second fundamental forms for the

essential hypersurface of the second order are proportional. Now from (2.12), (2.20),

and (2.22), we obtain

∇2Dix(X,Y)= eAx(X,Y)ξx =− e
r 2
g2
x(X,Y)i̇(x). (2.23)

Putting κ0 = e/r 2, then

∇2Dix(X,Y)+κ0g2
x(X,Y)i̇(x)= 0. (2.24)

Now we find that, the integral condition of the first differential equation of the hyper-

surface is (see [5])

g2
x

(
R2
x(Y ;Z,X),S

)
= eAx

(
Z,Y

)
Ax
(
X,S

)
. (2.25)

Remark 2.2. In Formula (2.25), there exists an alternation with respect to the un-

derlined vectors without division by 2. This convention will be used henceforth.

If we use (2.22), the integral condition for (2.12), will take the form

g2
x

(
R2
x(Y ;Z,X),S

)
= e
r 2
g2
x
(
Z,Y

)
g2
x
(
X,S

)
. (2.26)

Using κ0 = e/r 2, we obtain

g2
x

(
S,R2

x(Y ;Z,X)−κ0g2
x
(
Z,Y

)
X
)
= 0, ∀S ∈ F. (2.27)

Taking into account that g2
x is nonsingular, we obtain

R2
x(Y ;Z,X)= κ0g2

x
(
Z,Y

)
X, (2.28)

where R̄2
x is the curvature tensor of the submanifold N ⊂ M . Hence, from (2.28)

we deduce that the essential hypersurface (hypersphere or pseudohypersphere) of

the second order in a locally affine infinite-dimensional Banach manifold M is a Rie-

mannian manifold of constant nonzero curvature κ0, and this completes the proof.
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