
IJMMS 31:7 (2002) 421–442
PII. S016117120201150X

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

SPECTRAL INTEGRATION AND SPECTRAL THEORY
FOR NON-ARCHIMEDEAN BANACH SPACES

S. LUDKOVSKY and B. DIARRA

Received 22 January 2001 and in revised form 8 August 2001

Banach algebras over arbitrary complete non-Archimedean fields are considered such that
operators may be nonanalytic. There are different types of Banach spaces over non-
Archimedean fields. We have determined the spectrum of some closed commutative sub-
algebras of the Banach algebra �(E) of the continuous linear operators on a free Ba-
nach space E generated by projectors. We investigate the spectral integration of non-
Archimedean Banach algebras. We define a spectral measure and prove several proper-
ties. We prove the non-Archimedean analog of Stone theorem. It also contains the case of
C-algebras C∞(X,K). We prove a particular case of a representation of a C-algebra with
the help of a L(Â,µ,K)-projection-valued measure. We consider spectral theorems for op-
erators and families of commuting linear continuous operators on the non-Archimedean
Banach space.
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1. Introduction. This paper is devoted to the non-Archimedean theory of spec-

tral integration with the help of the projection-valued measure. Spectral integration

plays a very important role in the theory of Banach algebras, theory of operators

and has applications to the representation theory of groups and algebras in the clas-

sical case of the field of complex numbers C [7, 8, 14, 13, 19, 23]. There are also

several works about non-Archimedean Banach algebra theory, which show that there

are substantial differences between the non-Archimedean and classical cases [3, 5, 6,

10, 11, 12, 18, 26, 27, 28, 30]. In [3, 30], analytic operators over Cp were considered

and the Shnirelman integration of analytic functions was used, which differs strongly

from the non-Archimedean integration theory related to the measure theory [28]. In

the non-Archimedean case, the spectral theory differs from the classical results of

Gelfand-Mazur, because quotients of commutative Banach algebras over a field K by

maximal ideals may be fields F, which contain K as a proper subfield [28]. In general

for each non-Archimedean field K, there exists its extension F such that a field F ≠K
[4, 25].

Ideals and maximal ideals of non-Archimedean commutative E-algebras (see Section

5.1.1) and C-algebras were investigated in [28, 29]. In [5, 6], it was shown that the fail-

ure of the spectral theory in the non-Archimedean analog of the Hilbert space and it

was shown that even symmetry properties of matrices lead to the enlargement of the

initial field while a diagonalisation procedure. In [10, 11, 12], formulas of the spectral

radius and different notions of spectrum and analysed some aspects of structures of

non-Archimedean Banach algebras. In [28] and the references therein, general theory
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of non-Archimedean Banach algebras and their isomorphisms was considered. It was

introduced the notion of C-algebras in the non-Archimedean case apart from the clas-

sical C∗-algebras. There are principal differences in the orthogonality in the Hilbert

space over C and orthogonality in the non-Archimedean Banach space. Therefore,

symmetry properties of operators do not play the same role in the non-Archimedean

case as in the classical case.

This paper treats another aspect of the non-Archimedean algebra theory and theory

of operators. Banach algebras over arbitrary complete non-Archimedean fields are

considered such that the operators may be nonanalytic. There are different types of

Banach spaces over non-Archimedean fields. In Sections 2, 3, and 4, are considered

specific spaces. In Section 5, are considered general cases.

Let K be a field. A non-Archimedean valuation on K is a function | ∗ | : K → R
such that

(1) |x| ≥ 0 for each x ∈K;

(2) |x| = 0 if and only if x = 0;

(3) |x+y| ≤max(|x|,|y|) for each x and y ∈K;

(4) |xy| = |x||y| for each x and y ∈K.

The field K is called topologically complete if it is complete relative to the following

metric: ρ(x,y) = |x−y| for each x and y ∈ K. A topological vector space E over K
with the non-Archimedean valuation may have a norm ‖∗‖ such that its restriction

on each one-dimensional subspace over K coincides with the valuation |∗ |. If E is

complete relative to such norm ‖∗‖, then it is called the Banach space. Such fields

and topological vector spaces are called non-Archimedean. An algebra X over K is

called Banach, if it is a Banach space as a topological vector space and the multiplica-

tion in it is continuous such that ‖xy‖ ≤ ‖x‖‖y‖ for each x and y in X. A finite or

infinite sequence (xj : j ∈Λ) of elements in a normed space E is called orthogonal, if

‖∑j∈Λαjxj‖ =max(‖αjxj‖ : j ∈Λ) for each αj ∈K for which limj αjxj = 0. We con-

sider the infinite topologically complete field K with the nontrivial non-Archimedean

valuation.

A non-Archimedean Banach space E is said to be free if there exists a family (ej :

j ∈ I)⊂ E such that any element x ∈ E can be written in the form of convergent sum

x = ∑
j∈I xjej , that is, limj∈I xjej = 0 and ‖x‖ = supj∈I |xj|‖ej‖ (see Section 2). In

Section 3, ultrametric Hilbert spaces are considered. In Section 4, we have determined

the spectrum of some closed commutative subalgebras of the Banach algebra �(E) of

the continuous linear operators of E generated by projectors.

Section 5 is devoted to the spectral integration. We introduce another definition of

E-algebras in Section 5.1 apart from [29]. In Propositions 5.2 and 5.3 we have proved

that they are contained in the class of E-algebras and C-algebras considered in [28, 29].

In Section 5.2, a spectral measure is defined. In Section 5.5, Lemma 5.5, Corollary 5.6,

Proposition 5.7, and Corollary 5.9 its several properties are proved. In Theorem 5.11

the non-Archimedean analog of Stone theorem is proved. It contains also the case

of C-algebras C∞(X,K). A particular case of a representation of a C-algebra with the

help of L(Â,µ,K)-projection-valued measure is proved in Theorem 5.14. Spectral the-

orems for operators and families of commuting linear continuous operators on a

non-Archimedean Banach space are considered in Sections 5.8 and 5.9.
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2. Free Banach spaces

2.1. Let E be a free Banach space with an orthogonal base (ej : j ∈ I). The topo-

logical dual E′ of E is a Banach space with respect to the norm defined for x′ ∈ E′
by ‖x′‖ = supx≠0 |〈x′,x〉|/‖x‖. For x′ ∈ E′ and y ∈ E, we define an element (x′ ⊗y)
of the Banach algebra of continuous linear operators �(E) on the space E by set-

ting for x ∈ E, (x′ ⊗ y)(x) = 〈x′,x〉y with norm ‖x′ ⊗ y‖ = ‖x′‖‖y‖. If E is a

free Banach space with base (ej : j ∈ I), any u ∈ �(E) can be written as a point-

wise convergent sum u = ∑
(i,j)∈I×I αije′j ⊗ ei. Hence limi∈I αijei = 0 for each j ∈ I.

Moreover ‖u‖ = supi,j |αij|‖e′j‖‖ei‖. Notice that ‖e′j‖ = 1/‖ej‖. Let �0(E) = {u : u =∑
(i,j)∈I×I αije′j⊗ei ∈�(E); limj∈I αije′j = 0 for each i∈ I}.

Theorem 2.1. An algebra �0(E) is a closed subalgebra in �(E) with the unit ele-

ment of �(E).

Proof. Let u,v ∈�0(E), u=
∑
(i,j)∈I×I αije′j⊗ei, and v =∑(i,j)∈I×I βije′j⊗ei, then

limi∈I αijei = 0= limi∈I βijei for each j ∈ I, and limi∈I αijei = 0= limi∈I βijei for each

j ∈ I. We have u ◦v = ∑(i,j)∈I×I(∑k∈I αikβkj)e′j ⊗ ei. Let i ∈ I, limk∈I αike′k = 0, that

is, for each ε > 0, there exists Jε(i) a finite subset of I such that for each k �∈ Jε(i),
‖αike′k‖< ε. Hence

∥∥∥∥∥
(∑
k∈I
αikβkj

)
e′j

∥∥∥∥∥=
∥∥∥∥∥

∑
k∈Jε(i)

(
αikβkj

)
e′j+

∑
k �∈Jε(i)

(
αikβkj

)
e′j

∥∥∥∥∥
≤max

(
max
k∈Jε(i)

∥∥αike′k∥∥∥∥ei∥∥∥∥βkjek∥∥∥∥e′i∥∥∥∥e′j∥∥, sup
k �∈Jε(i)

∥∥αikβkje′j∥∥
)

≤max
(
‖u‖ max

k∈Jε(i)
∥∥βkje′j∥∥∥∥ek∥∥∥∥e′i∥∥,ε‖v‖∥∥e′i∥∥

)
.

(2.1)

Since limj∈I ‖βkjej‖ = 0 for each k ∈ Jε(i), we have limj∈I ‖(
∑
k∈I αikβkj)e′j‖ = 0 for

each i∈ I, therefore u◦v ∈�0(E). The identity map id being given by id=∑i∈I e′i⊗ei,
we have αii = 1 and αij = 0 if i ≠ j. Therefore limi αijei = 0 for each j ∈ I, and

limj αije′j = 0 for each i ∈ I. Hence id ∈ �0(E). Let u = ∑
(i,j)∈I×I αije′j ⊗ ei be in

the closure of �0(E). For all ε > 0, there exists uε =
∑
(i,j)∈I×I αij(ε)e′j ⊗ ei ∈ �0(E)

such that ‖u−uε‖ = supi,j |αij −αij(ε)|‖e′j‖‖ei‖ < ε. Hence for all i,j ∈ I, we have

|αij|‖e′j‖‖ei‖ ≤max(ε,|αij(ε)|‖e′j‖‖ei‖). We obtain limi‖αijei‖ = 0 for each j ∈ I and

limj ‖αije′j‖ = 0 for each i∈ I. Therefore u∈�0(E) and �0(E) is closed.

2.2. Suppose that the orthogonal basis is orthonormal, that is, ‖ej‖ = 1 for each

j ∈ I. Then u =∑(i,j)∈I×I αije′j ⊗ei ∈ �0(E), if and only if limi αij = 0 for each j ∈ I
and limj αij = 0 for each i ∈ I. Setting for u = ∑

(i,j)∈I×I αije′j ⊗ ei ∈ �0(E), u∗ =∑
(i,j)∈I×I αjie′j ⊗ei, we see that u∗ ∈ �0(E), called the adjoint of u. We verify easily

the following proposition.

