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Banach algebras over arbitrary complete non-Archimedean fields are considered such that
operators may be nonanalytic. There are different types of Banach spaces over non-
Archimedean fields. We have determined the spectrum of some closed commutative sub-
algebras of the Banach algebra £(E) of the continuous linear operators on a free Ba-
nach space E generated by projectors. We investigate the spectral integration of non-
Archimedean Banach algebras. We define a spectral measure and prove several proper-
ties. We prove the non-Archimedean analog of Stone theorem. It also contains the case of
C-algebras C« (X,K). We prove a particular case of a representation of a C-algebra with
the help of a L(A, u, K)-projection-valued measure. We consider spectral theorems for op-
erators and families of commuting linear continuous operators on the non-Archimedean
Banach space.

2000 Mathematics Subject Classification: 47A10, 47A25, 47L10.

1. Introduction. This paper is devoted to the non-Archimedean theory of spec-
tral integration with the help of the projection-valued measure. Spectral integration
plays a very important role in the theory of Banach algebras, theory of operators
and has applications to the representation theory of groups and algebras in the clas-
sical case of the field of complex numbers C [7, 8, 14, 13, 19, 23]. There are also
several works about non-Archimedean Banach algebra theory, which show that there
are substantial differences between the non-Archimedean and classical cases [3, 5, 6,
10, 11, 12, 18, 26, 27, 28, 30]. In [3, 30], analytic operators over C, were considered
and the Shnirelman integration of analytic functions was used, which differs strongly
from the non-Archimedean integration theory related to the measure theory [28]. In
the non-Archimedean case, the spectral theory differs from the classical results of
Gelfand-Mazur, because quotients of commutative Banach algebras over a field K by
maximal ideals may be fields [, which contain K as a proper subfield [28]. In general
for each non-Archimedean field K, there exists its extension [ such that a field F + K
[4, 25].

Ideals and maximal ideals of non-Archimedean commutative E-algebras (see Section
5.1.1) and C-algebras were investigated in [28, 29]. In [5, 6], it was shown that the fail-
ure of the spectral theory in the non-Archimedean analog of the Hilbert space and it
was shown that even symmetry properties of matrices lead to the enlargement of the
initial field while a diagonalisation procedure. In [10, 11, 12], formulas of the spectral
radius and different notions of spectrum and analysed some aspects of structures of
non-Archimedean Banach algebras. In [28] and the references therein, general theory
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of non-Archimedean Banach algebras and their isomorphisms was considered. It was
introduced the notion of C-algebras in the non-Archimedean case apart from the clas-
sical C*-algebras. There are principal differences in the orthogonality in the Hilbert
space over C and orthogonality in the non-Archimedean Banach space. Therefore,
symmetry properties of operators do not play the same role in the non-Archimedean
case as in the classical case.

This paper treats another aspect of the non-Archimedean algebra theory and theory
of operators. Banach algebras over arbitrary complete non-Archimedean fields are
considered such that the operators may be nonanalytic. There are different types of
Banach spaces over non-Archimedean fields. In Sections 2, 3, and 4, are considered
specific spaces. In Section 5, are considered general cases.

Let K be a field. A non-Archimedean valuation on K is a function | % | : K - R
such that

(1) |x| =0 for each x € K;

(2) |x| =0if and only if x = 0;

(3) |x+y| <max(|x|,|yv]) for each x and y € K;

4) |xyl|=|xl|ly| for each x and y € K.

The field K is called topologically complete if it is complete relative to the following
metric: p(x,y) = |x —y| for each x and y € K. A topological vector space E over K
with the non-Archimedean valuation may have a norm || * || such that its restriction
on each one-dimensional subspace over K coincides with the valuation | x |. If E is
complete relative to such norm || x ||, then it is called the Banach space. Such fields
and topological vector spaces are called non-Archimedean. An algebra X over K is
called Banach, if it is a Banach space as a topological vector space and the multiplica-
tion in it is continuous such that || xy || < |x]|||y ]| for each x and  in X. A finite or
infinite sequence (x;: j € A) of elements in a normed space E is called orthogonal, if
I ZjeA «jxjll = max(llxjx;ll : j € A) for each «; € K for which lim; «;x; = 0. We con-
sider the infinite topologically complete field K with the nontrivial non-Archimedean
valuation.

A non-Archimedean Banach space E is said to be free if there exists a family (e; :
j €1I) C E such that any element x € E can be written in the form of convergent sum
x = XjerXjej, that is, limje; xjej = 0 and || x|l = sup;e;|x;jlllejll (see Section 2). In
Section 3, ultrametric Hilbert spaces are considered. In Section 4, we have determined
the spectrum of some closed commutative subalgebras of the Banach algebra £(E) of
the continuous linear operators of E generated by projectors.

Section 5 is devoted to the spectral integration. We introduce another definition of
E-algebras in Section 5.1 apart from [29]. In Propositions 5.2 and 5.3 we have proved
that they are contained in the class of E-algebras and C-algebras considered in [28, 29].
In Section 5.2, a spectral measure is defined. In Section 5.5, Lemma 5.5, Corollary 5.6,
Proposition 5.7, and Corollary 5.9 its several properties are proved. In Theorem 5.11
the non-Archimedean analog of Stone theorem is proved. It contains also the case
of C-algebras C (X,K). A particular case of a representation of a C-algebra with the
help of L(A, u, K)-projection-valued measure is proved in Theorem 5.14. Spectral the-
orems for operators and families of commuting linear continuous operators on a
non-Archimedean Banach space are considered in Sections 5.8 and 5.9.
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2. Free Banach spaces

2.1. Let E be a free Banach space with an orthogonal base (e; : j € I). The topo-
logical dual E’ of E is a Banach space with respect to the norm defined for x’ € E’
by x|l = sup,.o[{(x",x)|/lIx]l. For x" € E" and y € E, we define an element (x'® y)
of the Banach algebra of continuous linear operators £(E) on the space E by set-
ting for x € E, (x' ® y)(x) = (x',x)y with norm [|x’ ® y| = [[x'|llly]. If E is a
free Banach space with base (e; : j€1I), any u € £(E) can be written as a point-
wise convergent sum u = X.(; jyerxi O(ije3 ® e;. Hence lim;e; otjje; = O for each j € I.
Moreover |lu|l = sup,; ; ‘O(ij‘”e;'””ei”. Notice that He}ll =1/llejll. Let Lo(E) = {u:u =
i jerx Kije®e; € £(E);limjer aije; = 0 for each i € I}.

THEOREM 2.1. An algebra $y(E) is a closed subalgebra in £(E) with the unit ele-
ment of £(E).

PROOF. Let u,v € $o(E), u = 3 jjerx Xije;®ei, and v = 3 jep Bije; ® ei, then
limier &jje; = 0 = lim;es Bije; for each j € I, and lim;¢; xjje; = 0 = lim;er Bije; for each
J €I Wehave uov = 3 jerx(Zker XikBrje ® ei. Let i € I, limger atike = 0, that
is, for each & > 0, there exists J¢(i) a finite subset of I such that for each k & J. (i),
lxike |l < €. Hence

> (cirBrj)e I Z (xixBrj)e

keJe (i) k¢ Je (i

(o)

kel

< max ( max ||alkek||||elv|||ﬁkjek||||e e, sup lloBuse])
keJe( kéJe (1)

).

Since lim ey || Bxje;ll = O for each k € J¢ (i), we have limjer I (D xe; O(ikBkj)e;-” =0 for
each i € I, therefore uov € £y (E). The identity map id being given by id = > ;c;e; ®e;,
we have (xii =1 and «;j = 0 if i # j. Therefore lim; &x;;e; = 0 for each j € I, and
lim; (le = 0 for each i € I. Hence id € %o(E). Let u = X jyerxs (er ® e; be in
the closure of $o(E). For all € > 0, there exists u, = Z(w cIx] O(U(s)eJ ®e; € $o(E)
such that [[u —uell = sup; ;oG — (xij(e)llle;.\ll\eil\ < €. Hence for all i,j € I, we have
I(xijll\e}H [le;]l < max(e, I(xij(s)llle}H lle;|l). We obtain lim; || «;;e; || = O for each j € I and
lim; || cxije} || =0 for each i € I. Therefore u € ¥y (E) and £y (E) is closed. O

<max | [[u] max e
(12l max [1Bise;

(2.1)

2.2. Suppose that the orthogonal basis is orthonormal, that is, |lej|| = 1 for each
JeI.Then u = 3 jerx aije’ ®e; € $o(E), if and only if lim; O(ij =0 foreach jelI
and lim; «;; = 0 for each i € I. Setting for u = > jycpx ijej ® ei € Lo(E), u* =
ZM)QX, (xﬂej ® e;, we see that u* € ¥((E), called the adjoint of u. We verify easily
the following proposition.

