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We obtain necessary and (different) sufficient conditions for a series summable |N̄,pn|k,
1< k≤ s <∞, to imply that the series is summable |T |s , where (N̄,pn) is a weighted mean
matrix and T is a lower triangular matrix. As corollaries of this result, we obtain several
inclusion theorems.
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Let
∑
an be a given series with partial sums sn, (C,α) the Césaro matrix of order α.

If σαn denotes the nth term of the (C,α)-transform of {sn} then, from Flett [4],
∑
an

is said to be summable |C,α|k, k≥ 1 if

∞∑
n=1

nk−1
∣∣σαn −σαn−1

∣∣k <∞. (1)

For any sequence {un}, the forward difference operator ∆ is defined by ∆un = un−
un+1.

An appropriate extension of (1) to arbitrary lower triangular matrices T is

∞∑
n=1

nk−1
∣∣∆tn−1

∣∣k <∞, (2)

where

tn :=
n∑
k=0

tnksk. (3)

Such an extension is used, for example, in Bor [2]. But Sarigöl, Sulaiman, and Bor

and Thorpe [3] make the following extension of (1).

They define a series
∑
an to be summable |N̄,pn|k, k≥ 1 if

∞∑
n=1

(
Pn
pn

)k−1∣∣∆Zn−1

∣∣k <∞, (4)

where Zn denotes the nth term of the weighted mean transform of {sn}; that is,

Zn = 1
Pn

n∑
k=0

pksk. (5)

Apparently they have interpreted the n in (1) to represent the reciprocal of the nth

diagonal term of the matrix (N̄,pn). (See, e.g., Sarigöl [6], where this is explicitly the

case.)
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Unfortunately, this interpretation cannot be correct. For if it were, then, since the

nth diagonal entry of (C,α) is O(n−α), (1) would take the form

∞∑
n=1

(
nα
)(k−1)∣∣σαn −σαn−1

∣∣k <∞. (6)

However, Flett stays with (1). Thus (2) is an appropriate extension of (1) to lower

triangular matrices.

Given any lower triangular matrix T , we can associate the matrices T̄ and T̂ with

entries defined by

t̄nk =
n∑
i=k
tni, t̂nk = t̄nk− t̄n−1,k, (7)

respectively.

Thus, from (3),

tn =
n∑
k=0

tnksk =
n∑
k=0

tnk
k∑
i=0

ai =
n∑
i=0

ai
n∑
k=i
tnk =

n∑
i=0

t̄nkai,

Yn := tn−tn−1 =
n∑
i=0

t̄niai−
n−1∑
i=0

t̄n−1,iai =
n∑
i=0

t̂niai, since t̄n−1,n = 0.

(8)

For a weighted mean matrix A= (N̄,pn),

ānk =
n∑
i=k

pk
Pn
= 1
Pn

(
Pn−Pk−1

)= 1− Pk−1

Pn
. (9)

Thus

ânk = ānk− ān−1,k = 1− Pk−1

Pn
−1+ Pk−1

Pn−1
= pnPk−1

PnPn−1
, (10)

so that, from (5),

Xn :=∆Zn−1 = pn
PnPn−1

n−1∑
k=0

Pk−1ak = pn
PnPn−1

n−1∑
ν=1

Pν−1aν, (11)

since P−1 = 0.

We will always assume that {pn} is a positive sequence with Pn→∞. Also, ∆ν t̂nν :=
t̂nν− t̂n,ν+1.

Theorem 1. Let 1< k≤ s <∞, {pn} satisfying

∞∑
n=ν+1

nk−1

(
pn

PnPn−1

)k
=O

(
1

Pkν

)
. (12)

Let T be a lower triangular matrix. Then, the necessary conditions for
∑
an summable

|N̄,pn|k to imply
∑
an is summable |T |s are

(i) Pν |tνν |/pν =O(ν1/s−1/k);
(ii)

∑∞
n=ν+1ns−1|∆ν t̂nν |s =O(νs−s/k(pν/Pν)s);

(iii)
∑∞
n=ν+1ns−1|t̂n,ν+1|s =O(1).
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Proof. We are given that

∞∑
n=1

ns−1
∣∣Yn∣∣s <∞, (13)

whenever
∞∑
n=1

nk−1
∣∣Xn∣∣k <∞. (14)