Proposition 2.2. An element u∈�(E) has an adjoint u∗ if and only if u∈�0(E).
Let u,v ∈ �0(E), λ ∈ K. Then (u+λv)∗ = u∗ +λv∗; (u ◦v)∗ = v∗ ◦u∗; u∗∗ = u.

Moreover, ‖u∗‖ = ‖u‖.
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As usual, we say that u ∈ �0(E) is normal (resp., unitary) if u◦u∗ = u∗ ◦u (resp.,

u◦u∗ = id=u∗◦u). And u is selfadjoint if u=u∗, this is equivalent here to say that

the matrix of u is symmetric.

Note 2.3. (i) We have ‖u‖ = ‖u∗‖. However, in general ‖u◦u∗‖ ≠ ‖u‖2. For ex-

ample, if I is the set of positive integers, and E with orthogonal base (en : n≥ 1), let

a,b ∈K. The operator u defined by u(e1)= ae1+be2, u(e2)= be1−ae2, u(e3)= ce3,

and u(en) = 0 for n ≥ 4. We see that u is selfadjoint. If i = √−1 ∈ K; then taking

b = ia and |c|< |a|, we see that ‖u2‖ = |c|2 < |a|2 = ‖u‖2.

(ii) It should be interesting to characterize the elements of �0(E) that are normal,

unitary. Considering, whenever the base of E is orthonormal, the bilinear form f on

E defined by f(x,y)=∑i∈I xiyi, we obtain that the above definition of an adjoint u∗

of an element u∈�0(E) is equivalent to say that f(u(x),y)= f(x,u∗(y)) for each

x and y ∈ E. In fact, here the adjoint of an operator is its transposition. This example

is related to ultrametric Hilbert spaces.

3. Ultrametric Hilbert spaces. For the so-called ultrametric Hilbert spaces we can

also define the adjoint of an operator with respect to an appropriate bilinear symmet-

ric form.

3.1. Remark and definition. Ochsenius and Schikhof write in [24] “as a slogan:

There are no p-adic Hilbert spaces.” Nevertheless we will give a definition of p-adic

Hilbert spaces (cf. [20, 21] for some fields with infinite rank valuation). Letω= (ωi)i≥0

be a sequence of nonzero elements of K. We consider the free Banach space Eω =
c0(N,K,(|ωi|1/2)i≥0)= {x : x = (xi)i≥0 ⊂K; limi→+∞ |xi||ωi|1/2 = 0}. Then x = (xi)i≥0

∈ Eω ↔ limi→+∞x2
i ωi = 0. Setting ei = (δi,j)j≥0 (Kronecker symbol), we have that

(ei : i ≥ 0) is an orthogonal base of Eω : for all x ∈ Eω, x = ∑
i≥0xiei and ‖x‖ =

supi≥0 |xi|‖ei‖ = supi≥0 |xi||ωi|1/2, in particular, ‖ei‖ = |ωi|1/2 for each i ≥ 0. Let

fω : Eω ×Eω → K be defined by fω(x,y) =
∑
i≥0ωixiyi. It is readily seen that fω

is a bilinear symmetric form on Eω, with |fω(x,y)| ≤ ‖x‖‖y‖, that is, the bilinear

form fω is continuous. Moreover, fω is nondegenerate, that is, fω(x,y)= 0 for each

y ∈ Eω ⇒ x = 0. Furthermore, fω(x,x)=
∑
i≥0ωix2

i and fω(ei,ej)=ωiδi,j for i and

j ≥ 0. The space Eω is called a p-adic Hilbert space.

Note 3.1. (i) It may happen that |fω(x,x)| < ‖x‖2 for some x ∈ Eω and even

worse, Eω contains isotropic elements x ≠ 0, that is, fω(x,x)= 0.

(ii) Let V be a subspace of Eω and V⊥ = {x ∈ Eω : fω(x,y) = 0, for all y ∈ V}.
The fundamental property on subspaces of the classical Hilbert space H : V = V⊥⊥ ⇒
V ⊕V⊥ = H fails to be true in the p-adic case. This explains the claim of Ochsenius

and Schikhof.

Remark 3.2. A free Banach space E with an orthogonal base (ei : i ≥ 0) can be

given a structure of a p-adic Hilbert space if and only if there exists (ωi : i≥ 0) ⊂ K
such that ‖ei‖ = |ωi|1/2 for each i ≥ 0. Furthermore, if K contains a square of any

of its element, then any p-adic Hilbert is isomorphic, in a natural way, to the space

c0(N,K).
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Note 3.3. Let u,v ∈�(Eω); we have u=∑i,j αije′j⊗ei and v =∑i,j βije′j⊗ei with

limi→+∞ |αij||ωi|1/2 = 0 = limi→+∞ |βij||ωi|1/2 for each j ≥ 0. Furthermore, the norm

of u∈�(Eω) is given by

‖u‖ = sup
i,j

∣∣ωi∣∣1/2∣∣αij∣∣∣∣ωj∣∣1/2 . (3.1)

The operator v is said to be an adjoint of u with respect to fω� fω(u(x),y) =
fω(x,v(y)), for all x,y ∈ Eω. Since fω is symmetric, u is an adjoint of v .

Since fω is nondegenerate, if an operator u has an adjoint, this adjoint is unique

and is denoted by u∗. Since (ei : i ≥ 0) is an orthogonal base of Eω, we have that v
is an adjoint of u if and only if fω((u(ei),ej) = fω(ei,v(ej))) for each i and j ≥ 0.

That is, fω(
∑
k≥0αkiek,ej) = αjiωj = fω(ei,

∑
k≥0βkjek) = βijωi, for all i,j ≥ 0 �

βij =ω−1
i ωjαji, for all i,j ≥ 0. Furthermore, we must have limi→+∞ |βij||ωi|1/2 = 0

for each j ≥ 0, that is,

lim
i→+∞

∣∣ωi∣∣1/2∣∣ω−1
j
∣∣∣∣ωj∣∣∣∣αji∣∣= ∣∣ωj∣∣ lim

i→+∞
∣∣ωi∣∣−1/2∣∣αji∣∣= 0, ∀j ≥ 0. (3.2)

Hence limi→+∞ |ωi|−1/2|αji| = 0 for each j ≥ 0. We have proved the following theorem.

Theorem 3.4. Let (ωi)i≥0 ⊂ K∗ and Eω = c0(N,K,(|ωi|1/2)i≥0) be the p-adic

Hilbert space associated with ω. Let u = ∑i,j αije′j ⊗ei ∈ �(Eω). Then u has an ad-

joint v = u∗ ∈ �(Eω) if and only if limj→+∞ |ωj|−1/2|αij| = 0 for each i ≥ 0. In this

condition, u∗ =∑i,j ω−1
i ωjαjie′j⊗ei.

It follows from this theorem that not any continuous linear operator of Eω has an

adjoint: it is another difference with classical Hilbert spaces. Let �0(Eω) = {u : u =∑
i≥0

∑
j≥0αije′j ⊗ ei ∈ �(Eω); limj→+∞ |ωj|−1/2|αij| = 0,∀i ≥ 0}. We remember that

u=∑i,j αije′j⊗ei ∈�(Eω) is equivalent to limi→+∞ |ωi|1/2|αij| = 0 for each j ≥ 0. It is

readily seen, as in Theorem 2.1, that �0(Eω) is a closed unitary subalgebra of �(Eω).

Corollary 3.5. An elementu∈�(Eω) has an adjointu∗ if and only ifu∈�0(Eω).
Let u,v ∈ �0(Eω), λ ∈ K. Then (u+λv)∗ = u∗ +λv∗; (u◦v)∗ = v∗ ◦u∗; u∗∗ = u.

Moreover, ‖u∗‖ = ‖u‖.
Proof. We only prove that ‖u∗‖ = ‖u‖. Since for u=∑i,j αije′j⊗ei ∈�0(Eω), we

have ‖u‖ = supi,j(|ωi|1/2|αij|/|ωj|1/2) and u∗ =∑i,j ωjω−1
i αjie

′
j⊗ei, we obtain

∥∥u∗∥∥= sup
i,j

∣∣ωi∣∣1/2∣∣ωj∣∣1/2

∣∣ωj∣∣∣∣ω−1
i
∣∣∣∣αij∣∣= sup

i,j

∣∣ωj∣∣1/2

∣∣ωi∣∣1/2

∣∣αji∣∣= ‖u‖. (3.3)

Remark 3.6. (i) u = ∑i,j αije′j ⊗ei ∈ �0(Eω) is selfadjoint, that is, u = u∗ if and

only if αji =ωiω−1
j αij , for each i≥ 0 and each j ≥ 0.

(ii) Examples of selfadjoint operators on ultrametric Hilbert spaces and study of

their spectrum are given in [1, 2, 6, 22].
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4. Closed subalgebras generated by projectors

4.1. Let J be a subset of I and E be a free Banach space with orthogonal basis

(ej : j ∈ I). The linear operator pJ =
∑
i∈J e′i⊗ei of E belongs to �0(E). Let �= {u :u=∑

i∈I λie′i⊗ei ∈�0(E);supi∈I |λi| < +∞}. It is clear that � is isometrically isomorphic

to the algebra of bounded families �∞(I,K). Let Homalg(�,K) denotes the family of

all algebra homomorphisms of � into K. Consider the spectrum �(�)=Homalg(�,K)
in a topology inherited from the Tihonov topology of the product K� of copies of K.

