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A MINIMIZATION THEOREM IN QUASI-METRIC SPACES
AND ITS APPLICATIONS
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We prove a new minimization theorem in quasi-metric spaces, which improves the results
of Takahashi (1993). Further, this theorem is used to generalize Caristi’s fixed point theo-
rem and Ekeland’s ε-variational principle.
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1. Introduction. Caristi [1] proved a fixed point theorem on complete metric spaces

which generalizes the Banach contraction principle. Ekeland [3] also obtained a non-

convex minimization theorem, often called the ε-variational principle, for a proper

lower semicontinuous function, bounded from below, on complete metric spaces.

Later Takahashi [4] proved the following minimization theorem: let X be a complete

metric space and let f : X → (−∞,∞] be a proper lower semicontinuous function,

bounded from below. Suppose that, for each u∈X with f(u) > infx∈X f(x), there ex-

ists v ∈ X such that v ≠u and f(v)+d(u,v)≤ f(u). Then there exists x0 ∈ X such

that f(x0)= infx∈X f(x). These theorems are very useful tools in nonlinear analysis,

control theory, economic theory, and global analysis.

2. Main results. Throughout this note, we denote by N the set of all positive inte-

gers and by R the set of all real numbers.

Definition 2.1. A real-valued function Φ defined on a topological space X is said

to be lower semicontinuous at x in X if and only if {xλ} is a net in X and limxλ = x
implies Φx ≤ liminfΦxλ.

Definition 2.2 [2]. A real-valued function Φ defined on a topological space X is

said to be weak lower semicontinuous at x ∈ X if and only if {xλ} is a net in X
and limxλ = x implies Φx ≤ limsupΦxλ. A mapping Φ is said to be a weak lower

semicontinuous on X if and only if it is weak lower semicontinuous for every x ∈X.

Definition 2.3. A pair (X,d) of a set X and a mapping d from X ×X into real

numbers is said to be a quasi-metric space if and only if

d(x,y)≥ 0, d(x,y)= 0 iff x =y,
d(x,z)≤ d(x,y)+d(y,z) ∀x,y,z ∈X.

(2.1)

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


444 JEONG SHEOK UME

Definition 2.4. A sequence {xn} in X is said to be a left k-Cauchy sequence if for

each k∈N there is an Nk such that

d
(
xn,xm

)
<

1
k

∀m≥n≥Nk. (2.2)

A quasi-metric space is left k-sequentially complete if each left k-Cauchy sequence is

convergent.

Theorem 2.5. Let (X,d) be left k-sequentially complete quasi metric space such

that for each x ∈ X the mapping u → d(x,u) is a lower semicontinuous on X. Let

f :X → (−∞,∞] be a proper weak lower semicontinuous function bounded from below

such that for any u ∈ X with infx∈X f(x) < f(u), there exists v ∈ X with v ≠ u and

f(v)+d(u,v)≤ f(u). Then there exists x0 ∈X such that infx∈X f(x)= f(x0).

Proof. Suppose that infx∈X f(x) < f(y) for every y ∈ X. For each y ∈ X, we

define S(y) by

S(y)= {z ∈X : f(z)+d(y,z)≤ f(y)}. (2.3)

From (2.3) and hypotheses of the theorem we have the following:

(∗) For each y ∈X, there exists v ∈X with v ≠y such that v ∈ S(y), and for each

z ∈ S(y), S(z)⊆ S(y).
For each y ∈X, we define A(y) by

A(y)= inf
{
f(z) : z ∈ S(y)}. (2.4)

Choose u ∈ X with f(u) < ∞. Then we choose a sequence {un} in S(u) as follows:

when u=u1,u2, . . . ,un have been chosen, choose un+1 ∈ S(un) such that

f
(
un+1

)
<A

(
un
)+ 1

n
. (2.5)

Thus, we obtain a sequence {un} such that

d
(
un,un+1

)≤ f (un)−f (un+1
)
, (2.6)

f
(
un+1

)− 1
n
<A

(
un
)≤ f (un+1

)
. (2.7)

By (2.6), {f(un)} is a nonincreasing sequence of reals and so it converges. Therefore,

by (2.7) there is some α in R such that

α= lim
n→∞A

(
un
)= lim

n→∞f
(
un
)= inf

n∈N
f
(
un
)
. (2.8)

Let k∈N be arbitrary. By (2.8) there exists some Nk such that f(un) < α+1/k for all

n≥Nk. Thus, by monotony of {f(un)}, for m≥n≥Nk, we have

α≤ f (um)≤ f (un)<α+ 1
k
, (2.9)

and hence

f
(
un
)−f (um)< 1

k
∀m>n≥Nk. (2.10)
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From the triangle inequality, (2.6) and (2.10), we get

d
(
un,um

)≤
m−1∑
i=n

d
(
ui,ui+1

)≤
m−1∑
i=n

[
f
(
ui
)−f (ui+1

)]

≤ f (un)−f (um)< 1
k

(2.11)

for all m>n≥Nk.
Therefore, {un} is a left k-Cauchy sequence in X. By completeness, there exists

z ∈X such that un→ z. Since f is a weak lower semicontinuous; by (2.8), we have

f(z)≤ limsup
n→∞

f
(
un
)=α. (2.12)

From (2.11), we obtain

f
(
um

)≤ f (un)−d(un,um). (2.13)

Since f is a weak lower semicontinuous on X and u→ d(x,u) on X is a lower semi-

continuous, we have

f(z)≤ limsup
m→∞

f
(
um

)≤ f (un)+ limsup
m→∞

[−d(un,um)]

