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Several recent results pertaining to nonlinear equations of ecology are applied to a gener-
alization of the Turner-Bradley-Kirk-Pruitt (TBKP) equation, which illustrates a variety of
interesting possibilities as regards persistence and extinction. The chief novelty consists
in exploiting the value set of the equation, that is, the set of values taken on by the solution
as t increases from 0 to ∞. This aspect of the subject depends on a new formulation of a
condition that was first introduced by Vance and Coddington in 1989.
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1. Introduction. This paper is mainly concerned with a special case of the Kol-

mogorov equation

ẋ = xf(t,x), x(0)= x0 > 0, (1.1)

where f(t,x) is continuous at least for t ≥ 0 and x > 0. As a matter of convention,

conditions involving lim, limsup, or liminf pertain to behavior as t→∞. A hypothesis

involving t without further explanation, such as d(t) < ke(t), is understood to hold

for all t ≥ 0.

An interesting example of a Kolmogorov equation, introduced by Turner et al. [3], is

ẋ = cx1−np(kn−xn)1+p. (1.2)

The parameters p, n, k, c are constants with n, k, c positive and p > −1. As seen

in [3], (1.2) includes a number of special cases that have long played a role in ecology.

In [2] it was observed that the expression (kn−xn)1+p is usually meaningless when

x > k, and this expression was therefore replaced by the odd power function

(
kn−xn){1+p} = sgn

(
kn−xn)∣∣kn−xn∣∣1+p. (1.3)

Next, c was replaced by a positive continuous function c(t), and an additional term

of the form d(t)x−e(t)x2 was introduced, where d(t) and e(t) are continuous with

e(t)≥ 0 but d(t) unrestricted as to sign. The equation so obtained is

ẋ = c(t)x1−np(kn−xn){1+p}+d(t)x−e(t)x2, x(0)= x0 > 0. (1.4)

In [2] it is called the generalized TBKP equation because of its genesis from (1.2). This

terminology and the above assumptions on c(t), d(t), and e(t) are retained here.

Under these assumptions it is not hard to show that all solutions of (1.4) exist for

0 ≤ t <∞ and are positive. The case where c is constant and d(t) = e(t) = 0 extends
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the results in [3] to allow x > k. But more important is the presence of the arbitrary

functions c(t), d(t), and e(t), which leads to a theory of increased scope.

Our main objective is to show how some recently improved results for (1.1) can

be applied to (1.4). The improvement consists mainly in the generalized Vance-

Coddington condition, which leads to Theorems 2.4 and 2.5 below. In their original

unimproved forms, these theorems give little or no information about the particular

problems of interest here.

2. General results. In each of the following theorems, x denotes a solution of (1.1).

As in [1], we introduce the conditions

0≤ s ≤ t �⇒
∫ t
s
f (τ,a)dτ ≥−A,

0≤ s ≤ t �⇒
∫ t
s
f (τ,b)dτ ≤ B,

(2.1)

where a, b, A, B are constants. The notations f(t,↓ a) and f(t,a ↓)mean, respectively

ξ ≤ a �⇒ f(t,ξ)≥ f(t,a), ξ ≥ a �⇒ f(t,ξ)≤ f(t,a). (2.2)

The following theorem from [1] is an improvement of an earlier result of Vance and

Coddington [4].

Theorem 2.1. Suppose that f(t,↓ a), f(t,b ↓), and that (2.1) holds with constants

A≥ 0, B ≥ 0, a> 0, b > 0. Then

min
(
x0,a

)
e−A ≤ x(t)≤max

(
x0,b

)
eB, 0≤ t <∞. (2.3)

The next result is implicit in [2].

Theorem 2.2. Suppose there exist arbitrarily small values b > 0 such that

f(t,b ↓), liminf
∫ t

0
f(τ,b)dτ =−∞. (2.4)

Then the solutions of (1.1) satisfy infx(t)= 0. If f(t,ξ) is continuous at ξ = 0 and

f(t,0 ↓), 0≤ s ≤ t �⇒
∫ t
s
f (τ,0)dτ ≤ B (2.5)

for some constant B, then liminfx(t)= 0⇒ limx(t)= 0.

Theorem 2.3 gives existence of a threshold below which the population goes to

extinction.