Proposition 4.1. (i) An element u=∑i∈I λie′i⊗ei ∈� is an idempotent if and only

if there exists J ⊂ I such that u= pJ .
(ii) The spectrum �(�) is homeomorphic to the subset of ultrafilters on I : Φc = {� :

� is an ultrafilter on I, such that for all u = ∑i∈I λie′i⊗ei ∈ �, the limit lim�λi exists

in K}.
Proof. (i) Let u = ∑

i∈I λie′i ⊗ ei; then u ◦u = u if and only if
∑
i∈I λi

2e′i ⊗ ei =∑
i∈I λie′i⊗ei, if and only if λ2

i = λi for each i∈ I, if and only if λi = 0 or λi = 1. Setting

J = {i : i∈ I;λi = 1}, we have u= pJ .
(ii) Let χ be a character of �, that is, an algebra homomorphism (necessarily contin-

uous) of � intoK. For all J,L⊂ I we have pJ ◦pL = pJ∩L, hence pJ ◦pJc = p∅ = 0, where

Jc = I \J. Furthermore, χ(pJ)= χ(pJ)χ(pJ) implies that χ(pJ)= 0 or 1. Let �χ = {J :

J ⊂ I;χ(pJ)= 1}. This family of subsets is an ultrafilter. Indeed, ∅ �∈�χ . If J ⊂ L with

J ∈�χ , then 1 = χ(pJ) = χ(pJ∩L) = χ(pJ)χ(pL) = χ(pL), hence L ∈�χ . On the other

hand, for J ⊂ I, we have 1E = pJ+pJc , and 1= χ(1E)= χ(pJ)+χ(pJc )with χ(pJ)= 1 or

0 and χ(pJc )= 1 or 0. If χ(pJ)= 1, then χ(pJc )= 0, and if χ(pJc )= 1, we have χ(pJ)=
0. Hence J ∈�χ or Jc ∈�χ . Let u =∑i∈I λie′i⊗ei ∈ �. Put χ(u) = λ ∈K; then for all

J ∈�χ , χ(upJ)= χ(u)= λχ(pJ). Thereforeχ(upJ−λpJ)= 0, that is, upJ−λpJ ∈ kerχ.

Set φ�χ (u)= lim�χ |λi|. It is well known and readily seen that φ�χ is a multiplicative

semi-norm on � and that kerφ�χ = {u : u ∈ �;φ�χ (u) = 0} is a maximal ideal of �,

since � is isomorphic to �∞(I,K). On the other hand |χ(upJ)| ≤ ‖upJ ‖ = supi∈J |λi| for

each J ∈ �χ . It follows that |χ(u)| = |χ(upJ)| ≤ infJ∈�χ supi∈J |λi| = φ�χ (u). Hence,

kerφ�χ ⊂ kerχ and kerφ�χ = kerχ. Let J ∈�χ , we deduce from (upJ−λpJ)∈ kerχ =
kerφ�χ , that 0=φ�χ (upJ−λpJ)= lim�χ |λi−λ|. It follows that lim�χ λi = λ exists in

K. Moreover, χ(u) = λ = lim�χ |λi|, and we see that χ = χ�χ . Reciprocally, if � is an

ultrafilter on I such that for all u=∑i∈I λie′i⊗ei ∈�, lim�λi exists in K; then setting

χ�(u)= lim�λi, it is readily seen that χ� is a character of �. Moreover, for all J ∈�,

χ�(pJ) = lim� 1 = 1, that is, J ∈ �χ� and � = �χ� . The proposition is proved if we

consider on �(�) the weak∗-topology and on Φc the topology induced by the natural

topology on the space of ultrafilters, which is the weakest topology on Φc relative to

which the mapping lim : Φc →K is continuous.

Remark 4.2. (i) If K is locally compact, then for any bounded family (λi)i∈I ⊂ K,

the limit lim�λi exists in K. Therefore, Φc is equal to the entire set of all ultrafilters

on I and �(�) is compact, homeomorphic to the Stone-Čech compactification β(I) of

the discrete topological space I.
(ii) If K is not spherically complete and I is a small set, that is, the cardinal of I is

nonmeasurable, it is well known that the continuous dual of �∞(I,K) is equal to the
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space c0(I,K) of the families converging to zero (cf. [28, Theorem 4.21]). Then, we can

prove that �(�) is homeomorphic with I.

Note 4.3. For K spherically complete, not locally compact, it is interesting to find

explicit conditions on an ultrafilter � in such a way that lim�λi exists for any bounded

family (λi : i∈ I)⊂K. We can try to use Banach limits, that is, continuous linear forms

on �∞(I,K) that extend the usual continuous linear form of the limit operation defined

on the subspace cv(I,K) of convergent families.

Let (Jν : ν ∈Λ) be a family of subsets of I, such that Jν∩Jµ =∅ for ν ≠ µ. Putting

pν =
∑
i∈Jν e

′
i⊗ei, we obtain pν ◦pµ = δν,µpν , for ν ≠ µ. Hence the subalgebra with

the unity � of �0(E), generated by (pν : ν ∈ Λ) is equal to K· id⊕(⊕ν∈ΛK·pν). In-

deed if u = α0 id+u1 and v = β0 id+v1 with u1 =
∑
ν∈Λανpν and v1 =

∑
ν∈Λβνpν

(finite sums), we have u◦v =α0β0 id+α0v1+β0u1+u1 ◦v1 =α0β0 id+∑ν∈Λ(α0βν+
ανβ0+ανβν)pν ∈ �. On the other hand, since u = α0 id+∑ν∈Λpν with Γ = {ν : ν ∈
Λ;αν ≠ 0} finite and I = (⋃ν∈Γ Jν)⋃(⋂ν∈Γ Jνc) (a partition), we have u = α0

∑
i∈I e′i⊗

ei +
∑
ν∈Γ αν

∑
i∈Jν e

′
i ⊗ ei = α0

∑
i∈∩ν∈Γ Jν c e

′
i ⊗ ei +

∑
ν∈Γ

∑
i∈Jν (α0 +αν)e′i ⊗ ei. Hence

‖u‖ =max(|α0|,maxν |α0+αν |).

Lemma 4.4. Let u = α0 id+∑ν∈Λανpν ∈ � and Λ0 = Λ ∪ {0}. Then ‖u‖ =
maxν∈Λ0 |αν |. That is, {id}∪{pν : ν ∈Λ} is an orthonormal family in �0(E).

Proof. Since

‖u‖ =max
(∣∣α0

∣∣,max
ν∈Λ

∣∣α0+αν
∣∣),

max
ν

∣∣α0+αν
∣∣≤max

(∣∣α0

∣∣,max
ν∈Λ

∣∣αν∣∣). (4.1)

We have ‖u‖ ≤maxν∈Λ0 |αν |. Moreover, |α0| ≤ ‖u‖. Hence for ν ∈ Λ, we have |αν | =
|αν +α0−α0| ≤max(|αν +α0|,|α0|) ≤ ‖u‖. It follows that maxν∈Λ0 |αν | ≤ ‖u‖, and

Lemma 4.4 is proved.

Lemma 4.5. Assume that (ei : i ∈ I) is an orthonormal basis of E or E is an ultra-

metric Hilbert space. Then any u∈� is selfadjoint, that is, u∗ =u, and ‖u2‖ = ‖u‖2.

Proof. That any element of � is selfadjoint is easy to verify. Let u = α0 id+∑
ν∈Λανpν ∈ �, we have u2 = α0

2 id+∑ν∈Λ(2α0αν + αν2)pν ∈ �. Hence ‖u2‖ =
max(|α0|2,maxν∈Λ |α0

2 + 2α0αν + αν2|) = (max(|α0|,maxν∈Λ |α0 + αν |))2 = ‖u‖2.

Note 4.6. In fact, Lemma 4.5 is true for u ∈ �. Let E be a free Banach space with

orthogonal basis (ei : i ∈ I). Fix π ∈ K such that 0 < |π| < 1. There exists for any

i ∈ I an integer ni ∈ Z such that |π|ni+1 < ‖ei‖ ≤ |π|ni . For x = ∑i∈I xiei, we have

limi∈I xiπni = 0. Hence we define on E a norm by setting ‖x‖π = supi∈I |xi||π|ni ;
this norm is equivalent to ‖ ‖ with |π|‖x‖π ≤ ‖x‖ ≤ ‖x‖π . Furthermore, setting x =∑
i∈I xiei and y =∑i∈I yiei ∈ E, fπ(x,y)=

∑
i∈I π2nixiyi, we have a continuous, non

degenerated, bilinear form on E such that |fπ(x,y)| ≤ ‖x‖π‖y‖π ≤ |π|−2‖x‖‖y‖.
Therefore, we obtain on E, a structure of ultrametric Hilbert space Eπ = (E,‖ ‖π ,fπ).
Since the norms ‖ ‖ and ‖ ‖π are equivalent, �(E) = �(Eπ) and �0(E) = �0(Eπ).
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The norms on �(E) induced by ‖ ‖ and ‖ ‖π are equivalent with |π|‖u‖π ≤ ‖u‖ ≤
|π|−1‖u‖π . As in Note 3.3, we define the adjoint u∗ of u ∈ �(E) with respect to

fπ . We obtain the results stated in Theorem 3.4, that is, u admits an adjoint with

respect to fπ if and only if u ∈ �0(E). Furthermore, if u = ∑i,j αije′j ⊗ ei ∈ �0(E),
then u∗ = ∑

i,j πnj−niαjie′j ⊗ ei, and u is selfadjoint, that is, u∗ = u if and only if

πniαij =πnjαji, for all i,j ∈ I.

Note 4.7. Let π ′ be another element of K such that 0< |π ′|< 1. Also let (mi : i∈
I) ⊂ Z be defined by |π ′|mi+1 < ‖ei‖ ≤ |π ′|mi . Then the adjoint u† = ∑

i,j π ′
mj−mi

αjie′j ⊗ ei of u with respect to fπ ′ coincides with u∗ if and only if πnj−niαji =
π ′mj−miαji, for each i and j ∈ I. If this is true for all u ∈ �0(E), we have πnj−ni =
π ′mj−mi , for i,j ∈ I. Hence, log |π|/| log |π ′| = (mj −mi)/(nj −ni) =m/n > 0 and

the sets (mj−mi)i≠j and (nj−ni)i≠j must be finite.

If J is a subset of I, the projector pJ =
∑
i∈J e′i⊗ei is selfadjoint with respect to any

bilinear symmetric form fπ and ‖pJ‖ = 1= ‖pJ‖π .

Lemma 4.8. Let E be a free Banach space with orthogonal basis (ei : i∈ I). Defining

an adjoint of a continuous operator with respect to fπ , then any u ∈ � (resp., �) is

selfadjoint and ‖u2‖ = ‖u‖2.

Proof. It is the same as in Lemma 4.5. Since for any u = α0 id+∑ν∈Λανpν ∈ �

we have ‖u‖ = maxν∈Λ0 |αν |, that is, {id,pν : ν ∈ Λ} is an orthonormal family in

�0(E), we see that the closure �=� of � is the subspace of �0(E) of all elements u
which can be written in the unique form of summable families u=α0 id+∑ν∈Λανpν
with α0,αν ∈ K and limν αν = 0. It is readily seen that � is a closed unitary subal-

gebra of �0(E), contained in �, such that any element u of � is selfadjoint. More-

over for the pointwise convergence, u = α0
∑
i∈∩Jcν e

′
i⊗ ei+

∑
ν∈Λ

∑
i∈Jν (α0+αν)e′i⊗

ei. Hence, if
⋂
ν∈Λ Jcν = ∅, then u = ∑

ν∈Λ
∑
i∈Jν (α0 +αν)e′i ⊗ ei and id = ∑

ν∈Λpν .