PROPOSITION 2.2. An element u € £(E) has an adjoint u* if and only if u € $((E).
Let u,v € $9(E), A € K. Then (u+Av)™ = u* + Av*; (uov)* = v* o u™; u** = u.
Moreover, || u*|| = |lull.
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As usual, we say that u € ¥, (E) is normal (resp., unitary) if uou* = u* ou (resp.,
uou* =id = u* ou). And u is selfadjoint if u = u*, this is equivalent here to say that
the matrix of u is symmetric.

NOTE 2.3. (i) We have ||u|l = ||u*|. However, in general |[uou*| # ||ul|%. For ex-
ample, if I is the set of positive integers, and E with orthogonal base (e, : 1 > 1), let
a,b € K. The operator u defined by u(e;) = ae, + bes, u(ez) = be; —aes, u(ez) = ces,
and u(e,) = 0 for n > 4. We see that u is selfadjoint. If i = /=1 € K; then taking
b =ia and |c| < |al|, we see that ||[u?] = |c|? < |a|? = ||ul|?.

(ii) It should be interesting to characterize the elements of ¥, (F) that are normal,
unitary. Considering, whenever the base of F is orthonormal, the bilinear form f on
E defined by f(x,y) = >.ic; XiVi, we obtain that the above definition of an adjoint u*
of an element u € ¥, (E) is equivalent to say that f(u(x),y) = f(x,u*(y)) for each
x and y € E. In fact, here the adjoint of an operator is its transposition. This example
is related to ultrametric Hilbert spaces.

3. Ultrametric Hilbert spaces. For the so-called ultrametric Hilbert spaces we can
also define the adjoint of an operator with respect to an appropriate bilinear symmet-
ric form.

3.1. Remark and definition. Ochsenius and Schikhof write in [24] “as a slogan:
There are no p-adic Hilbert spaces.” Nevertheless we will give a definition of p-adic
Hilbert spaces (cf. [20, 21] for some fields with infinite rank valuation). Let o = (w;)i=0
be a sequence of nonzero elements of K. We consider the free Banach space E, =
co(N,K, (Jwil'7?)iz0) = {x:x = (xi)i=0 C K;lim; - 1 [xi]0; 1% = 0}. Then x = (x;) =0
€ Eyp < limiﬂmxfwi = 0. Setting e; = (6;) >0 (Kronecker symbol), we have that
(e; : i = 0) is an orthogonal base of E, : forall x € Ey,, x = > .0xie; and || x| =
Sup;i.o |xillleill = sup;so |xillw;|'/?, in particular, |le;|| = |w;|'/? for each i > 0. Let
fw  Ew X Ep — K be defined by fi,(x,y) = > is0wixiy;. It is readily seen that f,
is a bilinear symmetric form on E,, with |f,(x,y)| < [[x|/||v]|, that is, the bilinear
form f,, is continuous. Moreover, f,, is nondegenerate, that is, f,, (x,») = 0 for each
¥ € E, = x = 0. Furthermore, fi, (x,x) = Y;.ow;x? and f,(e;,e;) = w;5;; for i and
j = 0. The space E, is called a p-adic Hilbert space.

NoTE 3.1. (i) It may happen that |f, (x,x)| < ||x||? for some x € E, and even
worse, E, contains isotropic elements x + 0, that is, f, (x,x) = 0.

(ii) Let V be a subspace of E,, and V+ = {x € Ey : fu(x,y) =0, forall y € V}.
The fundamental property on subspaces of the classical Hilbert space H:V =Vt =
Ve V! = H fails to be true in the p-adic case. This explains the claim of Ochsenius
and Schikhof.

REMARK 3.2. A free Banach space E with an orthogonal base (e; : i > 0) can be
given a structure of a p-adic Hilbert space if and only if there exists (w;:i>0) C K
such that |le;|| = |w;|*/? for each i = 0. Furthermore, if K contains a square of any
of its element, then any p-adic Hilbert is isomorphic, in a natural way, to the space
C()(N, K).
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NOTE 3.3. Let u,v € £(Ey); we have u = 3; ; (xije3 ®ejandv =3 Bije} ®e; with
lm;— i o [tij 110 [V% = 0 = lim;— 4w |Bijl ;1'% for each j > 0. Furthermore, the norm
of u € £(Ey) is given by

1/2
i | o |

lull =sup ———75—. (3.1)
o |yl

The operator v is said to be an adjoint of u with respect to f, < fo(U(x),y) =
fw(x,v(y)), for all x,y € E,. Since f,, is symmetric, u is an adjoint of v.

Since f,, is nondegenerate, if an operator u has an adjoint, this adjoint is unique
and is denoted by u*. Since (e; : i > 0) is an orthogonal base of E,, we have that v
is an adjoint of u if and only if fi, ((u(e;),e;) = fu(ei,v(e;))) for each i and j > 0.
That is, fw (X k=0 Xkiek,ej) = &jiw; = fw(ei, Xr=0Brjex) = Bijwi, for all i,j = 0 <
Bij = w;'w; i, for all i,j > 0. Furthermore, we must have lim;_ .« |Bi;|[w;['/> = 0
for each j > 0, that is,

1/2 -1/2

Jim | it sl [l = ;| lim fewi| " feyi| =0, ¥j=0.  (32)

Hence lim; 1 |;|7"/?| ;| = 0 for each j > 0. We have proved the following theorem.

THEOREM 3.4. Let (w;)i=0 C K* and E, = co(N,K, (Jw;|Y?)i=0) be the p-adic
Hilbert space associated with w. Let u = Zi,j e’ j®e; € £(Ey). Then u has an ad-
Joint v = u* € £(Ey) if and only if lim;j_.« |w;|""?|;;] = O for each i > 0. In this
condition, u* =3; jw;'w;wjie’ j®e;.

It follows from this theorem that not any continuous linear operator of E,, has an
adjoint: it is another difference with classical Hilbert spaces. Let £o(E,) = {u:u =
Siz0 20 Xije; ®ei € L(Ey); limj. o lw;l~V?|aj] = 0,Vi = 0}. We remember that
u=73,;;ae;®e; € £(Ey) is equivalent to lim; ., [w;il'?|exij] = 0 for each j > 0. Itis
readily seen, as in Theorem 2.1, that £, (E) is a closed unitary subalgebra of £(E).

COROLLARY 3.5. Ancelementu € ¥(E) has an adjointu* if and only ifu € $¢(Ey).
Letu,v € £y(Ey), A € K. Then (u+Av)* = u*+Av™*; (uov)* =v*¥ou™; u™** = u.
Moreover, ||l u*|| = |lull.

PROOE. We only prove that [[u*[l = ||u|l. Since for u = >, ; O(ije;®ei € $y(Ey), we
have [[ull = sup; ; (lw;|"?|a;;1/lw;|1?) and u* = 3; j wjw; ' «jie; ® e, we obtain

|| 0
1/2|wj||wi H(Xij|:S];1P
|, inj

;|
g il = Nl (3.3)

|lu*|| = sup
i | i |

a

REMARK 3.6. () u =3;; (Xije;- ®e; € $o(Ey) is selfadjoint, that is, u = u* if and
only if «j; = wiw;] «;j, for each i = 0 and each j = 0.
(ii) Examples of selfadjoint operators on ultrametric Hilbert spaces and study of
their spectrum are given in [1, 2, 6, 22].
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4. Closed subalgebras generated by projectors

4.1. Let J be a subset of I and E be a free Banach space with orthogonal basis
(ej:jelI). Thelinear operator p; = > ;c;e;®e; of E belongs to £, (E). Let® = {u:u =
Yicidie;®e; € Lo(E);sup;er |A;l < +oo}. It is clear that 9 is isometrically isomorphic
to the algebra of bounded families £ (I,K). Let Homag (%, K) denotes the family of
all algebra homomorphisms of % into K. Consider the spectrum % (%) = Homag (9, K)
in a topology inherited from the Tihonov topology of the product K of copies of K.

PROPOSITION 4.1. (i) An element u = > ;crAje;®e; € D is an idempotent if and only
if there exists J C I such thatu = p;.

(ii) The spectrum X(%) is homeomorphic to the subset of ultrafilters on1:®, = {U :
A is an ultrafilter on I, such that for allu = > ;c;Aje; ® e; € D, the limit limg, A; exists
in K}.

PROOF. (i) Let u = >;c;Ase; ® e;; then uou = u if and only if Zid)\ize; ®e; =
SierAie; ®e, if and only if /\% = A; foreach i € I, if and only if A; = 0 or A; = 1. Setting
J=1{i:ie;A; =1}, we have u = pj.