Theorem 2.3. Suppose that there exists a continuous function λ(t)≥ 0 such that

0< ξ < δ �⇒ f(t,ξ)≤−λ(t), (2.6)

where
∫∞
0 λ(t)dt =∞. Then x(0) < δ⇒ limx(t)= 0.
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Proof. So long as x(t) < δ we have ẋ ≤ 0, hence x(0) < δ⇒ x(t) < δ. Equation

(2.6) gives ẋ ≤−x(t)λ(t) and this gives the conclusion.

The following generalization of a hypothesis of Vance and Coddingtion (VC) was

introduced in [2].

The generalized VC condition. Let I be an open interval, finite or infinite.

The function f(t,x) satisfies the generalized VC condition relative to I if there is a

continuous function λ ≥ 0, independent of I, and a positive constant δ depending

on I, such that

∫∞
0
λ(t)dt =∞, ξ ∈ I �⇒ fx(t,ξ)≤−δλ(t). (2.7)

Value interval. A value interval I(x) for the solution x is any open interval

containing all values x(t).

In [2] it was seen that these definitions lead to a stability theorem that generalizes

[4, Theorem 5].

Theorem 2.4. Suppose that x, y are two solutions with a common value interval

I = I(x)= I(y) relative to which the generalized VC condition holds. Then

infy(t) > 0 �⇒ lim
y(t)
x(t)

= 1. (2.8)

The next result has not been stated heretofore, so far as we know, hence is proved

in full.

Theorem 2.5. Given ε > 0, suppose that f(t,ξ) satisfies the generalized VC condi-

tion relative to each interval (c,2c), 0 < c < ε, that f(t,b ↓) for 0 < b < ε, and that

f(t,ξ) is continuous at (t,0). If

F(t)=
∫ t

0
f(τ,0)dτ, Λ(t)=

∫ t
0
λ(τ)dτ, (2.9)

then liminfF(t)/Λ(t)≤ 0⇒ liminfx(t)= 0.

When used together with (2.5), this extends [4, Theorem 4] in three respects: the VC

condition is assumed only in a value interval, the hypothesis fx(t,ξ) ≤ 0 is replaced

by generalized monotonicity for small ξ, and the condition liminfF(t)/Λ(t) ≤ 0 is

much weaker than the hypothesis F(t)≤ β required in [4].

Proof. Choose b with 0< b < ε and set c = b/2. Then

f(t,b)−f(t,c)= cfx(t,ξ)≤−cδλ(t), (2.10)

where δ is a positive constant depending on c. The hypothesis implies fx ≤ 0 for

x < ε, so f(t,c)≤ f(t,0). Hence

f(t,b)≤ f(t,0)−cδλ(t). (2.11)
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This gives

∫ t
0
f(τ,b)dτ ≤ F(t)−cδΛ(t), (2.12)

and the result follows from the first statement in Theorem 2.2.

3. Examples. In the generalized TBKP equation,

f(t,x)= c(t)x−np(kn−xn){1+p}+d(t)−xe(t). (3.1)

When y ≠ 0 the equation (d/dy)y{α} =α|y|α−1 holds for any constant α and yields

fx(t,x)=−nc(t)
(
xn+pkn)x−np−1

∣∣xn−kn∣∣p−e(t). (3.2)

Several results pertaining to (1.4) were given in [2]. Instead of duplicating these we

give further examples that are not included there. Most of these involve the notion of

value interval introduced in Section 2.

In each of the following examples, x denotes a solution of (1.4).

Example 3.1. Suppose that p < 0, d(t) < 0, and

sup
c(t)∣∣d(t)∣∣ <∞,

∫∞
0
d(t)dt =−∞. (3.3)

Then there exists δ > 0 such that x(0) < δ⇒ limx(t)= 0.

This follows from Theorem 2.3, but imposes an artificially strong condition on d(t).
Example 3.2 also follows from Theorem 2.3 and has only a weak condition on d(t).

Example 3.2. Suppose that p <−1/n, d(t)≤ 0, and

sup
c(t)
e(t)

<∞,
∫∞

0
e(t)dt =∞. (3.4)

Then there exists δ > 0 such that x(0) < δ⇒ limx(t)= 0.

