
IJMMS 32:5 (2002) 285–292
PII. S0161171202201210

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

RANDOM SUBGRAPHS OF CERTAIN GRAPH POWERS

LANE CLARK

Received 4 March 2002

We determine the limiting probability that a random subgraph of the Cartesian power Kna
or of Kna,a is connected.

2000 Mathematics Subject Classification: 05C80.

1. Introduction. A finite, simple, undirected graph G has vertex set V(G) and edge

set E(G). The order of G is |V(G)| and the size e(G) of G is |E(G)|. For S ⊆ V(G), let

G[S] denote the subgraph of G induced by S and G[S,V(G)−S] denote the spanning

subgraph of G with edges xy where x ∈ S and y ∈ V(G)− S. For U ⊆ V(G), let

NG(U) = {y ∈ V(G) : ∃xy ∈ E(G) with x ∈ U} and ÑG(U) = NG(U)∪U . Of course,

NG(v) = NG({v}) and the degree dG(v) of v in G is |NG(v)| for v ∈ V(G). For S ⊆
V(G), let bG(S) = |{xy ∈ E(G) : x ∈ S, y ∈ V(G)−S}| and bG(s) =min{bG(S) : S ⊆
V(G), |S| = s} (0≤ s ≤ |V(G)|).

The Cartesian product G�H of graphs G and H is the graph with vertex set V(G)×
V(H)where vertices (g1,h1) and (g2,h2) are adjacent if and only if g1 = g2 andh1h2 ∈
E(H), or, h1 = h2 and g1g2 ∈ E(G). For a graphG, defineG1 =G andGn =Gn−1�G for

n≥ 2. We use the following recent isoperimetric result of Tillich [6]. Here Ka denotes

the complete graph of order a and Ka,a denotes the complete bipartite graph with

parts of order a.

Lemma 1.1 (see [6]). For G =Kna with a≥ 2 and n≥ 1,

bG(s)≥ (a−1)s
(
n− loga s

)
for 1≤ s ≤ an (1.1)

and, for G =Kna,a with a≥ 1 and n≥ 1,

bG(s)≥ as
(
n− log2a s

)
for 1≤ s ≤ (2a)n. (1.2)

Let G be a graph of order n and size N. The probability space �(G,p) consists of

all spanning subgraphs H of G where edges of G are chosen forH independently with

probability 0≤ p = p(n)≤ 1, so that, Pr(H)= pe(H)qN−e(H) where q = q(n)= 1−p(n).
(We denote the random graphs in �(G,p) generally by Gp .)

In this paper, we determine the limiting probability that Gp is connected for G =Kna
and Kna,a. Specifically, we show that

lim
n→∞Pr

(
Gp ∈ �

(
Kna ,p

)
is connected

)= e−λ (1.3)

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


286 LANE CLARK

for fixed a ≥ 2 where p = p(n) = 1− q(n) with q(n) = [(λ(n))1/n/a]1/(a−1) and

limn→∞λ(n)= λ∈ (0,∞). In addition, we show that

lim
n→∞Pr

(
Gp ∈ �

(
Kna,a,p

)
is connected

)= e−λ (1.4)

for fixed a ≥ 1 where p = p(n) = 1 − q(n) with q(n) = [(λ(n))1/n/2a]1/a and

limn→∞λ(n) = λ ∈ (0,∞). Our first result includes those of Burtin [3], Erdös and

Spencer [5], and Bollobás [1] as a special case (a= 2). Our approach is similar to [1].

The r th factorial moment of a random variable (r.v.) X is denoted by Er (X). We
write Xn

d
�������→ X when the sequence Xn of r.v.s converges in distribution to the r.v. X.

Also, we write Pλ for a r.v. having Poisson distribution with mean λ.