Now, the space of sequences {an} satisfying (14) is a Banach space if normed by

‖X‖ =
(∣∣X0

∣∣k+ ∞∑
n=1

nk−1
∣∣Xn∣∣k

)1/k

. (15)

We also consider the space of those sequences {Yn} that satisfy (13). This is also a

BK-space with respect to the norm

‖Y‖ =
(∣∣Y0

∣∣k+ ∞∑
n=1

ns−1
∣∣Yn∣∣s

)1/s

. (16)

Observe that (8) transforms the space of sequences satisfying (14) into the space

of sequences satisfying (13). Applying the Banach-Steinhaus theorem, there exists a

constant K > 0 such that

‖Y‖ ≤K‖X‖. (17)

Applying (11) and (8) to aν = eν −eν+1, where eν is the νth coordinate vector, we

have, respectively,

Xn =




0, if n< ν,
pν
Pν
, if n= ν,

− pνpn
PnPn−1

, if n> ν,

Yn =




0, if n< ν,

t̂nν , if n= ν,
∆ν t̂nν , if n> ν.

(18)

By (15) and (16), it follows that

‖X‖ =

νk−1

(
pν
Pν

)k
+

∞∑
n=ν+1

nk−1

(
pνpn
PnPn−1

)k


1/k

, (19)

‖Y‖ =
{
νs−1

∣∣tνν∣∣s+
∞∑

n=ν+1

ns−1
∣∣∆ν t̂nν∣∣s

}1/s

, (20)

recalling that t̂νν = t̄νν = tνν .
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Using (19) and (20) in (17), along with (12), it follows that

νs−1
∣∣tνν∣∣s+

∞∑
n=ν+1

ns−1
∣∣∆t̂nν∣∣s ≤Ks


νk−1

(
pν
Pν

)k
+

∞∑
n=ν+1

nk−1

(
pνpn
PnPn−1

)k
s/k

≤Ks

νk−1

(
pν
Pν

)k
+O(1)

(
pν
Pν

)k
s/k

=O
((

pν
Pν

)k
νk−1

)s/k
.

(21)

The above inequality will be true if and only if each term on the left-hand side is

O((pν/Pν)kνk−1)s/k.
Taking the first term,

νs−1
∣∣tνν∣∣s =O



(
pν
Pν

)k
νk−1



s/k

,

∣∣tνν∣∣s =O


(
pν
Pν

)s
ν1−s/k


,

∣∣tνν∣∣=O


(
pν
Pν

)s
ν1−s/k




1/s

=O
((

pν
Pν

)
ν1/s−1/k

)
,

(22)

which verifies that (i) is necessary.

Using the second term, we have

∞∑
n=ν+1

ns−1
∣∣∆t̂nν∣∣s =O



(
pν
Pν

)k
νk−1



s/k

=O


(
pν
Pν

)s
νs−s/k


, (23)

which is condition (ii).

If we now apply (11) and (8) to aν = eν+1, we have, respectively,

Xn =




0, if n≤ ν,
Pνpn
PnPn−1

, if n> ν,

Yn =

0, if n≤ ν,
t̂n,ν+1, if n> ν.

(24)
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The corresponding norms are

‖X‖ =



∞∑
n=ν+1

nk−1

(
Pνpn
PnPn−1

)k


1/k

,

‖Y‖ =



∞∑
n=ν+1

ns−1
∣∣t̂n,ν+1

∣∣s



1/s

.

(25)

Applying (17) and (12),

∞∑
n=ν+1

ns−1
∣∣t̂n,ν+1

∣∣s ≤Ks



∞∑
n=ν+1

nk−1

(
Pνpn
PnPn−1

)k

s/k

, (26)

which is condition (iii).

Corollary 2. Let T be a lower triangular matrix, {pn} satisfying (12). Then the

necessary conditions for
∑
an summable |N̄,pn|k to imply

∑
an summable |T |k are

(i) Pν |tνν |/pν =O(1);
(ii)

∑∞
n=ν+1nk−1|∆ν t̂nν |k =O(νk−1(pν/Pν)k);

(iii)
∑∞
n=ν+1nk−1|t̂n,ν+1|k =O(1).

To prove Corollary 2, simply set s = k in Theorem 1.

A lower triangular matrix T is called a triangle if each tnn ≠ 0.