Example 4.9. IfΛ= I and Ji = {i} for each i∈ I, we have �= {α0 id+∑i∈I αie′i⊗ei :

αi ∈K, limi∈I αi = 0}. As an element of � any u ∈� is in the form u =∑i∈I aie′i⊗ei
with limi∈I ai =α0 exists in K.

Proposition 4.10. (i) Any elementu of the Banach algebra � with the unit element

id is selfadjoint with respect to any bilinear symmetric form fπ and ‖u2‖ = ‖u‖2.

(ii) The spectrum �(�) = Homalg(�,K) of �, equipped with the weak∗-topology, is

homeomorphic to the Alexandroff compactification of the discrete space Λ.

Proof. The first part is an easy consequence of Lemma 4.8. Let χ ∈�(�), then χ is

a continuous linear form with norm ‖χ‖ = 1. Furthermore, χ(id) = 1 and χ(pνpµ) =
χ(pν)χ(pµ) = δν,µχ(pν), for ν,µ ∈ Λ. It follows that for any ν ∈ Λ, χ(pν) = 1 or

χ(pν) = 0. Hence (a) there exists ν ∈ Λ such that χ(pν) = 1 and χ(pµ) = 0 for µ ≠ ν ,

or (b) χ(pν) = 0 for all ν ∈ Λ. In case (a), we put χ = χν and in case (b), χ = χ0. We

verify that for u = α0 id+∑ν∈Λανpν ∈ �, we have χ0(u) = α0 and χν(u) = α0+αν ,

ν ∈Λ. It follows that �(�)= {χ0,χν : ν ∈Λ} and �(�) is in a bijective correspondence

with the set Λ0 = Λ∪{0}. Let W(χ;ε,u1, . . . ,un) = {η : η ∈ �(�);|χ(uj)−η(uj)| < ε,
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uj ∈ �,1 ≤ j ≤ n} be a fundamental neighborhood of χ ∈ �(�) for the weak∗-

topology. Since for uj = α0j id+∑µ∈Λαµjpµ ∈�, limµ∈Λαµj = 0, there exists a finite

subset Γε of Λ, such that for any µ �∈ Γε, |αµj|< ε for each 1≤ j ≤ n. If χ = χν , ν ∈ Λ,

we have for 1 ≤ j ≤ n, µ ∈ Λ, χν(uj)−χµ(uj) = ανj−αµj . Choosing (uj : 1 ≤ j ≤ n)
such that εν = min1≤j≤n |ανj| > 0, there exists Γν ⊂ Λ, Γν finite such that |αµj| < εν
for 1 ≤ j ≤ n and for all µ �∈ Γν . Hence |αµj| < |ανj| and |ανj−αµj| = |ανj| ≥ εν , for

1≤ j ≤n and µ �∈ Γν . Therefore, if ε < εν , thenW(χν ;ε,u1, . . . ,un)= {χν}, that is, {χν}
is open in �(�). Hence {χν : ν ∈ Λ} is a discrete subset of �(�). On the other hand,

if χ = χ0, then χ0(uj)−χµ(uj)=−αµj . Hence for ε > 0, there exists a finite subset Γε
of Λ such that for µ �∈ Γε, |χ0(uj)−χµ(uj)| = |αµj| < ε for each 1 ≤ j ≤ n. In other

words, W(χ0;ε,u1, . . . ,un) = {χµ : µ �∈ Γε}. Furthermore, χ0 = limµ∈Λχµ in �(�) for

the weak∗-topology. It follows that �(�) is weak∗-compact. Consider on Λ0 =Λ∪{0}
the topology such that Λ is a discrete subset of Λ0 and the neighborhoods of 0 are

WΓ (0)=Λ0 \Γ , where Γ ⊂Λ is finite. It becomes clear that Λ0 is homeomorphic to the

Alexandroff compactification of the discrete space Λ. Identifying �(�) with Λ0, we

conclude the proof of the proposition.

4.2. Let �(�(�),K) be the K-Banach algebra of the continuous functions f on

the compact space �(�) with values in K. It is readily seen that f ∈ �(�(�),K) is

defined by the family (f (χν) : ν ∈ Λ0) ⊂ K such that limν∈Λf(χν) = f(χ0). Hence

�(�(�),K) is isometrically isomorphic to the algebra cv(Λ0,K) = {a : a = (aν : ν ∈
Λ0) ⊂K; limν∈Λaν = a0}: on cv(Λ0,K), we consider the usual multiplication defined

pointwise and the norm ‖(aν : ν ∈Λ0)‖ = supν∈Λ0
|aν |.

Corollary 4.11. The Banach algebra � with the unit element id is isometrically

isomorphic to the algebra cv(Λ0,K)= {a : a= (aν)ν∈Λ0 ⊂K; limν∈Λaν = a0}.

Proof. Let � : �→�(�(�),K) be the Gelfand transform �(u)(χ)= χ(u). As usual,

� is continuous. Since foru=α0 id+∑ν∈Λανpν ∈�, we have χ0(u)=α0 and χν(u)=
α0 +αν , ν ∈ Λ, and obtain ‖u‖ = max(|χ0(u)|,supν∈Λ |χν(u)|) = supχ∈�(�) |χ(u)|.
Hence, ‖�(u)‖ = ‖u‖. Furthermore, �(id)(u) = 1, that is, �(id) = f0 the constant

function equal to 1. On the other hand, for ν ∈ Λ, �(pν)(χ) = 1 if χ = χν and 0

otherwise. Hence, setting for ν ∈ Λ, fν : �(�)→K such that fν(χµ)= δν,µ , µ ∈ Λ, we

have �(pν) = fν . Let u = α0 id+∑ν∈Λανpν ∈ �, we have �(u) = α0f0+
∑
ν∈Λανfν .

Since any f ∈�(�(�),K) can be written in the unique convergent sum f = f(χ0)f0+∑
ν∈Λ(f (χν)−f(χ0))fν with limν∈Λ(f (χν)−f(χ0)) = 0, we have f = �(u) with u =

f(χ0) id+
∑
ν∈Λ(f (χν)−f(χ0))pν . Hence, � is surjective. Together with ‖�(u)‖ = ‖u‖,

the corollary is proved.

5. Spectral integration

5.1. Suppose that X and Y are Banach spaces over a topologically complete non-

Archimedean fieldKwith a nontrivial valuation and �(X,Y) denotes the Banach space

of bounded linear operators E : X → Y supplied with the operator norm: ‖E‖ :=
sup0≠x∈X ‖Ex‖Y /‖x‖X . For X = Y we denote �(X,Y) simply by �(X). Let X and Y
be isomorphic with the Banach spaces c0(α,K) and c0(β,K) and let them be supplied
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with the standard orthonormal bases {ej : j ∈ α} in X and {qj : j ∈ β} in Y , respec-

tively, where c0(α,K) := {x = (xj : j ∈ α) | xj ∈ K, such that for each ε > 0 a set {j :

|xj|> ε} is finite}with a norm ‖x‖ := supj |xj|K,α and β are ordinals (it is convenient

due to Kuratowski-Zorn lemma). Then each operator E ∈�(X,Y) has its matrix real-

isation Ej,k := q∗k Eej , which may be infinite, where q∗k ∈ Y∗ is a continuous K-linear

functional q∗k : Y →K corresponding to qk under the natural embedding Y ↩ Y∗ asso-

ciated with the chosen basis, Y∗ is a topologically conjugated or dual space ofK-linear

functionals on Y , q∗k (ql) = δkl . Therefore, to each E ∈ �(X,Y) there corresponds an

adjoint operator E∗ ∈�(Y∗,X∗). By a transposed operator Et , we mean a restriction

E∗ |Y , where Y is embedded into Y∗ such that Etj,k = Ek,j for each j ∈α and k∈ β.

This means, that if X = Y and Et = E, then E is called a symmetric operator. For

X = Y = c0(α,K) there is an inclusion E∗(Y)⊂ X∗. Since X∗ = l∞(α,K), then ‖x‖X =
‖x‖X∗ for each x ∈ X. Since ‖E‖ = supj,k |Ej,k|, then ‖E‖ = ‖E∗‖ and ‖E‖ = ‖Et‖. If

A,E ∈ �(X) and E = At , then A and E belong to the closed subalgebra �0(X) (see

Section 2).

5.1.1. Now let A be an abstract Banach algebra over a field K, which is complete

relative to a norm ‖∗‖K in it. We say that A is with an operation of transposition

a� at for each a∈A if the following conditions (α), (β), (γ), and (δ) are satisfied:

(α) (a+b)t = at+bt ;
(β) (λa)t = λat ;
(γ) (ab)t = btat ;
(δ) (at)t = att = a for each a,b ∈A and each λ∈K.

Let A be an algebra over K, which satisfies the following conditions (i), (ii), and (iii):

(i) A is a Banach algebra,

(ii) with the operation of transposition a� at ,
(iii) ‖ata‖ = ‖a‖2 for each a∈A while evaluation of norms.

Then such algebra is called an E-algebra.

Without condition (iii), it is called a T -algebra. If instead of (iii) it satisfies the fol-

lowing condition:

(iv) ‖ata‖ = ‖a2‖ then A is called an S-algebra.