(ii) Let x be a character of 9, that is, an algebra homomorphism (necessarily contin-
uous) of ¥ into K. For all J,L c I we have pjopr = pjnr, hence pjopjc = pg = 0, where
J¢ =1TI\J.Furthermore, x(p;) = x(p;)x(ps) implies that x(p;) =0 or 1. Let U, = {J :
J cL;x(py) = 1}. This family of subsets is an ultrafilter. Indeed, @ & AUy. If J C L with
J €Ay, then 1 =x(p;) = X(pjar) = X(p))X(pL) = X(p1), hence L € AUy. On the other
hand, for J c I,wehave 1p = py+pjc,and 1 = x(1g) = x(py) +x(pjc) with x(p;) =1 or
Oand x(pjc) =1or0.If x(py) =1, then x(pyc) =0, and if x(p;c) = 1, we have x(p;) =
0. Hence J € Uy or J¢ € A,. Let u = > ;.1 Aje; ®e; € B. Put x(u) = A € K; then for all
J €Uy, x(up;) = x(u) = Ax(py). Therefore x (up; —Ap;) = 0, thatis,up; —Ap; € kery.
Set oy, (u) = lima, [A;]. It is well known and readily seen that ¢4, is a multiplicative
semi-norm on % and that ker ¢pa, = {u : u € 9; o, (1) = 0} is a maximal ideal of %,
since 9% is isomorphic to £* (I, ). On the other hand [x(up;)| < llup, | = sup;c; 1A;| for
each J € Uy. It follows that |[x(u)| = |x(up;)| < infjca,, sup;c; [Ail = ¢ay,, (u). Hence,
ker ¢pay, C ker x and ker ¢y, = kery. Let J € Ay, we deduce from (up; —Ap;) € kerx =
ker ¢pay, that 0 = cpay, (up; —Apy) = limg,, [A; — A|. It follows that limg, A; = A exists in
K. Moreover, x(u) = A = lima, |A;[, and we see that x = Xa, . Reciprocally, if AU is an
ultrafilter on I such that for all u = X;c;Aje;®e; € P, limy, A; exists in K; then setting
xXa (1) = limg, A;, it is readily seen that x4 is a character of %. Moreover, for all J €,
Xa(py) =limg 1 = 1, that is, J € Uy, and U = U, . The proposition is proved if we
consider on ¥(%) the weak*-topology and on @, the topology induced by the natural
topology on the space of ultrafilters, which is the weakest topology on &, relative to
which the mapping lim: &, — K is continuous. a

REMARK 4.2. (i) If K is locally compact, then for any bounded family (A;)ier C K,
the limit limq A; exists in K. Therefore, ®. is equal to the entire set of all ultrafilters
on I and ¥(%) is compact, homeomorphic to the Stone-Cech compactification S(I) of
the discrete topological space I.

(ii) If K is not spherically complete and I is a small set, that is, the cardinal of I is
nonmeasurable, it is well known that the continuous dual of £*(I,K) is equal to the
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space co(I,K) of the families converging to zero (cf. [28, Theorem 4.21]). Then, we can
prove that £ (%) is homeomorphic with I.

NOTE 4.3. For K spherically complete, not locally compact, it is interesting to find
explicit conditions on an ultrafilter U in such a way that limg A; exists for any bounded
family (A;:i €I) C K. We can try to use Banach limits, that is, continuous linear forms
on £~ (I,K) that extend the usual continuous linear form of the limit operation defined
on the subspace ¢, (I,K) of convergent families.

Let (Jy : v € A) be a family of subsets of I, such that J, nJ, = & for v # u. Putting
Pv = 2icy, €; ® ej, we obtain p, o p, = 8, ,pv, for v # u. Hence the subalgebra with
the unity B of ¥, (E), generated by (p, : v € A) is equal to K-id®(®,epK-py ). In-
deed if u = xpid+u; and v = Boid+v; with uy = >, cpr @ypy and vy = D, cp BvPy
(finite sums), we have uov = xoBoid +xov1 + Bour +Uj oV = XoBoid+ D, en(XoBy +
&y Bo + &y Byv)py € B. On the other hand, since u = xpid+>,cpopy WithT = {v:v e
A; oy # 0} finite and I = (UyerJv) U(Nyer Jv©) (a partition), we have u = g >.;c7e; ®
ei + Xyer Oy Dy, € ® i = &0 Dien, )y € ® i + 2yer Diey, (Ko + &y )e; ® e;. Hence
lull = max(|xol, maxy [xo + &y ).

LEMMA 4.4. Let u = &oid+>,cpavpy € B and Ag = A U {0}. Then |lul| =
maXyen, | &y |. That is, {id} U {p, : v € A} is an orthonormal family in £y (E).

PROOF. Since

llll =maX(|ao\,r§eaAX|ao+0<v|),
4.1)
max | &o + &y | smax(|o(o|,max\¢xv|).
v veA

We have [|[u|l < maxyea, |y |. Moreover, |xo| < [|ull. Hence for v € A, we have |«x, | =
[y + 0o — oo < max(|ay + Xol, | xol) < [lull. It follows that maxyea, l&v| < [lull, and
Lemma 4.4 is proved. |

LEMMA 4.5. Assume that (e; : i € I) is an orthonormal basis of E or E is an ultra-
metric Hilbert space. Then any u € B is selfadjoint, that is, u* = u, and |[u?|| = |lul.

PROOF. That any element of % is selfadjoint is easy to verify. Let u = xopid+
S en Gypy € B, we have u? = x2id+>,cr 2oy + ,2)py € B. Hence ||[u?| =
max (| xo|?, maxyen [Xo? + 200y + &,2]) = (max(|xol, maxyen |Xo + &y [))? = [lull?.

O

NOTE 4.6. In fact, Lemma 4.5 is true for u € %. Let E be a free Banach space with
orthogonal basis (e; : i € I). Fix m € K such that 0 < |r| < 1. There exists for any
i € I an integer n; € Z such that ||™*! < |le;|| < |7r|™. For x = > ;c; X;e;, we have
lim;e; x; " = 0. Hence we define on E a norm by setting ||x||+ = sup;¢; |x;|l|";
this norm is equivalent to || || with |1T|l[x]|lx < ||x|| < |[x||. Furthermore, setting x =
Sicrxieiand v = > yviei €E, fn(x,y) = e, T x; Vi, we have a continuous, non
degenerated, bilinear form on E such that | fir (>, )| < x|z l|V 7 < |7T]2lIx]]l.
Therefore, we obtain on E, a structure of ultrametric Hilbert space E = (E, || |7, fr)-
Since the norms || || and || || are equivalent, £(E) = ¥£(Er) and $o(E) = Lo(Ex).
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The norms on £(E) induced by || || and || || are equivalent with |r|||ull» < ||[u]l <
|7t|~'||ullx. As in Note 3.3, we define the adjoint u* of u € £(E) with respect to
fr. We obtain the results stated in Theorem 3.4, that is, #u admits an adjoint with
respect to fr if and only if u € £, (E). Furthermore, if u = >; ; «;je’j ® e; € £o(E),
then u* = > ;' "wje'; ®e;, and u is selfadjoint, that is, u* = u if and only if
i =1, forall i,j € I.

NOTE 4.7. Let v’ be another element of K such that 0 < |7t’| < 1. Also let (m;:ie
I) C Z be defined by |7r'|™i*! < |le;|| < |7r'|™:. Then the adjoint ut = >; ;'™ ™™
«jie'j ® e; of u with respect to fr coincides with u* if and only if " " =
'™ M, for each i and j € I. If this is true for all u € $4(E), we have mt"i ™" =
'™ for i,j € I. Hence, log|tr|/|log|m’| = (mj—m;)/(nj—n;) =m/n >0 and
the sets (m; —m;);+; and (n; —n;);.; must be finite.

rm;

If J is a subset of I, the projector p; = ;< e; ®e; is selfadjoint with respect to any
bilinear symmetric form fr and [|p;ll =1 = lIp;ll«.

LEMMA 4.8. Let E be a free Banach space with orthogonal basis (e; : i € I). Defining
an adjoint of a continuous operator with respect to fr, then any u € B (resp., @) is
selfadjoint and ||[u?| = |lull%.

PROOF. It is the same as in Lemma 4.5. Since for any u = &pid+>.,cp vpy € B
we have |[u|l = maxyea, |y, that is, {id,p, : v € A} is an orthonormal family in
%o(E), we see that the closure « = % of B is the subspace of £y (E) of all elements u
which can be written in the unique form of summable families © = xgid + >, cp Xy Py
with &g, ®, € K and lim, &, = 0. It is readily seen that & is a closed unitary subal-
gebra of ¥, (E), contained in %, such that any element u of # is selfadjoint. More-
over for the pointwise convergence, u = o> jenys €; ® €i + 2. yep Dicy, (0o + Xy)e; ®
ei. Hence, if (,cpJS = O, then u = X, cp Dy, (0 + &y)e; ® e; and id = >, cp py.

Od

EXAMPLE4.9. If A =Tand J; = {i} foreachi eI, wehave sl = {xpid+ > ;c; xie;®e; :
«; € K, limje &; = 0}. As an element of 9 any u € ¢ is in the form u = Y ;c;ae;®e;
with lim;c;a; = g exists in K.

PROPOSITION 4.10. (i) Any element u of the Banach algebra i with the unit element
id is selfadjoint with respect to any bilinear symmetric form fr and |[u?|| = ||[ul|?.

(ii) The spectrum % (s1) = Homag (s, K) of o, equipped with the weak* -topology, is
homeomorphic to the Alexandroff compactification of the discrete space A.

