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The purpose of this note is to establish fixed point theorems for densifying mappings and
compact mappings which are contractive in metric spaces and to investigate the existence
of fixed points for a family of mappings in bounded metric spaces. The results of this note
generalize the results of Bailey (1966) and Liu (1994).
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1. Introduction and preliminaries. Let f be a self-mapping of a metric space (X,d),
N denote the positive integers set, and Ny = N U {0}. Contractive mappings in metric
spaces have been interested for many years, one of those is

d(fn(x,y)xlfn(x,y)y) <d(x,y) (1.1)

for all distinct x,y € X, where n(x,y) € N. Bailey [1] has investigated the existence
of fixed points for the contractive mapping (1.1) in compact metric spaces. Liu [4] first
introduced the definition of the family of mappings CISf, and showed fixed point the-
orems for CISy. In this note, we prove a few fixed point theorems for densifying and
compact mappings which satisfy (1.1) in complete metric spaces and metric spaces,
respectively. We also give an example to show that our results are the proper gener-
alizations of the result of Bailey [1]. On the other hand, we go on investigating the
existence of fixed points for CISy in bounded metric spaces, and our results extend
the result of Liu [4].
The following definitions were introduced by Bailey [1] and Nussbaum [5].

DEFINITION 1.1 (see [1]). For x,y € X, x is proximal to  under f provided that for
each & > 0 there exists n € N such that d(f"x, f"y) < &.If x and  are not proximal,
they are said to be distal.

DEFINITION 1.2 (see [5]). A nonempty subset M of X is said to be an attractor for
compact sets under f if (1) M is compact and f (M) < M, and (2) given any compact
set C < X and any open neighborhood U of M, there exists k € N such that f*(C) < U
for n > k.

For S € X, §(S) and S denote the diameter and the closure of S, respectively. For
A,B c X, 6(A,B) = sup{d(x,y) | x € A, y € B}. Following Furi and Vignoli [2], f
is said to be densifying if for every bounded subset A of X with «x(A) > 0, we have
x(f(A)) < x(A), where x(A) denotes the measure of noncompactness in the sense
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of Kuratowski. The mapping f is said to be compact if there exists a compact sub-
set Y of X such that f(X) < Y. It is well known that every continuous compact
mapping is a densifying mapping. Introduced by Liu [4], CISy = {h : X — X | for
every nonempty compact f-invariant subset A of h(A) € A}. Let O(x,f) = {f"x |
n € Ng} and O(x,y,f) = O(x,f) uO(y,f), for x,y € X, where f° is the iden-
tity mapping in X. The mapping f is said to have diminishing orbital diameters if
limy—o 6(O(f"x,f)) <6(0O(x,f)) forall x € X with 0 < (O (x, f)) < 0.

2. Main results

THEOREM 2.1. Let (X,d) be a complete metric space and f : X — X be a continuous
densifying mapping satisfying (1.1). Suppose that O (x, f) is bounded for some x, € X.
Then f has a unique fixed point in X.

PROOEF. Since f is densifying and

(O (x0,f)) =max{a(f(O(x0,f))),x(x0)} = x(f(O(x0,f))), 2.1)

it follows that & (O (xo,.f)) = 0. From the completeness of (X, d), we know that O (x, f)
is compact in X. We claim that xo and fxg are proximal under f.If f"xq = f"**1x, for
some n € N, then x( and fxg are proximal under f.If f"xy # f"*1x, for any n € N,
from (1.1) we infer that there exists a sequence {n;};cy C N such that

d(xo,fx0) > d(f™ x0, ™ x0)

2.2
o AU f1x0) > > A SN )

for all i € N. Suppose that each n; is chosen as the smallest positive integer in order
to satisfy (2.2). Then for any k € N there exists n; € N such that n;_; < k <n;. It
follows from (2.2) that

d(kaQ,fk+1X0) > d(fni’l)Co,fni’lJrlXo) > d(f""X(),fnﬁlXo). (2.3)