For each E-algebra, we have ‖a‖2 = ‖aat‖ ≤ ‖a‖‖at‖, hence ‖a‖ ≤ ‖at‖ and also

‖at‖ ≤ ‖(at)t‖ = ‖a‖, consequently ‖a‖ = ‖at‖.
5.1.2. Evidently, �0(X) is a T -algebra. Each C-algebra is at the same time an E-

algebra (see also Section 5.5), since for each singleton x ∈ X a closed subalgebra

C({x},K) is isomorphic withK and the restriction of transposition on C({x},K) gives

f t(x)= f(x) for each f ∈ C∞(X,K).
Let A1, . . . ,An be linear operators. Then the equation

[ n∑
j=1

λjAj,
n∑
k=1

µkAk

]
=
∑
j<k

(
λjµk−λkµj

)(
AjAk−AkAj

)= 0, (5.1)

for each λj and µk ∈ K, is equivalent to [Aj,Ak] = 0 for each j < k. In view of [15,

16, Sections IV.6, 7, VII.7, and VIII.2] for each n ∈ N there are pairwise commuting



SPECTRAL INTEGRATION AND SPECTRAL THEORY FOR NON-ARCHIMEDEAN . . . 431

matrices of the sizem×m such that for sufficiently largem>n they in addition can

be found nondiagonal (nonreducible to diagonal form by transformations, UjAjU−1
j ,

where Uj are invertible matrices), since in view of [15, 16, Theorem VIII.7.2] a number

of linearly independent matrices, which commute with the given matrixA is defined by

the following formula: N =n1+3n2+···+(2t−1)nt , where n1,n2, . . . ,nt are degrees

of nonconstant invariant polynomials i1(λ),i2(λ), . . . , it(λ) and n=n1+n2+···+nt
is a size of the square n×n matrix A. This can be done by suitable choices of Jordan

forms of matrices over K. From this it follows that in �0(c0(ω0,K)) for each n ∈ N,

there always exist n pairwise commuting operators such that they are not reducible

to the diagonal form by adjoint transformations UjAjU−1
j . This produces examples

of T -algebras. When in the (finite case) Jordan form |λj,k| > 1 and ‖I −Uj‖ < 1 for

each j = 1, . . . ,n, where λj,k are diagonal elements of the Jordan normal forms of Aj ,
then each Aj together with Atj satisfy condition (iii). We take the case Uj = U1 =: U
for each j. Let in addition Aj be pairwise commutative and have block forms (v)
Aj = diag(Aj,1, . . . ,Aj,n), Aj,l are ml×ml square matrices and Aj,l = 0 for each l ≠ j
and Aj,j ≠ 0. Consider their transposed matrices also, then the linear span of all

their products Bj1 ···Bjs produces commutative E-algebra, which is generated by non-

diagonalizable over Cp matrices, where Bj is equal either to Aj or to Atj , since |λj,k|a >
|bλj,k|c for each a> c > 0 and b ∈ Z. As it follows from [15, 16, Section VIII.7.2] these

Aj can be chosen such that spK{I,Aj,A2
j , . . . ,A

m
j } does not contain Al for each l≠ j.

The construction of S-algebras can be done analogously and more lightly, since

condition (iii) is replaced by condition (iv).

Let A be an E-algebra with a K-linear isometry Y : A → A such that Y(ab) =
Y(b)Y(a) and Y t(a)= Y(at) for each a,b ∈A. Then Y(A) is an E-algebra.

There are general constructions of Banach algebras also. In particular, we can take

a free Banach algebra A generated by a set J. This means, that A is a completion

of spK{a1 ···an : a1, . . . ,an ∈ J,n ∈ N} with the definite order of letters a1, . . . ,an in

each wordw = a1a2 ···an, when neighbouring elements aj and aj+1 are distinct in J.

There exists a norm on spK{a1 ···an : a1, . . . ,an ∈ J,n∈N} such that ‖ab‖ ≤ ‖a‖‖b‖
for each a,b ∈A. For example, ‖w‖ = 1 for each word w = a1 ···an with a1, . . . ,an ∈
J, ‖c1w1+···+cmwm‖ =max1≤j≤m |cj|K for different words w1, . . . ,wm with cj ∈K
for each j = 1, . . . ,m. Then for Y : A→ A preserving a closed ideal V we can consider

the quotient mapping Ȳ : Ā→ Ā, where Ā=A/V and Y on A is defined by Y on J due

to the continuous extension.

Another example is the following. For a subset J of symmetric (i.e., at = a for each

a ∈ J ⊂ �0(X)) pairwise commuting elements (i.e., ab = ba for each a and b ∈ J ⊂
�0(X)) let A := cl(spK{

∏m
i=1a

ni
i : 0≤ni ∈ Z, m∈N, ai ∈ J}), where a0 := I is the unit

operator on X. Then such A is a T -algebra. Since ‖ata‖ = ‖a2‖ for each a∈A, then it

is an S-algebra.

Another example of an E-algebra is the algebra of diagonal operators in �0(X). Then

each E-algebra is certainly an S-algebra and each S-algebra is a T -algebra (see also

Lemmas 4.5, 4.8 and Proposition 4.10(i)). Above were constructed more interesting

examples of E-algebras and S-algebras. In general, diagonal form of an algebra is

unnecessary for the spectral theory. Moreover, there are well-known theorems, when

Lie algebras (in particular of finite square m×m matrices over Cp) can be reduced
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simultaneously to the upper triangular form by one transformation UAjU−1 (see [17,

Iwasawa Theorem 4.7.2]). There are also cases, when it may be over K. Using limits

such cases can be spread on subalgebras of �0(X).
It will be shown below that for the spectral integration it is sufficient to consider

C-algebras.

5.2. Let A and B be two E-algebras over the same field K, an algebraic homo-

morphism T : A → B is called a t-representation of A in B, if Tat = (Ta)t for each

a ∈ A. The reducing ideal Υ of A is defined as the intersection of the kernels of all

t-representations of A. The reducing ideal Υ is also called the t-radical. If Υ = 0, then

A is called reduced (or t-simple).

Let ‖a‖t := supT∈Ψ ‖Ta‖ for a reduced algebra A, where Ψ := ΨA denotes the family

of all t-representations of A. Since A is reduced, then ‖a‖t ≠ 0 for each A � a ≠ 0.

Such ‖∗‖t is called an E-norm of A.

The E-algebra obtained by completing A/Υ by its E-norm is called the E-completion

of A and is denoted by At . Denote by π : A → A/Υ the natural t-homomorphism of

A into At such that π(a) = a+Υ for each a ∈ A. Then the map T � T ′ = T ◦π is a

bijective correspondence between the set of all t-representations T ofAt and the set of

all t-representations T ′ of A. This correspondence preserves closed stable subspaces,

nondegeneracy, bounded intertwining operators, isometric equivalence and Banach

direct sums.

5.3. Let A be a commutative Banach T -algebra and A+ denotes the Gelfand space

of A, that is, A+ = Sp(A), where Sp(A) was defined in [28, Chapter 6], it is the set of all

nonzero algebra homomorphisms φ : A→ K topologized as the subset of KA. Every

x ∈ A induces a function Gx : Sp(A)→ K by Gx(φ) :=φ(x), where φ ∈ Sp(A), Gx is

called the Gelfand transform of x, G is called the Gelfand transformation. Then it is

defined the spectral norm ‖x‖sp := supφ∈Sp(A) |Gx(φ)| of x ∈ A. If Sp(A) = ∅, then

‖x‖sp := 0 for each x ∈A. We denote by Â the closed subset of A+ consisting of those

φ∈A+ for whichφ(at)=φ(a) for eacha∈A,φ∈A is called symmetric, ifφ∈ Â. Let

C∞(Â,K) be the same space as in [28]. For a locally compact E the space C∞(E,K) is a

subspace of the space BUC(E,K) of bounded uniformly continuous functions f : E→K
such that for each ε > 0 there exists a compact subset V ⊂ E for which |f(x)|< ε for

each x ∈ E \V . When E is not locally compact and has an embedding into B(K,0,1)γ

such that E∪{x0} = cl(E) we put C∞(E,K) := {f ∈ C(E,K) : limx→x0 f(x)= 0}, where

B(X,x,r) := {y ∈X : d(x,y)≤ r} is a ball in the metric space (X,d), cl(E) is taken in

B(K,0,1)γ , γ is an ordinal, x0 ∈ B(K,0,1)γ .

Definition 5.1 (see also [28, Chapter 6]). A commutative Banach algebra A is

called a C-algebra if it is isomorphic with C∞(X,K) for a locally compact Hausdorff

hereditarily disconnected space X, where f +g and fg are defined pointwise for each

f ,g ∈ C∞(X,K).
Proposition 5.2. The reducing ideal Υ ofA consists of thosea∈A such that â(φ)=

0 for each φ∈ Â. The equation

(i) F(π(a)) = â |Â determines an isometric t-isomorphism F of At onto C∞(Â,K),
when K is a locally compact field.
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Proof. We have supφ∈Â |â(φ)| ≤ ‖π(a)‖t for each a ∈ A. Then we take a t-
representation T of A and B := cl‖ ‖ range(T), hence B is a commutative E-algebra. To

finish the proof of Proposition 5.2 we need the following.

Proposition 5.3. Let A be a commutative E-algebra as in Section 5.1: A =
cl(spK{

∏m
i=1a

ni
i : 0 ≤ ni ∈ Z,ai ∈ J,at = a,m ∈ N}), then Â = A+. Furthermore, the

Gelfand transform map a� â is an isometric isomorphism of A onto C∞(Â,K), when

K is a locally compact field.

Proof. In view of [28, Corollaries 6.13, 6.14, and 6.17] it is sufficient to show that

A+ = Â, since A is isomorphic with C∞(Sp(A),K), where Sp(A)= Â. If at = a∈A and

φ ∈ A+, then φ(at) = φ(a) ∈ K. If 1 �∈ A, then φ extends to a t-homomorphism of

the S-algebra A1 obtained by adjoining the unit 1 to A, since it is possible to consider

X⊕K (cf., about adjoining of 1 in [14, 13, Section VI.3.10] and [28, Chapter 6]). Since

K is locally compact, A1 is isomorphic with C(αY ,K), where αY = Sp(A)∪{0} is a

one-point (Alexandroff) compactification of sp(A) (see [28, Observation 6.2]). Indeed,

‖a‖ = supχ∈A+ |χ(a)|. Let φ(a) = r ∈ K, b := a+ z1, where z ∈ K. From ‖φ‖ ≤ 1

it follows that |φ(btb)|p = |(r +z)2|p ≤ ‖b2‖ and ‖b2‖ = ‖ata+zat +za+z21‖ ≤
max(‖a2‖,|z|p‖a‖,|z|2p). Then there exists 0< ε < (‖a2‖)1/2 such that for each |z|p <
ε : |φ(btb)|p ≤ ‖a2‖, consequently φ has the continuous extension on A1.