PROOF. The first part is an easy consequence of Lemma 4.8. Let x € ¥(), then yx is
a continuous linear form with norm [ x| = 1. Furthermore, x(id) = 1 and x(pvpu) =
X(PV)Xx(pu) = 6vuXx(py), for v,u € A. It follows that for any v € A, x(py) =1 or
X(pv) = 0. Hence (a) there exists v € A such that x(p,) =1 and x(py) =0 for p = v,
or (b) x(py) =0 for all v € A. In case (a), we put x = x, and in case (b), X = xXo. We
verify that for u = xpid+ >, cp @y py € A, we have xo(u) = xp and x, (1) = xp + &y,
v € A. It follows that (o) = {Xxo0,Xv : Vv € A} and ¥(sA) is in a bijective correspondence
with the set Ag = AU {0}. Let W(x;&,U1,...,Un) = {(n:n € X(D); Ix(u;) —nuj;)l <e,
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uj € s,1 < j < n} be a fundamental neighborhood of x € %(s) for the weak*-
topology. Since for u; = xojid+ >, ep Xujpy € o, limyep oy = 0, there exists a finite
subset I of A, such that for any p ¢ Iy, |xujl <eforeach 1 < j<n.If x = xv, V€A,
we have for 1 < j <n, u €A, xy(u;) —xu(u;) = &yj — ;. Choosing (u;:1<j=<mn)
such that &, = minj<j<n |y ;| > 0, there exists I, C A, I, finite such that |x,;| < &
for 1 < j <n and for all u ¢ I,. Hence |l < ol and &y j — &yjl = |yl = €, for
1 <j<nandpu ¢I,. Therefore, if € < &, then W(xy;&,u1,...,uy) = {xv}, thatis, {x,}
is open in ¥(s). Hence {x, : v € A} is a discrete subset of ¥(s{). On the other hand,
if x = Xxo, then xo(u;) — xu(u;) = —yj. Hence for € > 0, there exists a finite subset It
of A such that for p ¢ T, |xo(u;) — xu(uj)| = |yl < & for each 1 < j < n. In other
words, W (Xo; &, U1,...,Un) = {Xy : U & I¢}. Furthermore, xo = lim,cp xu in %(sA) for
the weak*-topology. It follows that () is weak*-compact. Consider on Ag = Au {0}
the topology such that A is a discrete subset of Ay and the neighborhoods of 0 are
Wr(0) = Ag\TI', where I C A is finite. It becomes clear that A( is homeomorphic to the
Alexandroff compactification of the discrete space A. Identifying ¥ () with Ay, we
conclude the proof of the proposition. |

4.2. Let 6(¥(A),K) be the K-Banach algebra of the continuous functions f on
the compact space ¥(s{) with values in K. It is readily seen that f € 6(%(s),K) is
defined by the family (f(xy) : v € Ag) € K such that lim,cx f(xv) = f(xo). Hence
@ (X (A),K) is isometrically isomorphic to the algebra ¢, (Ag,K) = {a:a=(a,:v €
Ap) CK; limyepay = ag}: on ¢y (Ag,K), we consider the usual multiplication defined
pointwise and the norm ||(a, : v € Ag)|| = Sup,ep, lay|.

COROLLARY 4.11. The Banach algebra s with the unit element id is isometrically
isomorphic to the algebra c, (Ao, K) = {a:a = (ay)ver, CK; limycpay = ao}.

PROOF. Let9:d — 6(X(A),K) be the Gelfand transform 4(u)(x) = x(u). Asusual,
% is continuous. Since for u = xpid + >, cp ¥y py € A, we have xo(u) = ®p and x, (1) =
Xo + &y, Vv € A, and obtain [Jull = max(|xo(u)],sup,ca IXv(W)|) = supyeq) X (W1
Hence, [|%9(u)]| = [lu]l. Furthermore, %(id) (1) = 1, that is, 4(id) = f; the constant
function equal to 1. On the other hand, for v € A, 4(p,)(x) =1 if x = x, and 0
otherwise. Hence, setting for v € A, f, : X (1) — K such that f, (x,) = v, 4 €A, We
have 4(p,) = fv. Let u = xpid + >, cp Xy py € A, we have G(u) = Xofo + Dyen Ky fr.
Since any f € 6(%(s4),K) can be written in the unique convergent sum f = f(xo)fo +
Dvea (f(xv) = f(x0))fy with limyea (f (Xv) — f(X0)) = 0, we have f = 4(u) with u =
F(xo)id+>,cn (f(xv) —f(X0))pv. Hence, G is surjective. Together with || (u) || = |lu|l,
the corollary is proved. a

5. Spectral integration

5.1. Suppose that X and Y are Banach spaces over a topologically complete non-
Archimedean field K with a nontrivial valuation and £(X,Y) denotes the Banach space
of bounded linear operators E : X — Y supplied with the operator norm: ||E| :=
SUPg.yex IEX|ly/lIx|lx. For X =Y we denote £(X,Y) simply by £(X). Let X and Y
be isomorphic with the Banach spaces ¢ (x,K) and ¢y (B, K) and let them be supplied
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with the standard orthonormal bases {e;: j € «} in X and {q;:j € B} in Y, respec-
tively, where co(,K) := {x = (x/: j € &) | x/ € K, such that for each € > 0 a set {j:
[x/| > €} is finite} with anorm || x| := sup i |x/|k, x and B are ordinals (it is convenient
due to Kuratowski-Zorn lemma). Then each operator E € £(X,Y) has its matrix real-
isation Ej := q; Eej, which may be infinite, where g; € Y* is a continuous K-linear
functional g : Y — K corresponding to gx under the natural embedding Y — Y* asso-
ciated with the chosen basis, Y* is a topologically conjugated or dual space of K-linear
functionals on Y, q; (q;) = 5;‘. Therefore, to each E € £(X,Y) there corresponds an
adjoint operator E* € £(Y*,X*). By a transposed operator E!, we mean a restriction
E* |y, where Y is embedded into Y* such that E§,k = Ey,j for each j € xand k € B.

This means, that if X = Y and E! = E, then E is called a symmetric operator. For
X =Y =co(e,K) there is an inclusion E*(Y) c X*. Since X* = [*(«x,K), then ||x||x =
x|y for each x € X. Since ||E| = sup; |Ejkl, then [[Ell = [|[E*[| and [E|l = |EL)|. If
AE € $(X) and E = Al, then A and E belong to the closed subalgebra £, (X) (see
Section 2).

5.1.1. Now let A be an abstract Banach algebra over a field K, which is complete
relative to a norm | * || in it. We say that A is with an operation of transposition
a — a' for each a € A if the following conditions (), (B), (¥), and (J) are satisfied:

(x) (a+Db)t =at+bt;
B) (Aa)' = Aal;
(y) (ab)t =b'at;
(8) (ah)t = alt = a for each a,b € A and each A € K.
Let A be an algebra over K, which satisfies the following conditions (i), (ii), and (iii):
(i) A is a Banach algebra,
(ii) with the operation of transposition a — at,

(iii) |latall = ||all? for each a € A while evaluation of norms.

Then such algebra is called an E-algebra.

Without condition (iii), it is called a T-algebra. If instead of (iii) it satisfies the fol-
lowing condition:

(iv) |latall = ||a?|| then A is called an S-algebra.
For each E-algebra, we have ||a||?2 = ||aal| < ||allllat|l, hence ||a| < |a| and also
latll < [[(a")!]l = llall, consequently ||all = [la*]|.

5.1.2. Evidently, $£((X) is a T-algebra. Each C-algebra is at the same time an E-
algebra (see also Section 5.5), since for each singleton x € X a closed subalgebra
C({x},K) isisomorphic with K and the restriction of transposition on C({x}, K) gives
ft(x) = f(x) for each f € Cu, (X,K).

Let Aq,...,A, be linear operators. Then the equation

n n
[ 2 NiAL D UkAk] = > (Ajue—Arny) (AjAK = AkA;) =0, (5.1)
Jj=1 k=1 Jj<k

for each A; and px € K, is equivalent to [A;,Ax] = O for each j < k. In view of [15,
16, Sections IV.6, 7, VIL.7, and VIII.2] for each n € N there are pairwise commuting
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matrices of the size m x m such that for sufficiently large m > n they in addition can
be found nondiagonal (nonreducible to diagonal form by transformations, U;A; UJT 1
where U; are invertible matrices), since in view of [15, 16, Theorem VIII.7.2] a number
of linearly independent matrices, which commute with the given matrix A is defined by
the following formula: N = ny +3n,+- - - + (2t — 1)ny, where n,,n»,...,n; are degrees
of nonconstant invariant polynomials i; (A),i2(A),...,i;(A) and n=ni+nx+---+ny
is a size of the square n X n matrix A. This can be done by suitable choices of Jordan
forms of matrices over K. From this it follows that in £((co(wg,K)) for each n € N,
there always exist n pairwise commuting operators such that they are not reducible
to the diagonal form by adjoint transformations UjAjUJ?I. This produces examples
of T-algebras. When in the (finite case) Jordan form [Ajx| > 1 and | - U;|l < 1 for
each j =1,...,n, where A;; are diagonal elements of the Jordan normal forms of Aj,
then each A; together with A; satisfy condition (iii). We take the case U; = U, =: U
for each j. Let in addition A; be pairwise commutative and have block forms (v)
Aj =diag(Aj1,...,Ajn), Aj1 are m; X m; square matrices and Aj; = 0 for each [ # j
and A;; # 0. Consider their transposed matrices also, then the linear span of all
their products Bj, - - - Bj, produces commutative E-algebra, which is generated by non-
diagonalizable over C, matrices, where B; is equal either to A; or to Aﬁ-, since |A; k[ >
[bAjk|€ for each a > ¢ > 0 and b € Z. As it follows from [15, 16, Section VIIL.7.2] these
Aj can be chosen such that SpK{I,Aj,Ai, . ,A}"} does not contain A; for each [ + j.