Theorem 3. Let 1 < k ≤ s <∞. Let T be a triangle with bounded entries such that

T and {pn} satisfy the following:

(i) tνν =O((pν/Pν)ν1/s−1/k);
(ii) (n|Xn|)s−k =O(1);

(iii)
∑n−1
ν=1 |∆ν t̂nν | =O(|tnn|);

(iv)
∑∞
n=ν+1(n|tnn|)s−1|∆ν t̂nν | =O(νs−1|tνν |s);

(v)
∑n−1
ν=1 |tνν ||t̂n,ν+1| =O(|tnn|);

(vi)
∑∞
n=ν+1(n|tnn|)s−1|t̂n,ν+1| =O(ν|tνν |)s−1.

Then
∑
an is N̄,pn|k.

Proof. Solving (11) for {an} and substituting into (8) give

Yn =
n∑
ν=1

t̂nν

(
XνPν
pν

− Xν−1Pν−2

pν−1

)

=
n∑
ν=1

t̂nν
XνPν
pν

−
n∑
ν=1

t̂nν
Xν−1Pν−2

pν−1

=
n∑
ν=1

t̂nν
XνPν
pν

−
n−1∑
ν=0

t̂n,ν+1
XνPν−1

pν

= t̂nnXnPn
pn

+
n−1∑
ν=1

(
t̂nνPν− t̂n,ν+1Pν−1

)Xν
pν
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= tnnPnXn
pn

+
n−1∑
ν=1

[
Pν
(
t̂nν− t̂n,ν+1

)+ t̂n,ν+1
(
Pν−Pν−1

)]Xν
pν

= PntnnXn
pn

+
n−1∑
ν=1

(
Pν
pν
∆ν t̂nν+ t̂n,ν+1

)
Xν

= Tn1+Tn2+Tn3.

(27)

From Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

ns−1
∣∣Tni∣∣s <∞, i= 1,2,3. (28)

Using condition (i) of Theorem 3,

J1 :=
∞∑
n=1

ns−1
∣∣Tn1

∣∣s = ∞∑
n=1

ns−1

∣∣∣∣∣ tnnPnpn
Xn

∣∣∣∣∣
s

=O(1)
∞∑
n=1

ns−1(n1/s−1/k)s∣∣Xn∣∣s

=O(1)
∞∑
n=1

nk−1
∣∣Xn∣∣k(ns−s/k−k+1

∣∣Xn∣∣s−k).

(29)

But

ns−s/k−k+1
∣∣Xn∣∣s−k = (n1−1/k∣∣Xn∣∣)s−k =O((n∣∣Xn∣∣)s−k)=O(1), (30)

from (ii) of Theorem 3.

Since
∑
an is summable, |N̄,pn|k, J1 =O(1).

Using Hölder’s inequality and conditions (i), (ii), (iii), and (iv) of Theorem 3.

J2 :=
∞∑
n=1

ns−1
∣∣Tn2

∣∣s = ∞∑
n=1

ns−1

∣∣∣∣∣
n−1∑
ν=1

(
Pν
pν

)(
∆ν t̂nν

)
Xν

∣∣∣∣∣
s

=O(1)
∞∑
n=1

ns−1

(n−1∑
ν=1

ν1/s−1/k∣∣tνν∣∣−1∣∣∆ν t̂nν∣∣∣∣Xν∣∣
)s

=O(1)
∞∑
n=1

ns−1

(n−1∑
ν=1

ν1−s/k∣∣tνν∣∣−s∣∣∆ν t̂nν∣∣∣∣Xν∣∣s
)
×
(n−1∑
ν=1

∣∣∆ν t̂nν∣∣
)s−1

=O(1)
∞∑
n=1

(
n
∣∣tnn∣∣)s−1

n−1∑
ν=1

ν1−s/k∣∣tνν∣∣−s∣∣∆ν t̂nν∣∣∣∣Xν∣∣s

=O(1)
∞∑
ν=1

ν1−s/k∣∣tνν∣∣−s∣∣Xν∣∣s
∞∑

n=ν+1

(
n
∣∣tnn∣∣)s−1∣∣∆ν t̂nν∣∣
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=O(1)
∞∑
ν=1

ν1−s/k∣∣tνν∣∣−s∣∣Xν∣∣sνs−1
∣∣tνν∣∣s

=O(1)
∞∑
ν=1

νs−s/k
∣∣Xν∣∣s

=O(1)
∞∑
ν=1

νk−1
∣∣Xν∣∣k(νs−s/k−k+1

∣∣Xν∣∣s−k)

=O(1)
∞∑
ν=1

νk−1
∣∣Xν∣∣k =O(1).