Let [n]= {1, . . . ,n} when n is a positive integer. For a real number x and a positive

integer n, let (x)0 = 1 and (x)n = (x)···(x−n+ 1). The cardinality of a set S is

denoted by |S|. The greatest (least) integer at most (least) the real number x is denoted

by 	x
 (�x�). We write ≤ for an inequality that holds absolutely for the parameters

considered and
∗≤ for an inequality that holds for the parameters considered and all

sufficiently large n. We refer the reader to Bollobás [2] for random graph theory and

to Durrett [4] for probability.

2. Results. We use the following result from [1].

Lemma 2.1 (see [1]). If G is a simple graph having order n ≥ 1, maximum degree

∆(G) ≤ ∆, average degree d = d(G) = 2e(G)/n, and ∆+1 < u < n−∆−1, then there

exists a u-set U ⊆ V(G) with

∣∣ÑG(U)∣∣≥nd∆
{

1−exp
(
− u(∆+1)

n

)}
. (2.1)

Assume n ≥ 2∆+4, since the result is vacuously true otherwise, and ∆ > 0 (the right-

hand side is defined to be 0 for ∆= 0).

We first consider G = Kna with V(G) = [a]n for fixed a ≥ 2 and for n ≥ 3. Note

that V(G) is totally ordered lexicographically which naturally extends to u-subsets of

V(G). In Lemma 2.2 and Theorem 2.5, λ(n) > 0 for all n.

Lemma 2.2. For fixed a ≥ 2, q = q(n) = [(λ(n))1/n/a]1/(a−1) where limn→∞λ(n) =
λ∈ (0,∞), and p = p(n)= 1−q(n), we have

lim
n→∞Pr

(
Gp ∈ �

(
Kna ,p

)
has no isolated vertices

)= e−λ. (2.2)

Proof. Recall that G = Kna . Let Xn(Gp) denote the number of isolated vertices in

Gp . Fix r ∈ P and let �r denote the set of r -tuples of V with distinct coordinates; �r =
{(v1, . . . ,vr ) ∈ �r : e(G[{v1, . . . ,vr}]) ≠ 0} and �r = �r −�r = {(v1, . . . ,vr ) ∈ �r :

e(G[{v1, . . . ,vr}]) = 0}. Then |�r | ≤ (an)r−1ran ≤ an(r−1)ran and |�r | = (an)r −
|�r |

∗≥ anre−r2/an−an(r−1)ran. Observe that the number of edges in G incident with

{v1, . . . ,vr} is at least (a−1)r(n−r) for all (v1, . . . ,vr )∈�r .
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First,

0≤
∑

(v1,...,vr )∈�r

Pr
(
dGp

(
v1
)= ··· = dGp(vr )= 0

)≤ ∣∣�r
∣∣q(a−1)r(n−r)

≤ an(r−1)ran
(
λ(n)

)r−r2/n

ar(n−r)
=
(
λ(n)

)r−r2/nran
an−r2 .

(2.3)

Next, ∑
(v1,...,vr )∈�r

Pr
(
dGp

(
v1
)= ··· = dGp(vr )= 0

)= ∣∣�r
∣∣q(a−1)nr

∗≥ [anre−r2/an−an(r−1)ran
]λr (n)
anr

= λr (n)e−r2/an− λ
r (n)ran
an

(2.4)

while, ∑
(v1,...,vr )∈�r

Pr
(
dGp

(
v1
)= ··· = dGp(vr )= 0

)≤ anrq(a−1)nr = λr (n). (2.5)

Hence,

λr (n)e−r
2/an− λ

r (n)ran
an

∗≤ Er
(
Xn
)≤ λr (n)+ (λ(n))r−r2/nran

an−r2 (2.6)

so that,

lim
n→∞Er

(
Xn
)= λr (2.7)

and Xn
d
�������→ Pλ (see [4]).

Lemma 2.3. For fixed a ≥ 2, q = q(n) = [(lnn)1/n/a]1/(a−1), and p = p(n) = 1−
q(n), we have

Pr
(
Gp ∈ �

(
Kna ,p

)
has a component of order s with 2≤ s ≤ an/2)= o(1) as n �→∞.