The construction of S-algebras can be done analogously and more lightly, since
condition (iii) is replaced by condition (iv).

Let A be an E-algebra with a K-linear isometry Y : A — A such that Y(ab) =
Y(b)Y(a) and Y!(a) = Y(a') for each a,b € A. Then Y (A) is an E-algebra.

There are general constructions of Banach algebras also. In particular, we can take
a free Banach algebra A generated by a set J. This means, that A is a completion
of spxi{a;---an:a,...,an € J,n € N} with the definite order of letters a,,...,a, in
eachword w = aa; - - - an, when neighbouring elements a; and a;; are distinctin J.
There exists anorm on spg{a; - --an:ai,...,an € J,n € N} such that ||ab| < |lall||b]|
for each a,b € A. For example, ||w|| = 1 for each word w = a, - - - a,, with a4,...,a, €
J, llciwr + -+ - + cmWwi |l = maxi<j<m |cjlk for different words wy,...,w, with ¢; € K
for each j =1,...,m. Then for Y : A — A preserving a closed ideal V we can consider
the quotient mapping Y : A — A, where A = A/V and Y on A is defined by Y on J due
to the continuous extension.

Another example is the following. For a subset J of symmetric (i.e., al = a for each
a € J C $y(X)) pairwise commuting elements (i.e., ab = ba for each a and b € J C
Fo(X)) let A:=cl(spg{[1/ ai":0<n; €Z, meN, a; € J}), where a® := I is the unit
operator on X. Then such A is a T-algebra. Since ||alal|l = ||a?|| for each a € A, then it
is an S-algebra.

Another example of an E-algebra is the algebra of diagonal operators in £ (X). Then
each E-algebra is certainly an S-algebra and each S-algebra is a T-algebra (see also
Lemmas 4.5, 4.8 and Proposition 4.10(i)). Above were constructed more interesting
examples of E-algebras and S-algebras. In general, diagonal form of an algebra is
unnecessary for the spectral theory. Moreover, there are well-known theorems, when
Lie algebras (in particular of finite square m X m matrices over C,) can be reduced
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simultaneously to the upper triangular form by one transformation UA;U~! (see [17,
Iwasawa Theorem 4.7.2]). There are also cases, when it may be over K. Using limits
such cases can be spread on subalgebras of £, (X).

It will be shown below that for the spectral integration it is sufficient to consider
C-algebras.

5.2. Let A and B be two E-algebras over the same field K, an algebraic homo-
morphism T : A — B is called a t-representation of A in B, if T, = (T,)! for each
a € A. The reducing ideal Y of A is defined as the intersection of the kernels of all
t-representations of A. The reducing ideal Y is also called the t-radical. If Y = 0, then
A is called reduced (or t-simple).

Let |lall¢ :== suprey I Tall for a reduced algebra A, where ¥ := ¥4 denotes the family
of all t-representations of A. Since A is reduced, then ||a|l; = O for each A > a = 0.
Such || % ||; is called an E-norm of A.

The E-algebra obtained by completing A/Y by its E-norm is called the E-completion
of A and is denoted by A;. Denote by 7 : A — A/Y the natural t-homomorphism of
A into A; such that m(a) =a+Y foreacha € A. Thenthemap T~ T' =ToTr is a
bijective correspondence between the set of all t-representations T of A; and the set of
all t-representations T’ of A. This correspondence preserves closed stable subspaces,
nondegeneracy, bounded intertwining operators, isometric equivalence and Banach
direct sums.

5.3. Let A be a commutative Banach T-algebra and A* denotes the Gelfand space
of A, thatis, A* = Sp(A), where Sp(A) was defined in [28, Chapter 6], it is the set of all
nonzero algebra homomorphisms ¢ : A — K topologized as the subset of KA. Every
x € A induces a function Gy : Sp(A) — K by Gx(¢) := ¢p(x), where ¢p € Sp(A), Gy is
called the Gelfand transform of x, G is called the Gelfand transformation. Then it is
defined the spectral norm |[|x|lsp := SUPgesp(a) |Gx (P)] of x € A. If Sp(A) = &, then
Ix|lsp := O for each x € A. We denote by A the closed subset of A* consisting of those
¢ € A* forwhich ¢p(a!) = ¢p(a) foreacha € A, ¢ € Ais called symmetric, if ¢ € A. Let
Cs (A, K) be the same space as in [28]. For a locally compact E the space Co (E,K) is a
subspace of the space BUC(E, K) of bounded uniformly continuous functions f : E — K
such that for each € > 0 there exists a compact subset V C E for which | f(x)]| < € for
each x € E\ V. When E is not locally compact and has an embedding into B(IK,0,1)¥
such that EU {xo} = cl(E) we put C (E,K) := {f € C(E,K) :limx_x, f(x) = 0}, where
B(X,x,r):={y e X:d(x,y) <r}isaball in the metric space (X,d), cl(E) is taken in
B(K,0,1)¥, y is an ordinal, xo € B(IK,0,1).

DEFINITION 5.1 (see also [28, Chapter 6]). A commutative Banach algebra A is
called a C-algebra if it is isomorphic with C. (X, K) for a locally compact Hausdorff
hereditarily disconnected space X, where f + g and fg are defined pointwise for each
f,9 € Cu (X,K).

PROPOSITION 5.2. The reducing ideal Y of A consists of those a € A such thatd(¢) =
0 for each ¢ € A. The equation

(i) F(rr(a)) = a |4 determines an isometric t-isomorphism F of A; onto Co (A, K),
when K is a locally compact field.



SPECTRAL INTEGRATION AND SPECTRAL THEORY FOR NON-ARCHIMEDEAN ... 433

PROOF. We have sup¢eA|d(¢)| < ||rr(a)|l; for each a € A. Then we take a t-
representation T of A and B := cl | range(T), hence B is a commutative E-algebra. To
finish the proof of Proposition 5.2 we need the following.

PROPOSITION 5.3. Let A be a commutative E-algebra as in Section 5.1: A =
cl(spy {11, a?" :0<n; €Z,a; €J,at =a,meN}), then A = A*. Furthermore, the
Gelfand transform map a — 4 is an isometric isomorphism of A onto C« (A, K), when
K is a locally compact field.

PROOF. In view of [28, Corollaries 6.13, 6.14, and 6.17] it is sufficient to show that
A* = A, since A is isomorphic with Ce (Sp(A), K), where Sp(A) = A.If a' =a € A and
¢ € A*, then ¢p(al) = p(a) € K. If 1 € A, then ¢ extends to a t-homomorphism of
the S-algebra A; obtained by adjoining the unit 1 to A, since it is possible to consider
X @K (cf., about adjoining of 1 in [14, 13, Section VI.3.10] and [28, Chapter 6]). Since
K is locally compact, A; is isomorphic with C(xY,K), where Y = Sp(A) u {0} is a
one-point (Alexandroff) compactification of sp(A) (see [28, Observation 6.2]). Indeed,
lall = supyea+ IxX(a)l. Let $p(a) =r € K, b := a+z1, where z € K. From [|¢| < 1
it follows that |p(b'b)|, = |(¥ +2)?|, < |b?|l and |b?| = llata + za + za + 2°1]| <
max([la?ll,|z|pllall,|z|%). Then there exists 0 < € < (||a?||)!/? such that for each |z|, <
€:|¢p(bth) lp < lla?]|, consequently ¢ has the continuous extension on A;.