(31)

By Hölder’s inequality and conditions (v), (vi), and (iii) of Theorem 3, we have

J3 :=
∞∑
n=1

ns−1
∣∣Tn3

∣∣s = ∞∑
n=1

ns−1

∣∣∣∣∣
n−1∑
ν=1

t̂n,ν+1Xν

∣∣∣∣∣
s

≤
∞∑
n=1

ns−1

(n−1∑
ν=1

∣∣t̂n,ν+1

∣∣∣∣Xν∣∣
)s

≤
∞∑
n=1

ns−1

(n−1∑
ν=1

∣∣tνν∣∣1−s∣∣t̂n,ν+1

∣∣∣∣Xν∣∣s
)

×
(n−1∑
ν=1

∣∣tνν∣∣∣∣t̂n,ν+1

∣∣)s−1

=O(1)
∞∑
n=1

(
n
∣∣tnn∣∣)s−1

n−1∑
ν=1

∣∣tνν∣∣1−s∣∣t̂n,ν+1

∣∣∣∣Xν∣∣s

=O(1)
∞∑
ν=1

∣∣tνν∣∣1−s∣∣Xν∣∣s
∞∑

n=ν+1

(
n
∣∣tnn∣∣)s−1∣∣t̂n,ν+1

∣∣

=O(1)
∞∑
ν=1

∣∣tνν∣∣1−s∣∣Xν∣∣s(ν∣∣tνν∣∣)s−1

=O(1)
∞∑
ν=1

νs−1
∣∣Xν∣∣s

=O(1)
∞∑
ν=1

νk−1
∣∣Xν∣∣k(ν∣∣Xν∣∣)s−k

=O(1)
∞∑
ν=1

νk−1
∣∣Xν∣∣k =O(1).

(32)

Corollary 4 (see [5]). Let T be a nonnegative lower triangular matrix, {pn} a

positive sequence satisfying

(i) tni ≥ tn+1,i, n≥ i, i= 0,1,2, . . .;
(ii) Pntnn =O(pn);

(iii) t̄n0 = t̄n−1,0, n= 1,2, . . .;
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(iv)
∑n−1
i=1 |tii||t̂n,i+1| =O(tnn);

(v)
∑∞
n=i+1(ntnn)k−1|∆it̂ni| =O(ik−1tkii);

(vi)
∑∞
n=i+1(ntnn)k−1|t̂n,i+1| =O((itii)k−1).

Then
∑
an summable |N̄,pn|k implies

∑
an summable |T |k, k≥ 1.

Proof. Since s = k and T is nonnegative, condition (ii) of Theorem 3 is automat-

ically satisfied, and conditions (ii), (iv), (v), and (vi) of Corollary 4 are equivalent to

conditions (i), (v), (iv), and (vi) of Theorem 3, respectively

∆ν t̂nν = t̂nν− t̂n,ν+1 = t̄nν− t̄n−1,ν− t̄n,ν+1+ t̄n−1,ν+1 = tnν−tn−1,ν . (33)

Therefore, using conditions (i) and (iii) of Corollary 4,

n−1∑
ν=1

∣∣∆ν t̂nν∣∣=
n−1∑
ν=1

(
tn−1,ν−tnν

)= 1−tn−1,0−1+tnn+tn0 ≤ tnn, (34)

and condition (iii) of Theorem 3 is satisfied.

Remark 5. For 1 < k ≤ s < ∞, necessary and sufficient conditions for a triangle

A : �k → �s are known only for factorable matrices (see Bennett [1]), which include

weighted mean matrices. Therefore, we should not expect to obtain a set of necessary

and sufficient conditions when an arbitrary triangle is involved.

However, necessary and sufficient conditions for a matrix A : �→ �s , 1≤ s <∞ are

known. The following result comes from Theorem 2.1 of Rhoades and Savaş [5] by

setting each λn = 1.