= f (un)− liminf
m→∞ d

(
un,um

)= f (un)−d(un,z). (2.14)

Hence

d
(
un,z

)≤ f (un)−f(z). (2.15)

From (2.3) and (2.15), we obtain that z ∈ S(un) for every n∈N and hence

A
(
un
)≤ f(z) ∀n∈N. (2.16)

Taking the limit when n tends to infinity, we have

lim
n→∞A

(
un
)≤ f(z). (2.17)

From (2.8), (2.12), and (2.17), we have

f(z)=α. (2.18)

Since z ∈ S(un) and un ∈ S(u), by (∗), we obtain z ∈ S(u). Suppose that v1 ∈ S(z)
and v1 ≠ z. Then f(v1) < f(z) or by (2.18), f(v1) < α. Since v1 ∈ S(z), z ∈ S(un) and

un ∈ S(u), by (∗), we have S(z) ⊆ S(un) ⊆ S(u). Hence v1 ∈ S(un) and v1 ∈ S(u).
Thus

A
(
un
)≤ f (v1

) ∀n∈N. (2.19)

Taking the limit when n tends to infinity, we get

α≤ f (v1
)
. (2.20)

This is in contradiction with f(v1) < α. Hence S(z)= {z}. But, by (2.3) and hypothesis

of a function f in theorem there exists y ∈X such that y ≠ z and {y,z} ⊆ S(z). This

is a contradiction. This completes the proof.
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Remark 2.6. Theorem 2.5 is a generalization of Takahashi’s minimization theo-

rem [4].

Theorem 2.7. Let (X,d) be left k-sequentially complete quasi-metric space such

that for each x ∈ X, the mapping u → d(x,u) is a lower semicontinuous on X. Let

f :X → (−∞,∞] be a proper weak lower semicontinuous function bounded from below.

Assume that there exists a selfmapping T of X such that

f(Tx)+d(x,Tx)≤ f(x) ∀x ∈X. (2.21)

Then T has a fixed point in X.

Proof. Since f is proper, there exists v ∈X such that f(v) <∞. Put

Z = {x ∈X | f(x)≤ f(v)}. (2.22)

Then, since f is weak lower semicontinuous, Z is closed. So Z is left k-sequentially

complete. Let x ∈ Z . Then, Since

f(Tx)+d(x,Tx)≤ f(x)≤ f(v). (2.23)

So Z is invariant under T . Assume that Tx ≠ x for every x ∈ Z . Then by Theorem 2.5,

there exists u∈ Z such that f(u)= infx∈X f(x). Since f(Tu)+d(u,Tu)≤ f(u) and

f(u) = infx∈Z f(x), we have f(Tu) = f(u) = infx∈Z f(x) and d(u,Tu) = 0. Hence

Tu=u. This is a contradiction. Therefore T has a fixed point u in Z . This completes

the proof.

Remark 2.8. Theorem 2.7 is a generalization of Caristi’s fixed point theorem [1].

The following theorem is a generalization of Ekeland’s ε-variational principle [3].

Theorem 2.9. Let (X,d) be left k-sequentially complete quasi-metric space such

that for each x ∈ X the mapping u → d(x,u) is a lower semicontinuous on X. Let

f :X → (−∞,∞] be a proper weak lower semicontinuous function bounded from below.

Then,

(1) for any u ∈ X with f(u) < ∞, there exists v ∈ X such that f(v) ≤ f(u) and

f(w) > f(v)−d(v,w) for every w ∈X with w ≠ v ;

(2) for any ε > 0 and u ∈ X with f(u) < infx∈X f(x)+ ε, there exists v ∈ X such

that f(v) ≤ f(u), d(u,v) ≤ 1 and f(w) > f(v)− εd(v,w) for every w ∈ X
with w ≠ v .

Proof. (1) Let u∈X be such that f(u) <∞ and let

Y = {x ∈X | f(x)≤ f(u)}. (2.24)

Then Y is nonempty and complete. We prove that there exists v ∈ Y such that

f(w) > f(v)−d(v,w) for everyw ∈X withw ≠ v . If not, for every x ∈ Y , there exists

w ∈X such thatw ≠ x and f(w)+d(x,w)≤ f(x). Since f(w)≤ f(x)≤ f(u),w ∈X
is an element of Y . By Theorem 2.5, there exists x0 ∈ Y such that f(x0)= infx∈Y f (x).
For this x0 ∈ Y , there exists x1 ∈ Y such that x0 ≠ x1 and f(x1)+d(x0,x1)≤ f(x0).
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Thus we have f(x0)= f(x1) and d(x0,x1)= 0. Hence x0 = x1. This is a contradiction.

Therefore (1) holds.

(2) Put

Z = {x ∈X | f(x)≤ f(u)−εd(u,x)}. (2.25)

Then Z is nonempty and complete. Since εd(u,x) is a quasi metric, as in the proof of

(1), we have that there exists v ∈ Z such that f(w) > f(v)−εd(v,w) for everyw ∈X
with w ≠ v . Since v ∈ Z , we have f(v)≤ f(u)−εd(u,v)≤ f(u) and

d(u,v)≤ 1
ε
[
f(u)−f(v)]≤ 1

ε

[
f(u)− inf

x∈X
f(x)

]
≤ 1
ε
·ε = 1. (2.26)

This completes the proof of (2).

Remark 2.10. Theorem 2.9 is a generalization of Ekeland’s ε-variational principle

in [3].

Acknowledgment. This work was supported by KOSEF research project No.

2001-1-10100-005-2.

References

[1] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer.
Math. Soc. 215 (1976), 241–251.
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