(2.8)

Proof. Recall that G = Kna . Let �s = {S ⊆ V(G) : |S| = s} (1≤ s ≤ an). We consider

four cases.

Case 1 (2≤ s ≤ s1 = 	an/2/n
). We have∣∣{S ∈�s :G[S] is connected
}∣∣≤ an ·(a−1)n·2(a−1)n···(s−1)(a−1)n

≤ an+sns−1ss,
(2.9)

so that (Lemma 1.1)∑
S∈�s

Pr
(
Gp[S] is a component

)≤ an+sns−1ssqbG(s)

= an+sns−1ss
[
(lnn)1/n

a

]s(n−loga s)

= 1
n

[
ans2 lnn
an(1−1/s)

]s
.

(2.10)
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By examining the derivative f(s) ln(ce2s2/an)with respect to s of f(s)= css2s/an(s−1)

with c = an lnn, we see that f(s) is decreasing for s ∈ [2,an/2/ec1/2]. Here f(s)
∗≤

f(2)= 16a2n2 ln2n/an. Hence,

s1∑
s=2

∑
S∈�s

Pr
(
Gp[S] is a component

) ∗≤ s1∑
s=2

16a2n ln2n
an

= o(1) as n �→∞. (2.11)

Case 2 (s1+1≤ s ≤ s3 = 	an/2
). Let �s={S ∈�s :bG(S)≥ (a−1)s(n−loga(s/n))
}

and �s =�s−�s = {S ∈�s : bG(S) < (a−1)s(n− loga(s/n))}.
First,

∑
S∈�s

Pr
(
Gp[S] is a component

)≤ (an
s

)
q(a−1)s(n−loga(s/n))

≤
(
ean

s

)s[ (lnn)1/n
a

]s(n−loga(s/n))

=
[
e(lnn)1−(1/n) loga(s/n)

n

]s
∗≤
(
e lnn
n

)s
.

(2.12)

Hence,

s3∑
s=s1+1

∑
S∈�s

Pr
(
Gp[S] is a component

) ∗≤ s3∑
s=s1+1

(
e lnn
n

)s
= o(1) as n �→∞. (2.13)

Next, for S ∈�s , let H =G[S]. Then

(a−1)sn=
∑
v∈S

dG(v)= 2e(H)+bG(S) < 2e(H)+(a−1)s
(
n− loga

s
n

)
, (2.14)

so that

2e(H)≥ (a−1)s loga
s
n

(2.15)

and the average degree d in H satisfies

d> (a−1) loga
s
n
. (2.16)

Case 3 (s1+1 ≤ s ≤ s2 = 	an/ ln2n
). Let u = 	s/n
, so that (a−1)n+1
∗
< u

∗
<

s−(a−1)n−1, and by Lemma 2.1, for sufficiently large n, there exists U ⊆ S, |U| =u,

and

∣∣ÑH(U)∣∣ ∗≥ s
n

loga
s
n

{
1−exp

(
− u

[
(a−1)n+1

]
s

)}

≥ δs
n

loga
s
n

with δ= 1−e−1 = 0.631 . . . .

(2.17)

Let t = �(δs/n) loga(s/n)�, so that u
∗
< t

∗
< s, and let w = s− t = s(1−x)−τ with

x = (δ/n) loga(s/n) and 0 ≤ τ < 1. Observe that δ/4
∗≤ x ∗≤ δ here. For sufficiently
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large n, take the smallest such u-set U = {d1, . . . ,du} in S (⊆ V(G)) which is totally

ordered; take the (uniquely determined) first t−u vertices of (NG(d1)∩ (S −U))∪
···∪(NG(du)∩(S−U)) (⊆ V(G)); and add the remaining w vertices W of S. Then

S � �→ ({
d1, . . . ,du

}
;NG

(
d1
)∩(S−U), . . . ,NG(du)∩(S−U);W) (2.18)

is an injection. Hence,

∣∣�s
∣∣ ∗≤

(
an

u

)
2(a−1)nu

(
an

w

)

≤
(
ean

u

)u
2(a−1)nu

(
ean

w

)w
≤
(
enan

s

)s/n
2(a−1)s

(
ean

s(1−x)
)s(1−x)

.