Theorem 6. Let T be a lower triangular matrix. Then
∑
an summable |N̄,pn|k

implies
∑
an summable |T |s , s ≥ 1 if and only if

(i) Pν |tνν |/pν =O(ν1/s−1),
(ii)

∑∞
n=ν+1ns−1|∆ν t̂nν |s =O((pν/Pν)s),

(iii)
∑∞
n=ν+1ns−1|t̂n,ν+1|s =O(1).

Remark 7. In [5], it is assumed that T has nonnegative entries and row sums one,

but these restrictions are not used in the proofs.

Finally, we state necessary and sufficient conditions when k= s = 1.

Theorem 8. The series
∑
an summable |N̄,pn| implies

∑
an summable T if and

only if

(i) Pν |tνν |/pν =O(1);
(ii)

∑∞
n=ν+1 |∆ν t̂nν | =O(pν/Pν);

(iii)
∑∞
n=ν+1 |t̂n,ν+1| =O(1).

Proof. Note that, with k= 1, (12) is automatically satisfied. Therefore, the neces-

sity of the conditions follows from Theorem 1.

To prove the conditions sufficient, use [5, Corollary 4.1] by setting each λn = 1.

Corollary 9.

∑
an summable |C,1| implies

∑
an |N̄,qn| if and only if

(i) nqn/Qn =O(1).
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Proof. With each pn = 1, T = (N̄,qn), condition (i) of Theorem 8 reduces to con-

dition (i) of Corollary 9.

Using (33),

∞∑
n=ν+1

∣∣∆ν t̂nν∣∣=
∞∑

n=ν+1

∣∣tnν−tn−1,ν
∣∣= ∞∑

n=ν+1

∣∣∣∣∣pνPn −
pν
Pn−1

∣∣∣∣∣
= pν

∞∑
n=ν+1

pn
PnPn−1

= pν
Pν
,

(35)

and condition (ii) of Theorem 8 is satisfied. Since (N̄,pn) has row sums one,

t̂n,ν+1 = t̄n,ν+1− t̄n−1,ν+1 =
n∑

i=ν+1

tni−
n∑

i=ν+1

tn−1,i

= 1−
ν∑
i=0

tni−1+
ν∑
i=0

tn−1,i

=
ν∑
i=0

(
tn−1,i−tni

)= ν∑
i=0

(
pi
Pn−1

− pi
Pn

)

= pn
PnPn−1

ν∑
i=0

pi = pnPν
PnPn−1

.

(36)

Therefore

∞∑
n=ν+1

∣∣t̂n,ν+1

∣∣= Pν
∞∑

n=ν+1

pn
PnPn−1

= 1, (37)

and condition (iii) of Theorem 8 is satisfied.

Corollary 10. The series
∑
an summable |N̄,pn|k implies

∑
an summable |C,1|k

if and only if

(i) Pn/(npn)=O(1).
Proof. Using T = (C,1) in Theorem 8, condition (i) of Theorem 8 reduces to con-

dition (i) of Corollary 10.

From (33) and (i) of Corollary 10,

∞∑
n=ν+1

∣∣∆ν t̂nν∣∣=
∞∑

n=ν+1

∣∣tn−1,ν−tnν
∣∣= ∞∑

n=ν+1

(
1
n
− 1
n+1

)

= 1
ν+1

= Pν
νpν

(
ν

ν+1

)(
pν
Pν

)
=O

(
pν
Pν

)
,

(38)

and condition (ii) of Theorem 8 is satisfied.
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Using (36),

∞∑
n=ν+1

∣∣t̂n,ν+1

∣∣= ∞∑
n=ν+1

∣∣∣∣∣
ν∑
i=0

(
tn−1,i−tni

)∣∣∣∣∣
=

∞∑
n=ν+1

∣∣∣∣∣
ν∑
i=0

(
1
n
− 1
n+1

)∣∣∣∣∣
=

∞∑
n=ν+1

(
1
n
− 1
n+1

)
(ν+1)= (ν+1)

(
1

ν+1

)
= 1,

(39)

and condition (iii) of Theorem 8 is satisfied.

Combining Corollaries 9 and 10, we have the following corollary.

Corollary 11. |N̄,pn| and |C,1| are equivalent if and only if

(i) npn/Pn =O(1);
(ii) Pn/(npn)=O(1).
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