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A MINIMIZATION THEOREM IN QUASI-METRIC SPACES
AND ITS APPLICATIONS
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We prove a new minimization theorem in quasi-metric spaces, which improves the results
of Takahashi (1993). Further, this theorem is used to generalize Caristi’s fixed point theo-
rem and Ekeland’s e-variational principle.
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1. Introduction. Caristi[1]proved a fixed point theorem on complete metric spaces
which generalizes the Banach contraction principle. Ekeland [3] also obtained a non-
convex minimization theorem, often called the &-variational principle, for a proper
lower semicontinuous function, bounded from below, on complete metric spaces.
Later Takahashi [4] proved the following minimization theorem: let X be a complete
metric space and let f : X — (—co,00] be a proper lower semicontinuous function,
bounded from below. Suppose that, for each u € X with f(u) > infxcx f (x), there ex-
ists v € X such that v = u and f(v) +d(u,v) < f(u). Then there exists xo € X such
that f(xg) = infyecy f(x). These theorems are very useful tools in nonlinear analysis,
control theory, economic theory, and global analysis.

2. Main results. Throughout this note, we denote by N the set of all positive inte-
gers and by R the set of all real numbers.

DEFINITION 2.1. A real-valued function ® defined on a topological space X is said
to be lower semicontinuous at x in X if and only if {x,} is a net in X and limx, = x
implies ®x < liminf ®x,.

DEFINITION 2.2 [2]. A real-valued function ® defined on a topological space X is
said to be weak lower semicontinuous at x € X if and only if {x,} is a net in X
and limx, = x implies ®x < limsup®x,. A mapping & is said to be a weak lower
semicontinuous on X if and only if it is weak lower semicontinuous for every x € X.

DEFINITION 2.3. A pair (X,d) of a set X and a mapping d from X X X into real
numbers is said to be a quasi-metric space if and only if

d(x,¥)=0, d(x,y)=0 iffx=y,

(2.1)
d(x,z) <d(x,y)+d(y,z) Vx,y,zeX.
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DEFINITION 2.4. A sequence {x,} in X is said to be a left k-Cauchy sequence if for
each k € N there is an Ny such that

Ad(xn,xm) <% Vm =n = Ng. (2.2)

A quasi-metric space is left k-sequentially complete if each left k-Cauchy sequence is
convergent.

THEOREM 2.5. Let (X,d) be left k-sequentially complete quasi metric space such
that for each x € X the mapping u — d(x,u) is a lower semicontinuous on X. Let
f:X — (—00,00] be a proper weak lower semicontinuous function bounded from below
such that for any u € X with infycx f(x) < f(u), there exists v € X with v + u and
fv)+d(u,v) < f(u). Then there exists xo € X such thatinf.cy f(x) = f(xo).

PROOF. Suppose that infycx f(x) < f(») for every y € X. For each y € X, we
define S(y) by
Sy)={zeX:f(z)+d(y,2z) < f(¥)}. (2.3)

From (2.3) and hypotheses of the theorem we have the following:

() For each v € X, there exists v € X with v # y such that v € §(»), and for each
zeS(y),S(z)<cS(y).

For each y € X, we define A(y) by

A(y)=inf{f(z2):ze S(y)}. (2.4)

Choose u € X with f(u) < «. Then we choose a sequence {u,} in S(u) as follows:
when u = uy,u»,...,u, have been chosen, choose 1,1 € S(uy) such that

1
f(urwl) <A(un)+£- (2.5)
Thus, we obtain a sequence {u,} such that

d(“n;“rwl) Sf(un) _f(un+l)l (2.6)

Ftnin) = < Alutn) = f (). @7)

By (2.6), {f(u,)} is a nonincreasing sequence of reals and so it converges. Therefore,
by (2.7) there is some « in R such that

= }L%A(”") :yllifﬂlof(u") = }Evf(”")' (2.8)

Let k € N be arbitrary. By (2.8) there exists some Ny such that f(u,) < «+1/k for all
n > Ng. Thus, by monotony of {f(u,)}, for m > n > Ny, we have

cxsf(um)sf(un)<cx+%, (2.9)

and hence

fug) —fum) < vm >n > Ny. (2.10)

&=
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From the triangle inequality, (2.6) and (2.10), we get

m-—1
d(un, um) Z d(ui,ui) [f(wi) = f(wis1)]
i=n i=n (2.11)

1
< fun) = flum) < E
for all m > n > Ni.

Therefore, {u,} is a left k-Cauchy sequence in X. By completeness, there exists
z € X such that u,, — z. Since f is a weak lower semicontinuous; by (2.8), we have

f(z) <limsup f(u,) = «. (2.12)
From (2.11), we obtain
Sfum) < f(un) —d(un, um). (2.13)

Since f is a weak lower semicontinuous on X and u — d(x,u) on X is a lower semi-
continuous, we have
f(2) <limsup f(um) < f(un) +limsup [ —d(un, um)]
mee mee (2.14)
= f(un) —liﬁlior}fd(un,um) = f(un)—d(uy,z).