If φ∈A+ and a= b+c ∈A with bt = b and ct =−c ∈A, then φ(at)=φ(b)−φ(c).
If φ(at) = −φ(a) for each a ∈ A, then φ(b) = 0 for each b = bt ∈ A. If φ(at) =
φ(a) for each a ∈ A, then φ(c) = 0 for each ct = −c ∈ A. The operation of trans-

position a � at is continuous in A. Let φ ∈ A+ and φ ≠ 0. Therefore, for each

φ(a) ≠ 0 we have φ(at) ≠ 0, since att = a. Hence φ(at) = λφφ(a) for each a ∈ A
such that φ(a) ≠ 0, since cokerKφ is one-dimensional, where 0 ≠ λφ ∈ K. We have

φ((ata)n) = λnφφ(a)2n. Since ‖ata‖ = ‖a2‖, att = a, and φ is the continuous multi-

plicative linear functional, then |λφ|p = 1. On the other hand, λφφ(ab) =φ(atbt) =
φ(at)φ(bt) = λ2

φφ(a)φ(b) = λφφ(ab), hence λφ = 1, where there are a and b ∈ A
such that φ(ab)≠ 0. Therefore, φt =φ, where φt(a) :=φ(at) for each a∈A. Conse-

quently, Â=A+.

Continuation of the proof of Proposition 5.2. In view of Section 2 there ex-

istsψ∈ B̂ such that |ψ(Ta)| = ‖Ta‖, sinceψ′ : a�ψ(Ta)∈ Â, hence ‖Ta‖ = |ψ′(a)| ≤
supφ∈Â |â(φ)|, consequently, ‖π(a)‖t ≤ supφ∈Â |â(φ)|. Therefore, ‖π(a)‖t =
supφ∈Â |â(φ)|, hence the map F defines the isometric t-isomorphism of At into

C∞(Sp(A),K). The range of F is a T -subalgebra of C∞(Â,K), which automatically sep-

arates points of Â, consequently, by the Kaplansky theorem cl range(F) = C∞(Â,K)
(see [25, Section A.4]).

5.4. Let H = c0(α,K), where K is a topologically complete field. A strong operator

topology in �(H,Y) (see Section 1) is given by a base Vε;E;x1,...,xn := {Z ∈ �(H,Y) :

sup1≤j≤n‖(E −Z)xj‖Y < ε}, where 0 < ε, E ∈ �(H,Y), xj ∈ H; j = 1, . . . ,n; n ∈ N.

Let X be a topological space with the small inductive dimension ind(X) = 0. An

H-projection-valued measure on an algebra L of subsets of X is a function P on

L assigning to each A ∈ L a projection P(A) on H and satisfying the following

conditions:
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(i) P(X)= 1H ,

(ii) for each sequence {An : n = 1, . . . ,k} of pairwise disjoint sets in L there are

projections P(An) such that P(An)P(Al)= 0 for each n≠ l and P(
⋃k
n=1An)=∑k

n=1P(An),
(iii) if A ⊂ L is shrinking and ∩A = ∅, then limA∈AP(A) = 0, where the conver-

gence on the righthand side is unconditional in the strong operator topology

and the sum is equal to the projection onto the closed linear span over K of

{range(P(An)) :n= 1, . . . ,k} such that P(∅)= 0, k∈N.

If η∈H∗ and ξ ∈H, then A� η(P(A)ξ) is a K-valued measure on L. The case of a

σ -algebra L and of k=∞ in (ii) is unnecessary for the subsequent consideration and

it will not be used, but it may be considered as a particular case. The σ -additive case

leads to the restriction that each measure η(P(A)ξ) is atomic, when K is spherically

complete (see [28, Chapter 7]).

Then by definition P(A) ≤ P(B) if and only if the range (P(A)) ⊂ the range P(B).
There are many projection operators on H, but for P there is chosen some such fixed

system.

A subset A ⊂ X is called P -null if there exists B ∈ L such that A ⊂ B and P(B) = 0,

A is called P -measurable if A�B is P -null, where A�B := (A\B)∪(B\A). A function

f : X → K is called P -measurable, if f−1(D) is P -measurable for each D in a field

Bco(K) of clopen subsets of K. It is essentially bounded, if there exists k > 0 such

that {x : |f(x)| > k} is P -null, ‖f‖∞ is by definition the infimum of such k. Then

	 := spK{ChB : B ∈ L} is called the space of simple functions, where ChB denotes

the characteristic function of B. The completion of 	 relative to ‖∗‖∞ is the Banach

algebra L∞(P) under the pointwise multiplication.

There exists a unique linear mapping 
 : 	→�(H) by the following formula:

(iv) 
(
∑n
i=1λiChBi)=

∑n
i=1λiP(Bi), where n∈N, Bi ∈ L, λi ∈K. Since

(v) ‖
(f )‖ = ‖f‖∞, then 
 extends to a linear isometry (also called 
) of L∞(P)
onto �(H).

If f ∈ L∞(P), then the operator 
(f ) in �(H) is called the spectral integral of f
with respect to P and is denoted

(vi)
∫
X f(x)P(dx) := 
(f ).

Evidently properties (I), (II), (III), (V), and (VI) from [14, 13, Section II.11.8] are trans-

ferable onto the case considered here. These and other properties of the spectral

integral are as follows.

Proposition 5.4. A spectral integral has the following properties:

(I)
∫
X f(x)P(dx)=

∫
X g(x)P(dx) if and only if f and g differ only on a P -null set;

(II)
∫
X f(x)P(dx) is linear in f ;

(III)
∫
X f(x)g(x)P(dx) = (

∫
X f(x)P(dx))(

∫
X g(x)P(dx)), for each f and g ∈

L∞(P);
(IV) ‖∫X f(x)P(dx)‖ = ‖f‖∞;

(V) if A∈ L, then
∫
X ChA(x)P(dx)= P(A), in particular

∫
X P(dx)= P(X)= 1H ;

(VI) for each pair ξ ∈ H and η∗ ∈ H∗, let µξ,η(A) := η∗(P(A)ξ) for each A ∈ L. If

E = ∫X f(x)P(dx) then η∗(Eξ)= ∫X f(x)µξ,η(dx);
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(VII) if A ∈ L, then P(A) commutes with
∫
X f(x)P(dx), where ei := e∗i such that

ei(ej)= δij .

An H-projection-valued measure P on the algebra L containing an algebra Bco(X)
of clopen (closed and open at the same time) subsets of X is called an H-projection-

valued tight measure on X. We call P regular if

(vii) P(A) = sup{P(C) : C ⊂ A and C is compact} for each A ∈ L, where sup is the

least closed subspace of H containing rangeP(C) and to it corresponds a pro-

jector on this subspace. Indeed, P(A)H is closed in H, since P2(A) = P(A).
Therefore,

(viii) P(A) = inf{P(U) : U is open and U ⊃ A} = I − sup{P(C) : C ⊂ X \A and C is

compact}, hence

(ix) the infimum corresponds to the projection on
⋂
U⊃A,U is open P(U)H.

A measure µ : L→K is called regular, if for each ε > 0 and each A∈ L with ‖A‖µ <∞
there exists a compact subset C ⊂ A such that ‖A\C‖µ < ε. Since ‖P(X)‖ = 1, then

‖µξ,η‖ ≤ ‖ξ‖H‖η‖H∗ . For the space H over K, measures µξ,η on locally compact X are

tight for each ξ, η in a subset J ⊂ H ↩ H∗ separating points of H if and only if P is

defined on L ⊃ Bco(X); P is regular if and only if µξ,η are regular for each ξ,η∈ J due

to Conditions (viii) and (ix). We can restrict our consideration by µξ,ξ instead of µξ,η
with ξ,η∈ spK J, since

(+
−
)
2µξ,η = µξ(+−)η,ξ(+−)η−µξ,ξ−µη,η.

By the closed support of an H-projection-valued tight measure P on X we mean

the closed set D of all those x ∈ X such that P(U)≠ 0 for each open neighbourhood

x ∈U , supp(P) :=D.

5.5. We fix a locally compact totally disconnected Hausdorff space X and a Banach

space H over K and let T : C∞(X,K) → �(H) be a linear continuous map from the

C-algebra C∞(X,K) of functions f :X →K such that:

(i) Tfg = TfTg for each f and g ∈ C∞(X,K),
(ii) T1 = I for compact X.

In general, C∞(X,K) can be considered as an E-algebra if we define f t := f for each

f ∈ C∞(X,K), so we can put Ttf = Tf , but the latter equality will not be used.

From this definition it follows, that ‖T‖ ≤ 1, since Tfn = Tnf for each n ∈ Z and

f ∈ C∞(X,K). If X is locally compact and is not compact, then X∞ := X∪{x∞} be its

one-point Alexandroff compactification. Each f ∈ C(X∞,K) can be written just in one

way in the form f = λ1+g, where g ∈ C∞(X,K) and 1 is the unit function on X∞.

Therefore, we can extend T : C∞(X,K)→ �(H) to a linear map T ′ : C(X∞,K)→ �(H)
by setting T ′λ1+g = λ1H+Tg such that T ′1 = 1H .

Therefore, f � η∗(Tf ξ)=: µ̃ξ,η(f ) is a continuous K-linear functional on C∞(X,K),
where ξ ∈H and η∗ ∈H∗. In view of [28, Theorems 7.18 and 7.22] about correspon-

dence between measures and continuous linear functionals (the non-Archimedean

analog of the Riesz representation theorem) there exists the unique measure µξ,η ∈
M(X) such that

(I) η∗(Tf ξ) =
∫
X f(x)µξ,η(dx) for each f ∈ C∞(X,K). In case Ttf = Tf we have

µξ,η = µη,ξ , when ξ,η ∈ H. Since T1 = I, then µξ,η(X) = η∗(ξ) = ξ∗(η). Then

for each A ∈ L, ‖A‖µξ,η ≤ ‖ξ‖‖η‖supf≠0‖Tf‖ ≤ ‖ξ‖‖η‖. Since H considered
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as a subspace of H∗ separates points in H, then for each A ∈ L there exists a

unique linear operator P(A)∈�(H) such that

(II) ‖P(A)‖ ≤ 1 and η∗(P(A)ξ) = µξ,η(A), since µξ,η(A) is a continuous bilinear

K-valued functional by ξ and η ∈ H. From the existence of the H-projection-

valued measure in the case of locally compact X, we get a projection-valued

measure P ′ on X∞ such that

(III) T ′f =
∫
X∞ f(x)P

′(dx) for each f ∈ C(X∞,K).

Lemma 5.5. For each A and B ∈ L, (i) P(A∩B)= P(A)P(B)= P(B)P(A).

