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1. Introduction. Let F be a field of characteristic zero (not necessarily algebraically

closed). Throughout this paper, Z+ and Z denote the nonnegative integers and the

integers, respectively. Let F[x] be the polynomial ring in indeterminate x. Let F(x)=
{f(x)/g(x) | f(x),g(x) ∈ F[x], g(x) ≠ 0} be the field of rational functions in one

variable. We define the F-algebra V√m,e spanned by
{
edxfa1/b1

1 ···fam/bmm xt | d,a1, . . . ,am,t ∈ Z, fi ≠ x,
(
a1,b1

)= 1, . . . ,
(
am,bm

)= 1, 1≤ i≤m
}
,

(1.1)

where b1, . . . ,bm are fixed nonnegative integers, and (ai,bi)= 1, 1≤ i≤m, means that

ai and bi are relatively primes, and f1, . . . ,fn are the fixed relatively prime polynomials

in F[x]. The F-subalgebra V+√m,e of V√m,e is spanned by

{
edxfa1/b1

1 ···fam/bmm xt | d,a1, . . . ,am ∈ Z, t ∈ Z+, fi ≠ x,
(
a1,b1

)= 1, . . . ,
(
am,bm

)= 1, 1≤ i≤m
}
.

(1.2)

Let W√m,e(∂) be the vector space over F with elements {f∂ | f ∈ V√m,e} and the

standard basis {edxfa1/b1
1 ···fam/bmm xt∂ | edxfa1/b1

1 ···fam/bmm xt∂ ∈ W√m,e}. Define

a Lie bracket on W√m,e(∂) as follows:

[f∂,g∂]= f (∂(g))∂−g(∂(f))∂, f ,g ∈ V√m,e. (1.3)

It is easy to check that (1.3) defines a Lie algebra W√m,e(∂) with the underlying vector

space W√m,e(∂) (see also [1, 3, 5]). Similarly, we define the Lie subalgebra W+√
m,e(∂) of

W√m,e(∂) using the F-algebra V+√m,e instead of V√m,e.
The Lie algebra W√m,e(∂) has a natural Z-gradation as follows:

W√m,e(∂)=
⊕

d∈Z
Wd√

m,e, (1.4)

whereWd√
m,e is the subspace of the Lie algebraW√m,e(∂) generated by elements of the

form {edxfa1/b1
1 ···fam/bmm xt∂ | f1, . . . ,fn ∈ F[x], a1, . . . ,am,t ∈ Z, m ∈ Z+}. We call

the subspace Wd√
m,e the d-homogeneous component of W√m,e(∂).
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We decompose the d-homogeneous component Wd√
m,e as follows:

Wd√
m,e =

⊕

s1,...,sm∈Z
W(d,s1,...,sm), (1.5)

where W(d,s1,...,sm) is the subspace of Wd√
m,e spanned by

{
edxf s1/b1

1 ···f sm/bmm xq∂ | q ∈ Z}. (1.6)

Note that W(0,0,...,0) is the Witt algebra W(1) as defined in [3].

The two radical-homogeneous components W(d,a1,...,am) and W(d,r1,...,rm) are equiva-

lent if a1−r1, . . . ,am−rm ∈ Z. This defines an equivalence relation onWd√
m,e. Thus we

note that the equivalent class of W(d,a1,...,am) depends only on a1, . . . ,am. From now

onW(d,a1,...,am) will represent the radical homogeneous equivalent class ofW(d,a1,...,am)

without ambiguity. It is possible to choose the minimal positive integers a1, . . . ,am for

the radical homogeneous equivalent component W(d,a1,...,am).

We give the lexicographic order on all the radical homogeneous equivalent compo-

nents W(d,a1,...,am) using Z×Zm+ .