Since O (xy, f) is compact and f is continuous, we may (by selecting a subsequence, if
necessary) assume that fmixo — u and f"i*1xq — fu for some u € X as i — . Thus
d(u, fu) = lim;_.d(f"xg, f"1xy). Now assume that xo and fx, are distal. Then
there exists &y > 0 satisfying d(f™xo, f™"1xo) = & for all m € N. It is easy to see
that n; + k < ny for every k. In view of (2.3) we get that

d(fku,fk+lu) = hmd(f””kxo,f"”k“xo)
1—00
= limd(f™*xo, f™144 xo) (2.4)
=d(u, fu),

which is a contradiction to (1.1). Hence x¢ and fx( are proximal under f.
Next, we assert that f has a fixed point in X. Without loss of generality, we assume
that f"xo # f"1xo, for all n € Ny. Choose {n;}jen, C N such that nj <mnj.; and

d(f™xo, f+ xg) < min{%,d(f”i—' xo,fnj_1+1x0)} (2.5)
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for all j € N, where ny = 0. It follows from the compactness of O(xy,f) and the
continuity of f that there exists w € X and the subsequence {f™ixg}ien such that
FYixg —w and fi " xy — fw as i — 0. Replacing j by j; in (2.5) and letting i — o,
we deduce that d(w, fw) < min{0,d(w, fw)} = 0. That is, w = fw.

To prove the uniqueness of the fixed point of f, we assume that f has another fixed
point b € X with b + w. From (1.1) we infer that

d(w,b) = d(frwhw, Frwbpy < d(w,b), (2.6)

which is impossible. This completes the proof. a
The next theorem follows from Theorem 2.1.

THEOREM 2.2. Let (X,d) be a metric space and f : X — X be a continuous and
compact mapping satisfying (1.1). Then f has a unique fixed point in X.

REMARK 2.3. The following example shows that Theorems 2.1 and 2.2 are the
proper generalizations of [1, Corollary 2].

EXAMPLE 2.4. Let X = [0, ) with the usual metric and define f: X — X by fx =
|sinx| for all x € X. Choose n(x,y) =1 for all x,y € X with 0 < |[x —y| <2 and
n(x,y) = 2 for all x,y € X with |x —y| > 2. It is easy to verify that the conditions
of Theorems 2.1 and 2.2 are satisfied and f has a unique fixed point 0 € X. But [1,
Corollary 2] is not applicable since X is not compact.

THEOREM 2.5. Let (X,d) be a bounded complete metric space and let f : X — X be
a continuous mapping. Suppose that there exist p,q,v € N such that f" is densifying
and

d(fPx,f1) < 5({Uncas; O(z,h) : 2 € O(x,7, f)}) 2.7)

for all x,y € X with f¥Px + f2y. Then, we have the following:
(i) f has a unique fixed point v € X such that f"x — v for every x € X;

(ii) f has diminishing orbital diameters;

(ili) for every nonempty compact f-invariant subsetY of X, Nnpeny f™(Y) = {v};

(iv) there exists a bounded complete metric d* on X which is equivalent to d such
that f is contractive with respect to d*, that is, d* (fx, fy) < d*(x,y) for all
x,y € X withx + y;

(v) CISy has a unique fixed point v € X.

PROOF. Let x be an arbitrary element in X and A = O(x, f). Then,
«(A) =max {x({x,fx,.... " 'x}), x(f7(0O(x, /)))} = x(fTA). (2.8)

Since f" is densifying, A is precompact. It follows from the completeness of (X,d)
that A is compact. By the continuity of f, we conclude that f(A) < f(A) < A. Thus
A is f-invariant. Set D = Npen f™(A). It is well known that D is a nonempty compact
subset of A and f(D) = D. Hence f?(D) = D, f4(D) = D. We now assert that D is a
singleton. Otherwise there exist two distinct points u,v € D such that (D) = d(u,v).
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Since f?(D) = D, f1(D) = D, there exist x,y € D such that f?x =u, f4y = v and
fPx + fay. Obviously, 6({Uhec15f0(z,h) :z€0(x,y,f)}) €D. By (2.7) we have

0<6(D)=d(fPx,fl) < 6({uhec15f0(z,h) 1z€e0(x,v,f)}) <8(D), (2.9)

which is a contradiction. So D is a singleton, say, D = {v}. Therefore v is a fixed point
of f.

Next we prove that v is the unique fixed point of f. Otherwise b (+ v) is another
fixed point of f. From (2.7) we get that

0=d(b,v) <d(fPb,f) < 5({Uhec15f0(z,h) :z€O0(b,v,N}) <d(b,v), (2.10)

which is impossible. Hence v is a unique fixed point of f. Since f"x,v € f"(A),
d(f*x,v) < d(f"(A)) - 0 as n — . That is, f"x — v as n — . Since (X,d) is
bounded, for each x € X — {v}, we have 0 < §(O(x, f)) < . In the light of (i), we
get that for arbitrary € > O there exists k € N such that d(f"x,v) < €/3 for n > k.
Consequently,

d(fix,fjx)sd(f"x,v)+d(fjx,v)<% (2.11)

for all i, j > k. It follows that

5(0(fx, f)) = sup {d(fix, fix) i, > n} < % <e 2.12)
for n > k. This means that lim,,_. 6 (O(f"x,f)) = 0, so f has diminishing orbital
diameters.