Hence

d(un,z) < f(un) - f(2). (2.15)
From (2.3) and (2.15), we obtain that z € S(u,,) for every n € N and hence
Aun) < f(z) VneN. (2.16)
Taking the limit when n tends to infinity, we have
7llizroloA(un) < f(z). (2.17)
From (2.8), (2.12), and (2.17), we have
f(2) =« (2.18)

Since z € S(u,) and u, € S(u), by (*), we obtain z € S(u). Suppose that v; € S(z)
and vy # z. Then f(v1) < f(z) or by (2.18), f(v1) < «. Since v, € S(z), z € S(u,) and
Uy € S(u), by (x), we have S(z) < S(uy) < S(u). Hence v; € S(uy) and vy € S(u).
Thus

A(uy) < f(v1) VmneN. (2.19)

Taking the limit when n tends to infinity, we get
« < f(v1). (2.20)

This is in contradiction with f(v;) < &. Hence S(z) = {z}. But, by (2.3) and hypothesis
of a function f in theorem there exists v € X such that v + z and {y,z} < §(z). This
is a contradiction. This completes the proof. ]
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REMARK 2.6. Theorem 2.5 is a generalization of Takahashi’s minimization theo-
rem [4].

THEOREM 2.7. Let (X,d) be left k-sequentially complete quasi-metric space such
that for each x € X, the mapping u — d(x,u) is a lower semicontinuous on X. Let
f:X — (=00, 0] be a proper weak lower semicontinuous function bounded from below.
Assume that there exists a selfmapping T of X such that

f(Ix)+d(x,Tx) < f(x) Vxe€X. (2.21)

Then T has a fixed point in X.

PROOF. Since f is proper, there exists v € X such that f(v) < c. Put
Z={xeX|f(x)=<f}. (2.22)

Then, since f is weak lower semicontinuous, Z is closed. So Z is left k-sequentially
complete. Let x € Z. Then, Since

f(Tx)+d(x,Tx) < f(x) < f(v). (2.23)

So Z is invariant under T. Assume that Tx + x for every x € Z. Then by Theorem 2.5,
there exists u € Z such that f(u) =infycx f(x). Since f(Tu)+d(u,Tu) < f(u) and
f(u) =infycz f(x), we have f(Tu) = f(u) = infycz f(x) and d(u,Tu) = 0. Hence
Tu = u. This is a contradiction. Therefore T has a fixed point u in Z. This completes
the proof. |

REMARK 2.8. Theorem 2.7 is a generalization of Caristi’s fixed point theorem [1].
The following theorem is a generalization of Ekeland’s &-variational principle [3].

THEOREM 2.9. Let (X,d) be left k-sequentially complete quasi-metric space such
that for each x € X the mapping u — d(x,u) is a lower semicontinuous on X. Let
f:X — (=00, 0] be a proper weak lower semicontinuous function bounded from below.
Then,
(1) for any u € X with f(u) < oo, there exists v € X such that f(v) < f(u) and
fw) > f(v)-d(v,w) forevery w € X withw + v;

(2) for any € > 0 and u € X with f(u) < infycx f(x) + ¢, there exists v € X such
that f(v) < f(u), d(u,v) <1 and f(w) > f(v) —ed(v,w) for every w € X
withw + v.

PROOF. (1)Let u € X be such that f(u) < « and let
Y={xeX|f(x)<fu}. (2.24)

Then Y is nonempty and complete. We prove that there exists v € Y such that
fw) > f(v)—d(v,w) forevery w € X with w + v. If not, for every x € Y, there exists
w € X suchthatw # x and f(w)+d(x,w) < f(x).Since f(w) < f(x) < f(u),weX
is an element of Y. By Theorem 2.5, there exists x € Y such that f(xg) = inf ey f(x).
For this xg € Y, there exists x; € Y such that xo # x; and f(x;) +d(xo,x1) < f(x0).
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Thus we have f(xg) = f(x1) and d(xp,x1) = 0. Hence x( = x;. This is a contradiction.
Therefore (1) holds.
(2) Put
Z={xeX|f(x)<f(u)—ed(u,x)}. (2.25)

Then Z is nonempty and complete. Since £d(u,x) is a quasi metric, as in the proof of
(1), we have that there exists v € Z such that f(w) > f(v) —ed(v,w) for every w € X
with w = v. Since v € Z, we have f(v) < f(u) —ed(u,v) < f(u) and
1 1 . 1
du,v) < =[f(uw)-f(w)] < *[f(u)*ll’lff(x)] <—.g=1. (2.26)
& & xeX &

This completes the proof of (2). O

REMARK 2.10. Theorem 2.9 is a generalization of Ekeland’s e-variational principle
in [3].
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