The radical equivalent homogeneous component Wd√
m,e can be written as follows:

Wd√
m,e =

∑

(a1,...,am)∈Zm+
W(d,a1,...,am). (1.7)

Thus for any element l∈W√m,e(∂), l can be written uniquely as follows:

l=
∑

(d,a1,...,am)∈Z×Zm+
l(d,a1,...,am). (1.8)

For any such element l∈W√m,e(∂),H(l) is defined as the number of different homoge-

neous components of l as in (1.4), and Ld(l) as the number of nonequivalent radical d-

homogeneous components of l in (1.8). For each basis element edxfa1/b1
1 ···fam/bmm xt∂

ofW√m,e(∂) (orW+√
m,e(∂)), define degLie(edxf

a1/b1
1 ···fam/bmm xt∂)= t. Since every ele-

ment l of W√m,e(∂) is the sum of the standard basis element, we may define degLie(l)
as the highest power of each basis element of l. Note that the Lie algebra W√m,e(∂) is

self-centralized, that is, the centralizer Cl(W√m,e(∂)) of every element l inW√m,e(∂) is

one dimensional [1]. We find the solution of

11/3 =y (1.9)

in Z7. Equation (1.9) implies that

1≡y3 mod7. (1.10)

The solutions of (1.10) are 1, 2, or 4. Thus 11/3 = 1, 2, or 4mod7. Thus the radical

number in Zp is not uniquely determined generally. So we may not consider the Lie

algebras in this paper over a field of characteristic p differently from the Lie algebras

in [2, 3, 4]. It is easy to prove that the Lie algebra W(0,...,0) is simple [3].
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2. Main results. We need several lemmas for Theorem 2.5.

Lemma 2.1. For any element l in the (d,a1, . . . ,am)-radical-homogeneous compo-

nent ofW√m(∂), and for any element l1 ∈W(0,0,...,0), [l,l1] is an element in the (d,a1, . . . ,
am)-radical homogeneous equivalent component.

The proof of Lemma 2.1 is straightforward.

Lemma 2.2. A Lie ideal I of W√m,e(∂) which contains ∂ is W√m,e(∂).

Proof. Let I be the ideal in the lemma. The Lie subalgebra which has the standard

basis {xi∂ | i ∈ Z+} is simple. Let I be any ideal of W√m,e(∂) which contains ∂. Then

for any f∂ ∈W√m,e(∂),

[x∂,f∂]= x∂(f)∂−f∂ ∈ I. (2.1)

On the other hand,

[∂,xf∂]= f∂+x∂(f)∂ ∈ I. (2.2)

Thus by subtracting (2.2) from (2.1) we get 2f∂ ∈ I. Therefore, we have proven the

lemma, since I∩W(0,0,...,0) contains nonzero elements and so I ⊃W(0,0,...,0).
Lemma 2.3. A Lie ideal I of W√m,e(∂) which contains a nonzero element in

W(d,a1,...,am) is W√m,e(∂), for a fixed (d,a1, . . . ,am)∈ Z×Z+.

Proof. Let I be a Lie ideal of W√m,e(∂) and l a nonzero element in the ideal I.
Then we take an element l1 = e−dxf−a1/b1

1 ···f−am/bmm xp∂ with p a sufficiently large

positive integer such that [l,l1]≠ 0. Then [f∂,[l,l1]] is a nonzero element inW(0,0,...,0)
by taking an element f t11 ···f tmm ∈ F[x], where t1, . . . , tm are sufficiently large integers.

Thus I∩W(0,0,...,0) contains nonzero elements, and hence, ∂ ∈ I∩W(0,0,...,0) by simplicity

of W(0,0,...,0). Then the lemma follows from Lemma 2.2.

Throughout this paper, a� b means that a is a number sufficiently larger than b.

Lemma 2.4. Let I be any nonzero Lie ideal of W√m,e(∂). For any nonzero element

l∈ I, there is an elementxs∂, s� 0, such that [xs∂,l] is the sum of elements inW√m,e(∂)
with degLie([xs∂,l]) > 0.

Proof. It is straightforward by choosing a sufficiently large positive integer s.

Theorem 2.5. The Lie algebra W√m,e(∂) is simple.

Proof. Let I be a nonzero Lie ideal of W√m,e(∂). Let l be a nonzero element of I.
By Lemma 2.4, we may assume that l has polynomial terms with positive powers for

each basis element of l. We prove this theorem in several steps.