(2.19)

Then (where x−1/n
∗
> 0, Lemma 1.1)

∑
S∈�s

Pr
(
Gp[S] is a component

)
≤ ∣∣�s

∣∣qbG(s)
∗≤
(
enan

s

)s/n
2(a−1)s

(
ean

s(1−x)
)s(1−x)[ (lnn)1/n

a

]s(n−loga s)

=
[
(en)1/n2a−1

(
e

1−x
)1−x( s

an

)x−1/n
(lnn)1−(1/n) loga s

]s
∗≤
[
(en)1/n2a−1

(
e

1−x
)1−x

(lnn)1+(2/n)−2x−(1/n) loga s
]s
.

(2.20)

Here

2x+ 1
n

loga s−1− 2
n
≥ δ− 1

2
− 4
n

logan−
2
n

∗≥ 1
10
, (2.21)

so that

∑
S∈�s

Pr
(
Gp[S] is a component

) ∗≤ [(en)1/n2a−1
(

e
1−x

)1−x
(lnn)−0.1

]s
. (2.22)

Hence,

s2∑
s=s1+1

∑
S∈�s

Pr
(
Gp[S] is a component

)
∗≤

s2∑
s=s1+1

[
(en)1/n2a−1

(
e

1−x
)1−x

(lnn)−0.1
]s

= o(1) as n �→∞.

(2.23)



290 LANE CLARK

Case 4 (s2+1 ≤ s ≤ s3). For S ∈ �s and H = G[S], let T = {v ∈ S : dH(v) ≥ (a−
1)n− log2

an}, t = |T | and H1 =H[T]=G[T]. Then

2e
(
H1
)= 2e(H)−2e

(
H[S−T ,T])−2e

(
H[S−T])

> (a−1)s loga
s
n
−2(a−1)n(s−t)

= (a−1)s
[

loga
s
n
− 2n
s
(s−t)

]
.

(2.24)

Here

loga
s
n

∗≥n−2logan, (2.25)

so that

s(a−1)n−(s−t) log2
an≥

∑
v∈T

dH(v)+
∑

v∈S−T
dH(v) > (a−1)s loga

s
n

∗≥ (a−1)s
(
n−2logan

)
,

(2.26)

hence,

t
∗≥ s
(

1− 2(a−1)
logan

)
. (2.27)

We take the first t vertices of T for H1 where t = s(1−ε) with sε= 	2(a−1)s/ logan

so that 0< (a−1)/ logan

∗
< ε

∗
< 2(a−1)/ logan

∗
< 1/5. Then

2e
(
H1
) ∗
> (a−1)s

[
(1−2ε)n−2logan

]
(2.28)

and the average degree d1 in H1 satisfies

d1
∗
> (a−1)

[
n− ε

1−εn−
2

1−ε logan
] ∗≥ (a−1)(1−3ε)n. (2.29)

Let u = �an/ ln6n�, so that (a−1)n+1
∗
< u

∗
< t−(a−1)n−1, and by Lemma 2.1, for

all sufficiently large n, there exists U ⊆ T , |U| =u, and

∣∣ÑH(U)∣∣≥ ∣∣ÑH1(U)
∣∣ ∗≥ s(1−ε)(1−3ε)

{
1−exp

(
− u

[
(a−1)n+1

]
t

)}
∗≥ s(1−ε)2(1−3ε)≥ s(1−4ε).