IfpeAtanda=b+ce Awithb! =band ¢! = —c € A, then ¢p(al) = p(b) —Pp(c).
If ¢p(al) = —¢p(a) for each a € A, then ¢p(b) = 0 for each b = bt € A. If Pp(al) =
¢(a) for each a € A, then ¢p(c) = 0 for each ¢! = —¢ € A. The operation of trans-
position a — a' is continuous in A. Let ¢ € A" and ¢ = 0. Therefore, for each
¢(a) # 0 we have ¢p(al) + 0, since a'’ = a. Hence ¢p(a') = Ag¢p(a) for eacha € A
such that ¢(a) # 0, since cokery ¢ is one-dimensional, where 0 = Ay € K. We have
p((a'a)") = Afd(a)®™. Since [a'all = [|la®|l, a'" = a, and ¢ is the continuous multi-
plicative linear functional, then [A4|, = 1. On the other hand, Ag¢p(ab) = ¢p(atbt) =
Ppat)p(bt) = Afpd)(a)d)(b) = App(ab), hence Ay = 1, where there are a and b € A
such that ¢p(ab) = 0. Therefore, ¢pt = ¢, where P! (a) := ¢p(a') for each a € A. Conse-
quently, A = A*. O

CONTINUATION OF THE PROOF OF PROPOSITION 5.2. Inview of Section 2 there ex-
ists ¢ € B such that [¢/(T,)| = | T, I, since ¢’ :a — @(T,) € A, hence || T, || = |y’ (a)| <
Supgeala(P)l, consequently, [Irr(a)lls < supyezlda(gp)l. Therefore, |m(a)lle =
Supgeala()l, hence the map F defines the isometric t-isomorphism of A: into
Cw(Sp(A),K). The range of F is a T-subalgebra of Cq (A, K), which automatically sep-
arates points of A, consequently, by the Kaplansky theorem cl range(F) = Co (A, K)
(see [25, Section A.4]). |

A

5.4. Let H = ¢o(,K), where K is a topologically complete field. A strong operator
topology in £(H,Y) (see Section 1) is given by a base Veg.x,,.x, := {Z € £(H,Y) :
sSup, << l(E = Z)xjlly <€}, where 0 <€, E € £(H,Y), x; €H; j=1,....n;n eN.
Let X be a topological space with the small inductive dimension ind(X) = 0. An
H-projection-valued measure on an algebra L of subsets of X is a function P on
L assigning to each A € L a projection P(A) on H and satisfying the following
conditions:
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(i) P(X) =1y,

(ii) for each sequence {A, : n = 1,...,k} of pairwise disjoint sets in L there are
projections P(A,) such that P(A,)P(A;) =0 for each n # [ and P(L_J’jl:1 Ap) =
Sho1 P(A),

(iii) if A c L is shrinking and NnA = &, then limca P(A) = 0, where the conver-
gence on the righthand side is unconditional in the strong operator topology
and the sum is equal to the projection onto the closed linear span over K of
{range(P(A,)):n =1,...,k} such that P(J) =0, k € N.

If ne H* and & € H, then A — n(P(A)&) is a [K-valued measure on L. The case of a
o-algebra L and of k = o in (ii) is unnecessary for the subsequent consideration and
it will not be used, but it may be considered as a particular case. The o-additive case
leads to the restriction that each measure n(P(A)&) is atomic, when K is spherically
complete (see [28, Chapter 7]).

Then by definition P(A) < P(B) if and only if the range (P(A)) C the range P(B).
There are many projection operators on H, but for P there is chosen some such fixed
system.

A subset A C X is called P-null if there exists B € L such that A ¢ B and P(B) =0,
A is called P-measurable if A A B is P-null, where AAB:= (A\B)U(B\A). A function
f: X — K is called P-measurable, if f~1(D) is P-measurable for each D in a field
Bco(K) of clopen subsets of K. It is essentially bounded, if there exists k > 0 such
that {x : | f(x)| > k} is P-null, || f|l~ is by definition the infimum of such k. Then
F := spx{Chg : B € L} is called the space of simple functions, where Chp denotes
the characteristic function of B. The completion of ¥ relative to || * ||« is the Banach
algebra L. (P) under the pointwise multiplication.

There exists a unique linear mapping $ : ¥ — £(H) by the following formula:

(iv) $(XL,A;Chg) =3, A;P(B;), where n € N, B; €L, A; € K. Since

W) 12N = 1If e, then $ extends to a linear isometry (also called $) of L (P)
onto ¥(H).

If f € Lo(P), then the operator $(f) in £(H) is called the spectral integral of f

with respect to P and is denoted

Vi) [x f(x)P(dx):=3(f).

Evidently properties (I), (I), (IIT), (V), and (VI) from [14, 13, Section I1.11.8] are trans-
ferable onto the case considered here. These and other properties of the spectral
integral are as follows.

PROPOSITION 5.4. A spectral integral has the following properties:
() Jx f(x)P(dx) = [yg(x)P(dx) if and only if f and g differ only on a P-null set;
(M) [y f(x)P(dx) is linear in f;
) [y f(x)gx)Pdx) = (Jyf(x)P(dx))([xg(x)P(dx)), for each f and g €
Lo (P);
V) [y fFOOP@x)| =1l flloo;
(V) if A€L, then [y Cha(x)P(dx) = P(A), in particular [, P(dx) = P(X) = 1g;
(VD) for each pair & € H and n* € H*, let pug n(A) := n*(P(A)§) for each A € L. If
E =[x f(x)P(dx) then n*(EE) = [y f (x)pg,n(dx);
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(VL) if A € L, then P(A) commutes with [y f(x)P(dx), where el = e’ such that
ei(ej) = 6"

An H-projection-valued measure P on the algebra L containing an algebra Bco(X)
of clopen (closed and open at the same time) subsets of X is called an H-projection-
valued tight measure on X. We call P regular if

(vii) P(A) = sup{P(C):C C A and C is compact} for each A € L, where sup is the

least closed subspace of H containing range P (C) and to it corresponds a pro-
jector on this subspace. Indeed, P(A)H is closed in H, since P2(A) = P(A).
Therefore,

(viii) P(A) = inf{P(U) :Uisopenand U D A} = I —sup{P(C):C c X\Aand C is

compact}, hence

(ix) the infimum corresponds to the projection on (\y-a,y is open P(U)H.

A measure p:L — K is called regular, if for each € > 0 and each A € L with ||A]l, < o
there exists a compact subset C C A such that [|[A\ Cll, < €. Since [|P(X)]|| = 1, then
lttg nll < €Nk INllg=. For the space H over K, measures g, on locally compact X are
tight for each &, n in a subset J ¢ H — H* separating points of H if and only if P is
defined on L D Bco(X); P is regular if and only if pg , are regular for each §,n € J due
to Conditions (viii) and (ix). We can restrict our consideration by pg g instead of ug
with &,n € spy J, since (f)Zug,n = Hg(*yng(*)n — HEE — Hnn-

By the closed support of an H-projection-valued tight measure P on X we mean
the closed set D of all those x € X such that P(U) # 0 for each open neighbourhood
x €U, supp(P):=D

5.5. We fix a locally compact totally disconnected Hausdorff space X and a Banach
space H over K and let T : Co (X,K) — £(H) be a linear continuous map from the
C-algebra Co (X, K) of functions f: X — K such that:

(i) Trg =TrT4 for each f and g € Cw (X, K),
(ii) T; = I for compact X.

In general, C (X,K) can be considered as an E-algebra if we define f!:= f for each
f € Cx(X,K), so we can put Tf Tr, but the latter equality will not be used.

From this definition it follows, that || T|| < 1, since Ty» = Tf for each n € Z and
f € Co(X,K). If X is locally compact and is not compact, then X, := XU {x} be its
one-point Alexandroff compactification. Each f € C(X«,K) can be written just in one
way in the form f = Al + g, where g € C»(X,K) and 1 is the unit function on X.
Therefore, we can extend T : Co (X,K) — £L(H) to a linear map T’ : C (X, K) — £L(H)
by setting Ty,,, = Aly + T4 such that T = 1y.

Therefore, f — n*(Tr&) =: fig,,(f) is a continuous K-linear functional on C. (X, K),
where & € H and n* € H*. In view of [28, Theorems 7.18 and 7.22] about correspon-
dence between measures and continuous linear functionals (the non-Archimedean
analog of the Riesz representation theorem) there exists the unique measure pg, €
M (X) such that

(D) n*(Tr&) = [y f(xX)ugn(dx) for each f € Cu(X,K). In case TJE = Ty we have
Mgn = Ung, when &,n € H. Since Ty = I, then g ,(X) = n*(&) = £*(n). Then
for each A € L, ||A||u§,n < ElInlisup .o ITrll < 1IENHINI. Since H considered
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as a subspace of H* separates points in H, then for each A € L there exists a
unique linear operator P(A) € £(H) such that

(I IP(A)] =1 and n*(P(A)&) = ug,(A), since ug ,(A) is a continuous bilinear
K-valued functional by & and n € H. From the existence of the H-projection-
valued measure in the case of locally compact X, we get a projection-valued
measure P’ on X, such that

() T'f =[x, f(x)P'(dx) for each f € C(Xu,K).

LEMMA 5.5. Foreach A andB €L, (i) P(AnB) = P(A)P(B) = P(B)P(A).