Proof. For each g ∈ C∞(X,K) and ξ,η∈H let νg(dx) := g(x)µξ,η(dx). For each f
and g ∈ C∞(X,K) we have:

∫
X f(x)µTgξ,η(dx) = η∗(TfTgξ) =

∫
X f(x)g(x)µξ,η(dx) =∫

X f(x)νg(dx), consequently νg = µTgξ,η. For a fixed A∈ L let ρ(B) := µξ,η(A∩B) for

each B ∈ L. Therefore, ρ is a tight measure on X: ρ ∈M(X), where M(X) denotes the

set of all tight measures on X. For each g ∈ C∞(X,K) there are equalities

∫
X
g(x)ρ(dx)=

∫
A
g(x)µξ,η(dx)= νg(A)=

∫
X
g(x)µP(A)ξ,η(dx). (5.2)

Then for each B ∈ L, we get

η∗
(
P(A∩B)ξ)= µξ,η(A∩B)= ρ(B)= µP(A)ξ,η(B)= η∗(P(A)P(B)ξ). (5.3)

The elements ξ and η∈H were arbitrary, hence P(A∩B)= P(A)P(B). Interchanging

A and B we get the conclusion of this lemma.

Corollary 5.6. For each A ∈ L we have P2(A) = P(A) and P(A) is a projection

operator such that P(X)= I. If A∩B =∅, A and B ∈ L, then P(A)P(B)= 0.

Proposition 5.7. If conditions (i), (ii), (iii) of Section 5.4 are satisfied, then P is the

unique regular H-projection-valued tight measure on X and Tf =
∫
X f(x)P(dx) for

each f ∈ C∞(X,K).
Note 5.8. Such integral is called the spectral integral.

Proof. Let {An : n ∈ N} be a sequence of pairwise disjoint subsets of X, An ∈ L.

SinceX is locally compact, then the spectral integral defined in Section 5 as the limit of

certain finite sums exists. By Corollary 5.6, P(An) are pairwise orthogonal projectors.

Put Q =∑nP(An). Then for each ξ and η ∈ H, we have η∗(Qξ) =∑nη∗(P(An)ξ) =∑
nµξ,η(An) = µξ,η(

⋃
nAn) = η∗(P(

⋃
nAn)ξ), consequently, P(

⋃
nAn) =

∑
nP(An)

and P is an H-projection-valued measure. Since X is locally compact, then each mea-

sure µξ,η is tight and regular (see [28, Theorem 7.6]), hence P is regular (see Section 5).

Take f ∈ C∞(X,K) and form the spectral integral E = ∫X f(x)P(dx). For each ξ,η∈H
we have η∗(Eξ)= ∫X f(x)µξ,η(dx)= η∗(Tf ξ), consequently, E = Tf . In view of Equal-

ity (III) of Section 5.5 we have a regularH-projection-valued measures both in the case

of compact and noncompact locally compact X.

It remains to verify the uniqueness of P . Suppose there exists another regular

H-projection-valued tight measure on X with the same properties. Put µξ,η(A) =
η∗(P(A)ξ), νξ,η(A) = η∗(Q(A)ξ) for each A ∈ L, where ξ and η ∈ H. Then
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∫
X f(x)µξ,η(dx)= η∗(Tf ξ)=

∫
X f(x)νξ,η(dx) for each f ∈ C∞(X,K), hence µξ,η = νξ,η

for each ξ,η∈H, consequently, P(A)=Q(A) for each A∈ L.

Corollary 5.9. The relation Tf =
∫
X f(x)P(dx) for each f ∈ C∞(X,K) sets a one-

to-one correspondence between the set of all regular H-projection-valued tight mea-

sures P on X and the set of all continuous linear maps T : C∞(X,K) → �(H), which

satisfy conditions (i), (ii), (iii) of Section 5.4.

Note 5.10. A particular case of H = C∞(X,K) for locally compact totally discon-

nected Hausdorff space X and Tf = f for each f ∈ C∞(X,K) can be considered in-

dependently of the given above and it is the following. Each such f is a limit of a

certain sequence by n ∈ N of finite sums
∑
j f (xj,n)ChVj,n(x), where {Vj,n : j ∈ Λn}

is a finite partition of X into the disjoint union of Vj,n clopen in X, xj,n ∈ Vj,n,

Λn ⊂N, since range (f ) is bounded. If we take P(V)= ChV for each V ∈ L, then Tag =
limn→∞

∑
j f (xj,n)ChVj,n(x)g =

∫
X f(x)P(dx)g for each g ∈ H, so there is the bijec-

tive correspondence between elements a ∈ A of a C-algebra A realised as C∞(X,K)
with X = Sp(A) and their spectral integral representations. It can be lightly seen that

P(V1∩V2) = ChV1∩V2 = ChV1 ChV2 = P(V1)P(V2) = P(V2)P(V1) for each Vj ∈ L. If {Vj :

Vj ∈ L,j ∈N} is a disjoint family, then P(
⋃
j Vj)g = Ch⋃j Vj g =

∑
j ChVjg =

∑
j P(Vj)g

for each, g ∈H. Also P(∅)H = Ch∅H = {0} and P(X)g = ChX g = g, for each g ∈H.

Therefore, P is indeed an H-projection-valued tight measure.

Suppose now that X is not locally compact, for example, X = c0(ω0,S) with an

infinite residue class field k of a non-Archimedean infinite field S with nontrivial val-

uation. Then there are f ∈ C∞(X,K) for which convergence of finite or even count-

able or of the cardinality card(k) (which may be greater or equal to card(R)) sums∑
j f (xj,n)ChVj,n becomes a problem for a disjoint family {Vj,n : j} of clopen in X

subsets, since ‖ChVj,n ‖C(X,K) = 1 for each j and n.

Theorem 5.11 (the non-Archimedean analog of the Stone theorem). Let A be a

commutative Banach C-algebra over a locally compact field K. If P is a regular H-

projection-valued tight measure on Â (see Section 5.5 and Proposition 5.7), then the

equation

(i) Ta =
∫
Â â(φ)P(dφ) for each a ∈ A defines a nondegenerate representation of

A in H. Conversely, each nondegenerate representation T of A on a Banach space H
determines a unique regular H-projection-valued tight measure P on Â such that (i)

holds.

Proof. The right side of (i) is the spectral integral. Let P be a regularH-projection-

valued tight measure on Â. By Corollary 5.9, T ′ : f → ∫
X f(x)P(dx) is a nondegenerate

representation of C∞(Â,K) on H. By Proposition 5.2 the map a � â|Â is a homo-

morphism of A onto a dense subset of a subalgebra of C∞(Â,K) such that the map

T : a� T ′|(â|Â) =
∫
Â âP(dâ) is a nondegenerate representation of A.

Conversely, let T be a nondegenerate representation of A on H. Then from

Sections 5.1, 5.2, and Proposition 5.2 it follows that there exists a nondegenerate rep-

resentation T ′ of C∞(Â,K) such that

(ii) Ta = T ′(â|Â) for each a ∈ A. In view of Proposition 5.7 there exists a regular

H-projection-valued tight measure P on Â satisfying the equality
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(iii) T ′f =
∫
Â f (x)P(dx) for each f ∈ C∞(Â,K). Combining (ii) and (iii) we get For-

mula (i). Let Q be another regular H-projection-valued tight measure which is

also related to the representation T by Formula (i), then

(iv)
∫
Â â(x)Q(dx) = Ta =

∫
Â â(x)P(dx) for each a ∈ A. Due to Proposition 5.2

{â|Â : a ∈A} is dense in C∞(Â,K) with respect to the supremum-norm. From

(iv) and Section 5, it follows that
∫
Â f (x)P(dx) =

∫
Â f (x)Q(dx) for each f ∈

C∞(Â,K), consequently, by Proposition 5.7, Q= P .

Definition 5.12. From Theorem 5.11, P is called the spectral measure of the non-

degenerate representation T of A.

Proposition 5.13. Let P be the spectral measure of the nondegenerate represen-

tation T of a commutative Banach C-algebra A over a locally compact field K. If Ω ⊂ Â
and Ω ∈ L, then

(i) range(P(Ω))=⋃φ∈Ω{ξ ∈H(T) : Taξ =φ(a)ξ for each a∈A}.

Proof. Relation (i) of Theorem 5.11 and the definition of the spectral integral in

Proposition 5.7 show that if ξ ∈ rangeP(V) for each V ∈ L with φ ∈ V , then Taξ =
φ(a)ξ for each a∈A.

Conversely, suppose that Taξ = φ(a)ξ for each a ∈ A. If T ′ is the representation

of At isomorphic with C∞(Â,K) and T ′ corresponds to T , then

(ii) T ′f ξ = f(φ)ξ for each f ∈ C∞(Â,K).
Assume that ξ �∈ range(P(Ω)) and consider a measure µξ,η(W) := η∗(P(W)ξ) for ξ

and η∈H. There exists η= ξ ≠ 0 such that µξ,ξ is not carried by Ω. Due to regularity

of µξ,ξ there exists a compact E ⊂ Â, E ∈ L, E ⊂ Ω such that φ �∈ E and ‖E‖µξ,ξ >
0. We take f ∈ C∞(Â,K) which is not equal to zero everywhere on E and f(φ) =
0, since Â is the completely regular topological space T3.5 (see [9, Theorem 2.3.11]).

From Formula (ii), proof of Theorem 5.11, it follows that T ′f ξ = 0. By [28, Chapter 7]

and Formula (VI) of Proposition 5.4 above there is an inequality: ‖T ′f ξ‖ ≥ ‖f‖Nµξ,ξ ≥
supx∈E |f(x)|Nµξ,ξ (x) =: ‖f |E‖Nµξ,ξ , where ‖f‖φ := supx∈X |f(x)|φ(x) for f : X →K
and φ : X → [0,∞); Nµ(x) := infU∈L,x∈U ‖U‖µ ; ‖A‖µ := sup{|µ(B)| : B ∈ L,B ⊂ A} for

each A∈ L. If ‖ξ‖H = 1, then ‖T ′f ξ‖ = ‖f‖Nµξ,ξ . We get a contradiction, consequently,

ξ ∈ rangeP(Ω).