The next examples pertain to stability. Information about the interval I of values is

given by conditions such as

supx(t) < k or infx(t) > k, (3.5)

which are realistic only if they can be deduced from the corresponding initial condi-

tions. Further discussion is given in Section 4. It suffices here to say that the equation

ẋ(t)= d(t)k−e(t)k2 (3.6)

holds for x = k, and shows that the line x = k is a repeller from below or above

according as

d(t)−e(t)k < 0 or d(t)−e(t)k > 0. (3.7)
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We then have

x(0) < k �⇒ x(t) < k or x(0) > k �⇒ x(t) > k, (3.8)

in the two cases respectively. In a like manner, all solutions are bounded away from

0 and ∞ if there exist positive constants δ, µ such that

δe(t)≤ d(t)≤ µ(c(t)+e(t)). (3.9)

The left-hand inequality makes f(t,x) > 0 when x < δ and the right-hand inequality

makes f(t,x) < 0 when x > µ, assuming, as we may, that δ is small and µ is large. A

modification of these ideas gives more subtle conditions introduced later.

Example 3.3. Assuming −1<p < 0, let x and y be two solutions satisfying

x(t)≥ k|p|1/n, y(t)≥ k|p|1/n. (3.10)

Suppose, further, that

∫∞
0
e(t)dt =∞. (3.11)

Then limx(t)/y(t)= 1.

We have fx(t,x)≤−e(t) for x in the common value interval I of x and y and the

result follows from Theorem 2.4.

Example 3.4. Suppose that p > 0 and that

∫∞
0

(
c(t)+e(t))dt =∞. (3.12)

Let x(t) and y(t) be two solutions satisfying

supx(t) < k, supy(t) < k, infy(t) > 0. (3.13)

Then limx(t)/y(t)= 1 and hence also lim
∣∣x(t)−y(t)∣∣= 0.

In this case fx(t,x) ≤ −δc(t)−e(t) for x ∈ I, where δ is a positive constant, and

the result follows from Theorem 2.4. The same method gives Examples 3.5 and 3.6.

Example 3.5. Assuming −1 < p < 0, suppose (3.12) holds. Let x(t) and y(t) be

two solutions satisfying supx(t) < k, supy(t) < k, and

infx(t) > k|p|1/n, infy(t) > k|p|1/n. (3.14)

Then limx(t)/y(t)= 1 and hence also lim|x(t)−y(t)| = 0.

Example 3.6. Suppose that (3.12) holds. Let x(t) andy(t) be two solutions satisfy-

ing infx(t) > k, infy(t) > k, supx(t) <∞, and supy(t) <∞. Then limx(t)/y(t)= 1

and hence also lim|x(t)−y(t)| = 0.
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4. The set of values. To use the foregoing results effectively, one must know some-

thing about the set of values {x(t)} without knowing the solution. For the reader’s

convenience, we recall that in (1.1), ẋ = xf(t,x), x(0)= x0 > 0. With α and β positive

constants, clearly

x(0) > α, f(t,α) > 0 �⇒ x(t) > α,
x(0) < β, f (t,β) < 0 �⇒ x(t) < β. (4.1)

Thus (α,β) is a value interval for x(t) if for x(0). Since our theorems can be applied

for t ≥ T , where T is arbitrarily large, it suffices to have x(t) ∈ I(x) only for large t.
However we sometimes need infx(t) > α, supx(t) < β or both. This is accomplished

by consideration of (α+ε,β−ε). The computation is simplified by finding f(t,α) and

f(t,β), and using continuity to estimate the effect of ε.
Using these ideas we discuss the function

f(t,x)=N(x)c(t)+d(t)−xe(t), N(x)= x−np(kn−xn){1+p} (4.2)

associated with the generalized TBKP equation ẋ = xf(t,x). It is helpful to note that

N(x) has the same sign as k−x and that |k−x|< ε⇒ |N(x)|< η where η→ 0 with ε.
Furthermore,

N(δ)= δ−np(kn−δn)1+p, N(µ)= µ−np(µn−kn)1+p
(4.3)

for δ < k and µ > k, respectively.

Example 4.1. Since f(t,k)= d(t)−ke(t), the procedure gives

x(0) < k �⇒ supx(t) < k if sup
d(t)−ke(t)
c(t)+e(t) < 0,

x(0) > k �⇒ infx(t) > k if inf
d(t)−ke(t)
c(t)+e(t) > 0.