Step 1. If l is in the 0-homogeneous component, then the theorem holds. We prove

this step, by induction on the number L0(l) of nonequivalent radical-homogeneous

components of the element l of I. If L0(l) is 1 and l ∈ W(0,0,...,0), then the theorem

holds by Lemmas 2.2, 2.3, and the fact that W(0,0,...,0) is simple.
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Assume that l ∈ W(0,0,...,0,ar ,...,am) with ar ≠ 0. If we take an element fhr /kr1 ···
fhm/kmn xhm+1∂ such that hr � kr , . . . ,hn� kr and (hr +kr )/kr ∈ Z+, . . . ,(hm+km)/
km ∈ Z+, then we have l1 = [fhr /kr1 ···fhm/kmm xhm+1∂,l]≠ 0. This implies that l1 is in

W(0,0, . . . ,0). Thus we have proven the theorem by Lemma 2.2.

By induction, we may assume that the theorem holds for l ∈ I such that L0(l) = k,

for some fixed nonnegative integer k > 1. Assume that L0(l)= k+1. If l has aW(0,0,...,0)
radical-homogeneous equivalent component, we take l2 ∈W(0,0,...,0) such that [l,l2] can

be written as follows: [l,l2]= l3+l4 where l3 is a sum of nonzero radical-homogeneous

components, and l4 = f∂ with f ∈ F[x]. Thus we have the nonzero element

∂,
[··· ,[∂,l]···]= l2 ∈ I (2.3)

which has no terms in the homogeneous equivalent component W(0,0,...,0), where we

applied Lie brackets until l2 has no terms in the radical homogeneous equivalent com-

ponentW(0,0,...,0). Then l2 ∈ I such that H(l2)≤ k. Therefore, we have proven the theo-

rem by Lemmas 2.2, 2.3, and induction. If l has no terms in the radical homogeneous

equivalent component (0,0, . . . ,0), then l has a term in the radical homogeneous equiv-

alent component W(0,a1,...,an). Take an element l3 = f c1/p1
1 ···f cm/pmm xcm+1∂ such that

c1, . . . ,cm+1 are sufficiently large positive integers such that c1+a1 ∈ Z···cm+am ∈ Z,

and which is in a radical homogeneous equivalent componentW(0,a1,...,am). Then [l3, l]
is nonzero and which has a term in the radical homogeneous equivalent component

W(0,0,...,0). So in this case we have proven the theorem by induction.

Step 2. Assume that l is in the d-homogeneous component such that 0 ≠ d and

L0(l) = 1, then the theorem holds. By taking e−dxxt∂, we have 0 ≠ [e−dxxt∂,l] ∈
W(0,0,...,0) by taking a sufficiently large positive integer t. Thus we have proven the

theorem by Step 1.

Step 3. If l is the sum of (k − 1) nonzero homogeneous components and 0-

homogeneous component, then the theorem holds. We prove the theorem by induc-

tion on the number of distinct homogeneous components by Steps 1 and 2. Assume

that we have proven the theorem when l has (k− 1) radical-homogeneous compo-

nents. Assume that l has terms inW(0,0,...,0). By Step 1, we have an element l1 ∈ I, such

that l1 = l2+f∂, where l2 has (k−1) homogeneous components and f ∈ F[x]. Then

0≠ ∂,[··· ,[∂,l1]···]∈ I has (k−1) homogeneous components, where we applied the

Lie bracket until it has no terms in W(0,0,...,0). Therefore, we have proven the theorem

by induction.

Assume that l has a (k) homogeneous equivalent components. We may assume l
has the terms which is in 0 ≠ d-homogeneous component. By taking a sufficiently

large positive integer r , we have [e−dxxr∂,l] ≠ 0 and it has (k) homogeneous com-

ponents with a term in the radical-homogeneous component W(0,0,...,0). Therefore, we

have proven the theorem by Step 3.

Corollary 2.6. The Lie algebra W+√
m,e(∂) is simple.

Proof. It is straightforward from Theorem 2.5 without using Lemma 2.4.

Corollary 2.7. The Lie subalgebra W 0√
m,e of W√m,e(∂) is simple.
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Proof. It is straightforward from Step 1 of Theorem 2.5.

Proposition 2.8. For any nonzero Lie automorphism θ of W+√
m,e(∂), θ(∂) = ∂

holds.

Proof. It is straightforward from the relation θ([∂,x∂]) = θ(∂) and the fact that

W+√
m,e(∂) is self-centralized and Z-graded.
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