PROOF. Foreachg e Co(X,K)and &,n € Hlet vy(dx) := g(x)ug 5(dx). For each f
and g € Co (X,K) we have: [y f(x)ur,gn(dx) = n* (T T4&) = [y f(x)g(xX)pg,y(dx) =
Jx f(x)vg(dx), consequently v, = pir,g ;. For a fixed A € L let p(B) := pg,, (AN B) for
each B € L. Therefore, p is a tight measure on X: p € M(X), where M(X) denotes the
set of all tight measures on X. For each g € C (X, K) there are equalities

Lg(x)p(dx) = JAg(x)ug,n(dx) =vy(A) = ng(x)upm)g,n(dX)- (5.2)
Then for each B € L, we get
n*(P(ANB)E) = pgn(ANB) = p(B) = Up(aye,n(B) = n*(P(A)P(B)E). (5.3)

The elements & and n € H were arbitrary, hence P(AnB) = P(A)P(B). Interchanging
A and B we get the conclusion of this lemma. a

COROLLARY 5.6. For each A € L we have P>(A) = P(A) and P(A) is a projection
operator such that P(X) =1.If AnB =@, A and B €L, then P(A)P(B) = 0.

PROPOSITION 5.7. If conditions (i), (ii), (iii) of Section 5.4 are satisfied, then P is the
unique regular H-projection-valued tight measure on X and Ty = [y f(x)P(dx) for
each f € Co(X,K).

NOTE 5.8. Such integral is called the spectral integral.

PROOF. Let {A, :n € N} be a sequence of pairwise disjoint subsets of X, A, € L.
Since X is locally compact, then the spectral integral defined in Section 5 as the limit of
certain finite sums exists. By Corollary 5.6, P(A,, ) are pairwise orthogonal projectors.
Put Q = >, P(A;). Then for each § and n € H, we have n*(Q&) = >, n*(P(An)&) =
znug,n(An) = ug,n(UnAn) = n*(P(UnAn)g)s consequently, P(UnAn) = ZnP(An)
and P is an H-projection-valued measure. Since X is locally compact, then each mea-
sure Ug p is tight and regular (see [28, Theorem 7.6]), hence P is regular (see Section 5).
Take f € Co(X,K) and form the spectral integral E = [y f(x)P(dx).For each &,n € H
we have n*(E€) = fo(x)ugy,,(dx) =n*(Tr&), consequently, E = Ty. In view of Equal-
ity (II) of Section 5.5 we have a regular H-projection-valued measures both in the case
of compact and noncompact locally compact X.

It remains to verify the uniqueness of P. Suppose there exists another regular
H-projection-valued tight measure on X with the same properties. Put ug,(A) =
n*(P(A)E), ven(A) = n*(Q(A)E) for each A € L, where § and n € H. Then
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Jx f ) pgn(dx) = n*(TrE) = [y f(x)vg,y(dx) for each f € Co (X, K), hence pg , = ve
for each &,n € H, consequently, P(A) = Q(A) for each A € L. O

COROLLARY 5.9. The relation T¢ = [y f (x)P(dx) for each f € Cw(X,K) sets a one-
to-one correspondence between the set of all regular H-projection-valued tight mea-
sures P on X and the set of all continuous linear maps T : Co (X, K) — £(H), which
satisfy conditions (i), (ii), (iii) of Section 5.4.

NOTE 5.10. A particular case of H = C(X,K) for locally compact totally discon-
nected Hausdorff space X and Ty = f for each f € C(X,K) can be considered in-
dependently of the given above and it is the following. Each such f is a limit of a
certain sequence by n € N of finite sums >; f(xl,-,n)Chvj’n (x), where {Vj, :j € A}
is a finite partition of X into the disjoint union of V;, clopen in X, xj, € Vjn,
Ay C N, since range (f) is bounded. If we take P(V) = Chy for each V € L, then T,g =
limy;,— ij(xj,n)Chvj‘n(x)g = [y f(x)P(dx)g for each g € H, so there is the bijec-
tive correspondence between elements a € A of a C-algebra A realised as C (X, K)
with X = Sp(A) and their spectral integral representations. It can be lightly seen that
P(V1 ﬂVZ) = Chvlmvz = Ch\/1 ChVZ = P(VI)P(Vz) = P(Vz)P(Vl) for each VJ' eL. If {VJ :
Vj €L,j € N} is a disjoint family, then P(U;Vj)g = Chy, v, g =X jChyv;g = > ;P(Vj)g
for each, g € H. Also P(Q)H = Chg H = {0} and P(X)g = Chxyg =g, for each g € H.
Therefore, P is indeed an H-projection-valued tight measure.

Suppose now that X is not locally compact, for example, X = co(wo,S) with an
infinite residue class field k of a non-Archimedean infinite field S with nontrivial val-
uation. Then there are f € C(X,K) for which convergence of finite or even count-
able or of the cardinality card(k) (which may be greater or equal to card(R)) sums
ij(xj,n)Chvjm becomes a problem for a disjoint family {V;, : j} of clopen in X
subsets, since || Chvm llccx,x) = 1 for each j and n.

THEOREM 5.11 (the non-Archimedean analog of the Stone theorem). Let A be a
commutative Banach C-algebra over a locally compact field K. If P is a regular H-
projection-valued tight measure on A (see Section 5.5 and Proposition 5.7), then the
equation

(i) Ta = [sa(p)P(d) for each a € A defines a nondegenerate representation of
A in H. Conversely, each nondegenerate representation T of A on a Banach space H
determines a unique regular H-projection-valued tight measure P on A such that (i)
holds.

PROOF. The right side of (i) is the spectral integral. Let P be a regular H-projection-
valued tight measure on A. By Corollary 5.9, T : f — Jx f(x)P(dx) is anondegenerate
representation of C.(A,K) on H. By Proposition 5.2 the map a — al; is a homo-
morphism of A onto a dense subset of a subalgebra of C, (A,K) such that the map
T:a~-T'| @y = JiaP(da) is a nondegenerate representation of A.

Conversely, let T be a nondegenerate representation of A on H. Then from
Sections 5.1, 5.2, and Proposition 5.2 it follows that there exists a nondegenerate rep-
resentation T’ of Cw (A, K) such that

(i) Tq = T'(a|, for each a € A. In view of Proposition 5.7 there exists a regular
H-projection-valued tight measure P on A satisfying the equality
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(iii) T'¢ = 4. f(x)P(dx) for each f € Ce (A, K). Combining (ii) and (iii) we get For-
mula (i). Let Q be another regular H-projection-valued tight measure which is
also related to the representation T by Formula (i), then

(iv) [a(x)Q(dx) = Ta = [a(x)P(dx) for each a € A. Due to Proposition 5.2
{alj:a e A} is dense in Co (A, K) with respect to the supremum-norm. From
(iv) and Section 5, it follows that [; f(x)P(dx) = [;.f(x)Q(dx) for each f €
Cs (A, K), consequently, by Proposition 5.7, Q = P. O

DEFINITION 5.12. From Theorem 5.11, P is called the spectral measure of the non-
degenerate representation T of A.

PROPOSITION 5.13. Let P be the spectral measure of the nondegenerate represen-
tation T of a commutative Banach C-algebra A over a locally compact field K. IfQ c A
and Q € L, then

(i) range(P(Q)) = U¢€Q{§ €H(T):T,E =¢(a)& foreach a € A}.

PROOF. Relation (i) of Theorem 5.11 and the definition of the spectral integral in
Proposition 5.7 show that if & € rangeP(V) for each V € L with ¢ € V, then T,§ =
¢(a)& for each a € A.

Conversely, suppose that T,& = ¢p(a)& for each a € A. If T’ is the representation
of A; isomorphic with Cs (A, K) and T’ corresponds to T, then

(ii) T’ pE = f(¢p)E for each f € Cu(A,K).

Assume that § ¢ range(P(Q)) and consider a measure pg , (W) := n*(P(W)&) for §
and n € H. There exists n = & # 0 such that pg ¢ is not carried by Q. Due to regularity
of pg g there exists a compact E C A, E € L, E ¢ Q such that ¢ ¢ E and Eluge >
0. We take f € Cw(A,K) which is not equal to zero everywhere on E and f(¢) =
0, since A is the completely regular topological space T35 (see [9, Theorem 2.3.11]).
From Formula (ii), proof of Theorem 5.11, it follows that T’ & = 0. By [28, Chapter 7]
and Formula (VI) of Proposition 5.4 above there is an inequality: |[T" &l = || ]l Nuge =
sUPxeg [ f (%) INug ¢ (%) =t I flElIN,  » where [ fllg := supyex [ f(x) | (x) for f: X — K
and ¢ : X — [0,00); Ny(x) := infyerxev |Ully; |Ally == sup{|u(B)|: B € L,B C A} for
eachAcL.If [|Elly =1, then | T f&ll = ”fHN”E,E . We get a contradiction, consequently,
& erangeP(Q). a

5.6. Let Abe acommutative C-algebra with the unit 1 over a locally compact field K
and let u be any regular tight measure on A. Let the space L(A, i, K) be defined on the
algebra L such that L D Bco(A) of A as in [28, Chapter 7], it is the completion relative
to || flln, of the K-linear space of all step functions, that is, finite linear combinations
of characteristic functions of elements of L.