(4.4)

Example 4.2. A necessary and sufficient condition for N′(x) ≤ 0 is that xn +
pkn ≥ 0. This holds if p ≥ 0 or if −1 < p < 0 and x(t) ≥ k|p|1/n. By a short cal-

culation

N
(
k|p|1/n)= |p||p|(1−|p|)1−|p|kn ≥ 1

2
kn (4.5)

with equality only when p = 1/2. Hence

x0 > k|p|1/n �⇒ x(t) > k|p|1/n if
1
2
knc(t)+d(t)≥ |p|1/nke(t), (4.6)

provided that there is strict inequality in the latter relation when p = 1/2.

If f(t,δ) > 0 for all t, with δ > 0 but arbitrarily small, then infx(t) > 0. Since

N(δ) > 0 a sufficient condition is d(t)≥ δe(t). But this can be improved by exploiting

the term N(δ)c(t) when np ≥−1, as seen by the following example.

Example 4.3. The condition infx(t) > 0 follows when p > 0 from

inf
d(t)
c(t)

>−∞, sup
e(t)
c(t)

<∞, (4.7)
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when p = 0 from

liminf
d(t)
c(t)

>−kn, sup
e(t)
c(t)

<∞, (4.8)

when −1<np < 0 from

liminf
d(t)
c(t)

≥ 0, sup
e(t)
c(t)

<∞, (4.9)

and when np =−1 from

liminf
d(t)
c(t)

≥ 0, limsup
e(t)
c(t)

< kn−1. (4.10)

The following sharper result also holds.

Example 4.4. When p = 0 the conclusion infx(t) > 0 follows from

liminf
c(t)kn+d(t)
c(t)+e(t) > 0. (4.11)

5. The case p = 0. Existence of f(t,0) requires p ≤ 0 and the condition fx ≤ 0 for

x near 0 requires p ≥ 0. Hence p = 0 is the only case in which both conditions hold.

Throughout this section we set p = 0, so the differential equation is

ẋ = c(t)x(kn−xn)+d(t)x−e(t)x2. (5.1)

Thus, f(t,x)= c(t)(kn−xn)+d(t)−e(t)x and

fx(t,x)=−c(t)nxn−1−e(t). (5.2)

We use the abbreviations

λ(t)= c(t)+e(t), f (t)= c(t)kn+d(t). (5.3)

Example 5.1. Suppose that the functions

Λ(t)=
∫ t

0
λ(τ)dτ, F(t)=

∫ t
0
f(τ)dτ, (5.4)

satisfy Λ(∞)=∞ and liminfF(t)/Λ(t)= 0. Then the solutions of (5.1) satisfy

infx(t)= 0 if n≥ 1, infx(t)= 0 or supx(t)=∞ if n< 1. (5.5)

The proof depends on the generalized VC condition, which in turn follows from

fx(t,ξ)≤−λ(t)γ(ξ), (5.6)

where γ(ξ) = min(1,nξn−1). We need γ(ξ) only for ξ in a value interval I for x(t).
Hence

n> 1, infx(t) > 0 �⇒ infγ(ξ) > 0,

n < 1, supx(t) <∞ �⇒ infγ(ξ) > 0.
(5.7)

Example 5.1 now follows from Theorem 2.5.
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The next example implies the opposite conclusion infx(t) > 0 and shows that the

conditions leading to Example 5.1 are in several respects sharp.

Example 5.2. Suppose that there are positive constants δ, µ such that

δ
∫ t
s
λ(τ)dτ ≤

∫ t
s
f (τ)dτ ≤ µ

∫ t
s
λ(τ)dτ (5.8)

holds for 0≤ s ≤ t. Then all solutions of (5.1) are bounded away from 0 and ∞.

The conditions (2.1) for (5.1) are equivalent to

∫ t
s

(
anc(t)+e(t)a)dt−A≤

∫ t
s
f (t)dt ≤

∫ t
s

(
bnc(t)+e(t)b)dt+B. (5.9)

We choose a > 0 small in the first and b large in the second. Since c(t) > 0 and

e(t) ≥ 0, the inequalities hold for some a,b > 0 if and only if (5.8) holds for some

positive constants δ, µ. Example 5.2 follows from Theorem 2.1.

Example 5.3. Assuming Λ(∞)=∞, let x(t) and y(t) be two solutions of (5.1) with

infy(t) > 0. Then limx(t)/y(t) = 1 if n > 1 and infx(t) > 0, or if n = 1, or if n < 1

and both x(t) and y(t) are bounded.

This follows from (5.6) and Theorem 2.4.
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