5.6. Let A be a commutative C-algebra with the unit 1 over a locally compact fieldK
and let µ be any regular tight measure on Â. Let the space L(Â,µ,K) be defined on the

algebra L such that L ⊃ Bco(Â) of Â as in [28, Chapter 7], it is the completion relative

to ‖f‖Nµ of the K-linear space of all step functions, that is, finite linear combinations

of characteristic functions of elements of L.

Theorem 5.14. The equation

(i) (Taf)(φ)= â(φ)f(φ) for each a∈A, f ∈ L(Â,µ,K) and φ∈ Â defines a non-

degenerate representation T of A on H = L(Â,µ,K) and the spectral measure P of T is

given by P(W)f = ChW f for each W ∈ L and f ∈H.

Proof. If â(φ)∈ C(Â), then supφ∈Â |â(φ)|<∞, so



SPECTRAL INTEGRATION AND SPECTRAL THEORY FOR NON-ARCHIMEDEAN . . . 439

sup
φ∈Â

∣∣f(φ)∣∣∣∣â(φ)∣∣Nµ(φ)≤ ‖f‖µ∥∥â∥∥C(Â,K), (5.4)

consequently, âf ∈ H and Taf =
∫
Â â(φ)P(dφ)f due to Theorem 5.11. Therefore,

for â = ChW we have Taf = P(W)f for each W ∈ Bco(Â). Each measure µξ,η(W) =
η∗(P(W)ξ) has an extension from Bco(Â) on L due to its regularity, where ξ and

η ∈ H (see Section 5.4). The family of such measures µξ,η characterise P completely,

sinceH is the Banach space of separable type overK. Therefore, we have an extension

of P on L.

5.7. From the results above it follows that supp(P) ⊂ Sp(A). If a representation T
is one-to-one, that is, kerT = {0}, then T is called faithful.

Proposition 5.15. The kernel of a nondegenerate representation T of A consists

of a ∈ A such that â vanishes everywhere on the spectrum of T . Suppose in addition

that A is a commutative C-algebra over a locally compact field K. Then T is faithful if

and only if its spectrum is all of Â.

Proof. A condition Ta = 0 is equivalent to
∫
Â â(φ)P(dφ)= 0, which is equivalent

to â(φ)|Â = 0 by Theorem 5.11. Therefore, kerT = {0} is equivalent to suppT = Â.

5.8. Fix a Banach space H over a non-Archimedean complete field F such that F ⊂
Cp . If b ∈ �(H) we write shortly Sp(b) instead of Sp�(H)(b) := cl(Sp(spF{bn : n =
1,2,3,···})) (see also [28]). If A is a commutative Banach subalgebra in �(H), then

there exists a quotient mapping θ : A→ A/BA, where BA is a closed subalgebra of A
such that BA = ker(‖∗‖sp) is the kernel of the spectral norm, BA := {x : x ∈A;‖x‖sp =
0}. Then θ(A) is the normed algebra, θ(A) is the subalgebra of �(H)/B�(H). Choose

a locally compact subfield K in F.

Theorem 5.16 (spectral theorem for operators). Let b ∈�(H). Then there exists a

unique H-projection-valued tight measure P on K with values in �(H) with the follow-

ing properties:

(i) the closed support D of P is bounded in K;

(ii) θ(b) = ∫KxP(dx); also b = λbV
∫
KxP(dx), where V is a continuous operator

fromH onto its closedK-linear subspace such that |πK| ≤ ‖V‖ ≤ |πK|−1,πK ∈K,

|πK| =max{|x| : x ∈K,|x|< 1}; |λb| = ‖b‖, λb ∈ F; V is an isometry of H onto

its closed K-linear subspace for K= F;

(iii) if K= F, then D = Sp(a), where a is an auxiliary operator defined by V and b.

Moreover, if S is a family of commuting operators, S ⊂ �(H), then there exists

a unique H-projection-valued tight measure P on a locally compact subset X ⊂
B(K,0,1,)γ such that for each b ∈ S there exists a unique fb ∈ C∞(X,F) for which

θ(b) = ∫X fb(x)P(dx), b = V ∫X fb(x)P(dx) and V as above, where clX = X∪{0} is

compact.

Proof. If ‖b‖sp = 0, then Sp(b) =∅ and this case is trivial with P(∅) = 0. In the

case of the locally compact fieldK andH overKwe can takeW := cl(b(H)) and b = Va,

where V is an operator such that V(H)=W , V |W :W →W is an isometry, V(H�W)=
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{0}, a is an operator of H onto H such that ‖a‖sp > 0 and a is representable as a

convergent series of projectors in some basis of H, that can be shown by transfinite

induction (see [26]). In this case we get (ii). Analogously for commuting algebras of

operators.

The field F can be considered as the Banach space over K. This means that F sup-

plied with the linear structure overK is isomorphic with c0(β,K) and a corresponding

ordinal β, since K is locally compact and hence spherically complete (see [28, Theo-

rems 5.13 and 5.16]). This isomorphism χ : F→ c0(β,K) may be nonisometrical. The

isomorphism χ generates the isomorphism of H considered as the Banach space HK
over K with c0(αK,K), χ : HK → c0(αK,K) with the corresponding ordinal αK. This

isomorphism is K-linear and it produces an injective continuous K-linear embedding

χ∗ : �(H)→�(c0(αK,K))with continuous (χ∗)−1|χ∗(�(H)). The embedding χ∗ is given

by the following formula: χ∗(a)y := χaχ−1y for each a ∈ �(H) and y ∈ c0(αK,K).
This is the well-known construction of the contraction of a scalar field for a Banach

space. In the particular case ofH = Fn withn∈N and if F is a finite algebraic extension

ofK to each a∈�(H), there corresponds a finiten×nmatrix, hence χ∗(a)∈�(Kβn).
Suppose there is a representation of a C-algebra C∞(X,F) with the help of a c0(αK,

K)-projection-valued tight measure P on a locally compact subset X in Kγ . Then

(χ∗)−1 produces from P an H-projection-valued tight measure PF, since

(
χ−1P(V)χ

)(
χ−1P(W)χ

)= χ−1P(V ∩W)χ, (5.5)

for each V and W ∈ L. Consequently,

χ−1
∫
X
g(x)P(dx)χz =

∫
X

(
χ−1g(x)χ

)(
χ−1P(dx)χ

)
z, (5.6)

for each z ∈ H and f ∈ C∞(X,K). Therefore, if χ∗(a) = ∫
X ga(x)P(dx), then a =∫

X fa(x)PF(dx), where ga ∈ C∞(X,K) and hence χ∗(ga) =: fa ∈ C∞(X,F) such that

fa = ga, since the restriction of χ on K embedded into F is the identity K-linear

mapping.

It follows that instead of b or S, it is sufficient to consider χ∗(b) or χ∗(S). Denote

χ∗(b) and χ(S) simply by b and S, respectively. The operator b or the family S gen-

erates a commutative subalgebra A of �(HK) generated by spK{bn : 0 ≤ n ∈ Z} or

by spK{am1
1 ···amnn : aj ∈ S,n ∈ N,0 ≤mj ∈ Z;j = 1, . . . ,n}, where b0 := 1. It has a

completion A relative to the spectral norm ‖∗‖sp by [28, Chapter 6]. This A in view

of [28, Theorem 6.15 and Corollaries 6.16, 6.17] is a Banach C-algebra C(Sp(A),K),
since 1 ∈ A and Sp(A) is compact such that C(E,K) is isomorphic with C∞(E,K) for

compact E.

For S = {b} each φ∈A+ is completely defined by φ(b), thus the map φ�φ(b) is

continuous and one-to-one, consequently, it is a homeomorphism from the compact

space Sp(A) onto the compact subset Sp(b) of K. Therefore, we identify Sp(A) with

Sp(b). So the Gelfand transform of b becomes the identity function on Sp(b). Thus

by Theorem 5.11 the identity representation of A in H gives rise to the H-projection-

valued tight measure P on Sp(b) such that θ(b)= ∫DxP(dx) and b = λbV
∫
DxP(dx).

Since the identity representation is faithful, then Proposition 5.15 shows that the

closed support D of P is homeomorphic to Sp(b) (up to the mapping χ|K). Extending
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P to L by setting P(W)= P((W)∩Sp(b)), we obtain a tight projection-valued measure

on K satisfying (i), (ii), (iii) of Section 5.4.

In the case of the family S take X = Sp(A) such that, [9, Theorem 2.3.20], about

a diagonal mapping we can choose a ≤ card(γ) ≤ card(A+) while embedding X ↩
B(K,0,1), where a is the minimal cardinality of a family of subsets in A+ separating

points of A. In view of [28, Section 6.2], cl(X)=X∪{0}.
To show that P is uniquely determined by Theorem 5.16(i) and (ii), let P ′ be another

H-projection-valued tight measure onK satisfying Theorem 5.16(i) and (ii) and let E be

a compact subset of K containing the supports of both P and P ′. Consider two repre-

sentations T : f �
∫
E f (x)P(dx) and T ′ : f �

∫
E f (x)P ′(dx) of C(E,K). If w and e are

the identity function w(x)= x and the constant function e(x)= 1 for each x ∈ E, re-

spectively, then condition (ii), satisfied by both P and P ′, shows that Tw = T ′w = b and

also Te = T ′e = 1. By the Kaplansky theorem w and e generate C(E,K) as a C-algebra

[25, 28], hence T ′ = T and by the uniqueness statement of Theorem 5.11 we have

P ′ = P .

5.9. The P of the above theorem is called the spectral measure of the operator b or

of a family S. In particular, S may be a commutative subalgebra of �(H). Evidently,

each nilpotent operator v in �(H) has ‖v‖sp = 0. If v ∈ �0(H) has e∗j (uei) = 0 for

each j ≤ i, then v is nilpotent. Therefore, θ(�0(H)) is isomorphic with the algebra of

diagonal operators on H. Its spectrum was found in Section 4.

Note 5.17. It is an interesting property of the non-Archimedean case that a con-

dition of a normality of an operator b is not necessary in Theorem 5.16 apart from

the classical case. It is not so surprising if we recall that orthogonality in the non-

Archimedean case is quite different from the classical case. For example, two vectors

(1,0) and (1,1) are orthonormal in K2, but are not orthogonal in C2.
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[23] M. A. Năımark, Normirovannye Koltsa, 2nd revised ed., Izdat. Nauka, Moscow, 1968 (Rus-

sian).
[24] H. Ochsenius and W. H. Schikhof, Banach spaces over fields with an infinite rank valuation,
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