THEOREM 5.14. The equation
@) (Taf)(p) = a(Pp)f(¢p) foreacha € A, f € L(A,u,K) and ¢ € A defines a non-
degenerate representation T of A on H = L(A, u,K) and the spectral measure P of T is
given by P(W) f = Chy f for eachW €L and f € H.

PROOE. If d(¢) € C(A), then supy4ld($)| < , so



SPECTRAL INTEGRATION AND SPECTRAL THEORY FOR NON-ARCHIMEDEAN ... 439

sup | f(P)|]a(dp)|Nu(P) < ||f||u”d||c(,4,ug): (5.4)

¢PeA

consequently, af € H and T,f = [;d(¢p)P(d¢)f due to Theorem 5.11. Therefore,
for a = Chy, we have T,f = P(W)f for each W € Bco(A). Each measure Mg n (W) =
n*(P(W)E) has an extension from Bco(A) on L due to its regularity, where & and
n € H (see Section 5.4). The family of such measures pg , characterise P completely,
since H is the Banach space of separable type over K. Therefore, we have an extension

of P on L. 0

5.7. From the results above it follows that supp(P) C Sp(A). If a representation T
is one-to-one, that is, ker T = {0}, then T is called faithful.

PROPOSITION 5.15. The kernel of a nondegenerate representation T of A consists
of a € A such that a vanishes everywhere on the spectrum of T. Suppose in addition
that A is a commutative C-algebra over a locally compact field K. Then T is faithful if
and only if its spectrum is all of A.

PROOF. A condition T, = 0 is equivalent to [;d(¢)P(d¢) = 0, which is equivalent
to d(¢)|; = 0 by Theorem 5.11. Therefore, kerT = {0} is equivalent to suppT = A.
O

5.8. Fix a Banach space H over a non-Archimedean complete field F such that F C
Cp. If b € L(H) we write shortly Sp(b) instead of Spyy) (b) := cl(Sp(spp{b" : n =
1,2,3,---1)) (see also [28]). If A is a commutative Banach subalgebra in £(H), then
there exists a quotient mapping 6 : A — A/Ba, where B, is a closed subalgebra of A
such that B4 = ker(]| * ||sp) is the kernel of the spectral norm, B4 := {x : x € A;[|x|lsp =
0}. Then 6(A) is the normed algebra, 0(A) is the subalgebra of £(H) /By ). Choose
a locally compact subfield K in F.

THEOREM 5.16 (spectral theorem for operators). Let b € £(H). Then there exists a
unique H-projection-valued tight measure P on K with values in £(H) with the follow-
ing properties:

(i) the closed support D of P is bounded in K;

(i) O(b) = [ xP(dx); also b = ApV [ xP(dx), where V is a continuous operator
from H onto its closed K-linear subspace such that |t | < ||V < || 7Y, € K,
|t | = max{|x|:x € K,|x| <1}; |Ap| = |Ibll, Ap € F; V is an isometry of H onto
its closed K-linear subspace for K = [F;

(iii) if K =F, then D = Sp(a), where a is an auxiliary operator defined by V and b.

Moreover, if S is a family of commuting operators, S C $(H), then there exists
a unique H-projection-valued tight measure P on a locally compact subset X C
B(K,0,1,)Y such that for each b € S there exists a unique f, € C(X,F) for which
0(b) = [y fr(x)P(dx), b =V [y fp(x)P(dx) and V as above, where c1X = X U {0} is
compact.

PROOF. If [|b|lsp = O, then Sp(b) = @ and this case is trivial with P(&) = 0. In the
case of the locally compact field K and H over K we can take W := cl(b(H)) and b = Va,
where V is an operator such that V(H) =W, V|y : W — W is an isometry, V(He W) =
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{0}, a is an operator of H onto H such that [lalls, > 0 and a is representable as a
convergent series of projectors in some basis of H, that can be shown by transfinite
induction (see [26]). In this case we get (ii). Analogously for commuting algebras of
operators.

The field F can be considered as the Banach space over K. This means that F sup-
plied with the linear structure over K is isomorphic with ¢ (8, K) and a corresponding
ordinal B, since K is locally compact and hence spherically complete (see [28, Theo-
rems 5.13 and 5.16]). This isomorphism x : F — ¢o(B,K) may be nonisometrical. The
isomorphism x generates the isomorphism of H considered as the Banach space Hy
over K with co(axk,K), x : Hx — co(xk,K) with the corresponding ordinal «k. This
isomorphism is K-linear and it produces an injective continuous K-linear embedding
X*:L(H) — L(co(axk, K)) with continuous (x*) ! |y ey - The embedding x * is given
by the following formula: x*(a)y := xax 'y for each a € $(H) and y € co(xk, K).
This is the well-known construction of the contraction of a scalar field for a Banach
space. In the particular case of H = F" with n € N and if [F is a finite algebraic extension
of K to each a € £(H), there corresponds a finite n xn matrix, hence x*(a) € L(KA").

Suppose there is a representation of a C-algebra C. (X, [F) with the help of a ¢ (xk,
K)-projection-valued tight measure P on a locally compact subset X in KY. Then
(x*)~! produces from P an H-projection-valued tight measure Py, since

(X *TPWMX) (X 'PW)x) =x'P(VAW)y, (5.5)

for each V and W € L. Consequently,
x Lg(X)P(dX)xz = JX (x 'g0)x) (X 'P(dx)X)z, (5.6)

for each z € H and f € C«(X,K). Therefore, if x*(a) = [yga(x)P(dx), then a =
Jx fa(x)Pg(dx), where g, € Cs(X,K) and hence x*(ga) =: fa € C«(X,F) such that
fa = ga, since the restriction of x on K embedded into F is the identity K-linear
mapping.

It follows that instead of b or S, it is sufficient to consider x* (b) or x*(S). Denote
x*(b) and x(S) simply by b and S, respectively. The operator b or the family S gen-
erates a commutative subalgebra A of ¥(Hy) generated by spx{b" : 0 <n € Z} or
by SpK{a?“ ceanm ra;eS,neN0=m;e”Zj=1,...,n}, where b0 := 1.1t has a
completion A relative to the spectral norm || * [|sp by [28, Chapter 6]. This A in view
of [28, Theorem 6.15 and Corollaries 6.16, 6.17] is a Banach C-algebra C(Sp(A), K),
since 1 € A and Sp(A) is compact such that C(E,K) is isomorphic with C (E,K) for
compact E.

For S = {b} each ¢ € A" is completely defined by ¢ (b), thus the map ¢ — ¢ (b) is
continuous and one-to-one, consequently, it is a homeomorphism from the compact
space Sp(A) onto the compact subset Sp(b) of K. Therefore, we identify Sp(A) with
Sp(b). So the Gelfand transform of b becomes the identity function on Sp(b). Thus
by Theorem 5.11 the identity representation of A in H gives rise to the H-projection-
valued tight measure P on Sp(b) such that 0(b) = [, xP(dx) and b = A,V [, xP(dx).
Since the identity representation is faithful, then Proposition 5.15 shows that the
closed support D of P is homeomorphic to Sp(b) (up to the mapping x|k). Extending
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P to L by setting P(W) = P((W)NSp(b)), we obtain a tight projection-valued measure
on K satisfying (i), (ii), (iii) of Section 5.4.

In the case of the family S take X = Sp(A) such that, [9, Theorem 2.3.20], about
a diagonal mapping we can choose a < card(y) < card(A*) while embedding X -
B(K,0,1), where a is the minimal cardinality of a family of subsets in A* separating
points of A. In view of [28, Section 6.2], cl(X) = X uU {0}.

To show that P is uniquely determined by Theorem 5.16() and (ii), let P’ be another
H-projection-valued tight measure on K satisfying Theorem 5.16(i) and (ii) and let E be
a compact subset of K containing the supports of both P and P’. Consider two repre-
sentations T: f — [ f(x)P(dx) and T : f — [ f(x)P'(dx) of C(E,K).If w and e are
the identity function w (x) = x and the constant function e(x) = 1 for each x € E, re-
spectively, then condition (ii), satisfied by both P and P’, shows that T, = T',, = b and
also T, = T, = 1. By the Kaplansky theorem w and e generate C(E,K) as a C-algebra
[25, 28], hence T’ = T and by the uniqueness statement of Theorem 5.11 we have
P’ =P. O

5.9. The P of the above theorem is called the spectral measure of the operator b or
of a family S. In particular, S may be a commutative subalgebra of £(H). Evidently,
each nilpotent operator v in £(H) has |[vlls, = 0. If v € £o(H) has e}‘(uei) =0 for
each j < i, then v is nilpotent. Therefore, 6(£,(H)) is isomorphic with the algebra of
diagonal operators on H. Its spectrum was found in Section 4.

NOTE 5.17. It is an interesting property of the non-Archimedean case that a con-
dition of a normality of an operator b is not necessary in Theorem 5.16 apart from
the classical case. It is not so surprising if we recall that orthogonality in the non-
Archimedean case is quite different from the classical case. For example, two vectors
(1,0) and (1,1) are orthonormal in K2, but are not orthogonal in C2.
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