Similarly we can show that for every nonempty compact f-invariant subset Y of X,
ﬁneNgfn(Y) ={v}hL
Now, we prove that (iv) holds. Let C be any nonempty compact subset of X. Then

& (Uneng f™(€)) = max {a( U326 f(O)), a(fT (Uneny ()}

= (" (Uneng £1(O))). (2.13)
Let Y = Upen, f*(C). Since f” is densifying and (X,d) is complete, Y is compact
and f(Y) € f(Unen, f™(C)) c Y. It follows from (iii) that Nyen, f™(Y) = {v}. This
implies that 6(f"™(Y)) — 0 as n — o. For every open neighborhood U of v, there
exists an open ball B(v,¢) = {x | x € X and d(x,v) < €} such that B(v,¢) < U. Since
limy_. 6(f"™(Y)) = 0, there exists k € N such that 6 (f"(Y)) < & for n > k. It follows
that d(x,v) <6(f"(Y)) <& for all x € fY. Thatis, f*(Y) < B(v,¢). Hence f"(C) <
f™(Y) € B(v,e) € U for n > k. This shows that {v} is an attractor for compact sets
under f. Thus (iv) follows from [3, Theorem and Remark 1].

Finally we conclude that (v) holds. For any h € CISy, it follows from (i) and the def-
inition of CISy that h({v}) < {v}. Thatis, hv = v. Hence v is a fixed point of CISy.
Note that f € CISy. By (i), v is the only fixed point of CIS¢. This completes the proof.

O
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REMARK 2.6. By taking p = g in Theorem 2.5, we get the result which improves [4,
Theorem 2.1].

THEOREM 2.7. Let (X,d) be a bounded complete metric space and let f,g: X — X
be continuous and commuting mappings. Suppose that there exist v,s,p,q € N such
that f" and g° are densifying and

A(fPx,9%y) <6({Unecs, O(a,h):a € O(x, )} U{uieas, O(b,t) :b € O(y,9)})
(2.14)
for all x,y € X with f¥x + g?y. Then, we have the following:
(i) f and g have a unique common fixed point v € X such that f"*x — v, g"x — v,
for every x € X;
(i) both f and g have diminishing orbital diameters;
(iii) for every nonempty compact f-invariant and g-invariant subset Y of X,
NnengS™M(Y) = {v} and Npen, g™ (Y) = {v};
(iv) there exist bounded complete metrics d* and d** on X which are equivalent to
d such that f and g are contractive with respect to d* and d**, respectively,
that is d*(fx,fy) <d*(x,y) and d**(gx,gy) < d**(x,y) for all x,y € X
with x + y;
(v) CISf and CIS,; have a unique common fixed point v € X.

PROOF. Forx,y € X,setA=0(x,f),B=0(y,g),C=Nnenf"(A),D = Npenf(B).
As is the proof of Theorem 2.5 we get that A, B are nonempty compact and f-invariant,
g-invariant subsets of X with f(C) = C, g(D) = D, respectively. Hence f?(C) = C,
g1(D) = D. Suppose that 6(C,D) > 0. There exist u € C, w € D such that 6(C,D) =
d(u,w) > 0. From f?(C) = C, g?(D) = D, there exist x € C, v € D such that f?(x) =
u, g4(y) = w. Obviously, {Upecis,O(a,h) :a € O(x, f)} = C and {Uiecis, O(b,t) 1 b €
O(y,g)} < D. According to (2.14) we get

0<8(C,D)=d(fPx,g%y)

<6({Uneas; O(a,h) :a € 0(x, f)} U {Uteas, O(b,t) :B€ O(y,9)}) (2.15)
<6(C,D),

which is a contradiction. Hence 6 (C,D) = 0, thatis C = D = {v} for some v € X. Then
v is a common fixed point of f and g.
Now, we prove that f and g have the only common fixed point v € X. Otherwise u
is a second common fixed point of f and g. Using (2.14), we have
0<d(u,v)=d(fu,gv)
<6({Unecis; O(u,h) za € O(u, fH}U{Uieas, O(v, 1) : b €0(v,9)})  (2.16)
<o6(u,v),

which is impossible. The rest of the proof goes in a similar fashion as that of Theorem
2.5, so we omit it. This completes the proof. a

REMARK 2.8. By taking f = g and p = g in Theorem 2.7, we obtain the result which
generalizes Theorem 2.1 of Liu [4].
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