(2.30)

Let t = s−	4εs
, so that u
∗
< t

∗
< s, and w = 	4εs
. For sufficiently large n, take the

smallest suchu-set U = {d1, . . . ,du} in S (⊆ V(G)); take the (uniquely determined) first

t−u vertices of (NG(d1)∩ (S−U))∪···∪ (NG(du)∩ (S−U)) (⊆ V(G)); and add the

remaining w vertices W of S. Then

S � �→ ({
d1, . . . ,du

}
;NG

(
d1
)−S, . . . ,NG(du)−S;W

)
(2.31)
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is an injection with |NG(di)−S| ≤ 	log2
an
 (1≤ i≤u). Hence, with y = 	log2

an
,

∣∣�s
∣∣ ∗≤

(
an

u

) ∑
(k1,...,ku)∈{0,...,y}u

u∏
i=1

(
(a−1)n
ki

)(
an

w

)

∗≤
(
an

u

)
(y+1)u

(
(a−1)n
y+1

)u(
an

w

)
,

(2.32)

since (
(a−1)n

k

)
∗≤
(
(a−1)n
y+1

)
, ∀k∈ {0, . . . ,y}. (2.33)

Then

∣∣�s
∣∣ ∗≤

(
ean

u

)u
(y+1)u

(
ean
y+1

)u(y+1)(ean
w

)w

≤ (e2an ln6n
)u( ean

log2
an

)uy(ean
4εs

)4εs
.

(2.34)

Hence, (Lemma 1.1)∑
S∈�s

Pr
(
Gp[S] is a component

)
≤ ∣∣�s

∣∣qbG(s)
∗≤ (e2an ln6n

)u( ean
log2

an

)uy(ean
4εs

)4εs[ (lnn)1/n
a

]s(n−loga s)

=
[(
e2an ln6n

)u/s(ean ln2a
)uy/s( e

4ε

)4ε( s
an

)1−4ε
(lnn)1−(1/n) loga s−2uy/s

]s
.

(2.35)

Here

1≤ ean ln2a
∗≤ e2an ln6n, 0<

u
s

∗≤ uy
s

∗≤ 5

ln2n
,

1− 1
n

loga s−
2uy
s

∗≤ 2
n

loga lnn− 4

ln4n
∗≤ 0,

(2.36)

so that

∑
S∈�s

Pr
(
Gp[S] is a component

) ∗≤ [(e3a2n2 ln2a ln6n
)5/ ln2n

(
e

4ε

)4ε
24ε−1

]s
∗≤
(

2
3

)s
,

(2.37)

since (e3a2n2 ln2a ln6n)5/ ln2n→ 1, (e/4ε)4ε → 1 and ε→ 0 as n→∞. Hence,

s3∑
s=s2+1

∑
S∈�s

Pr
(
Gp[S] is a component

) ∗≤ s3∑
s=s2+1

(
2
3

)s
= o(1) as n �→∞. (2.38)
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Remark 2.4. For all a ≥ 2 and n ≥ 2, bG(s) ≥ 2 when 2 ≤ s ≤ an/2. Hence, 0 <
q̃(n)≤ q(n) implies (q̃(n))bG(s) ≤ (q(n))bG(s) when 2≤ s ≤ an/2. Then (2.10), (2.12),

(2.20), and (2.35) hold for Gp̃(n) where p̃(n)= 1−q̃(n) (the exponent in (2.12) is larger

than bG(s)). Hence, Lemma 2.3 holds for Gp̃(n) as well. The inequalities in the proof

of Lemma 2.3 hold for all sufficiently large n which can be determined from nineteen

appropriate inequalities there.

Theorem 2.5. For fixeda≥ 2, q=q(n)=[(λ(n))1/n/a]1/(a−1) where limn→∞λ(n)=
λ∈ (0,∞), and p = p(n)= 1−q(n), we have

lim
n→∞Pr

(
Gp ∈ �

(
Kna ,p

)
is connected

)= e−λ. (2.39)

Proof. We have

0≤ Pr
(
Gp is disconnected

)−Pr
(
Gp has isolated vertices

)
≤ Pr

(
Gp has a component of order s with 2≤ s ≤ an/2)= o(1) as n �→∞, (2.40)

by Remark 2.4. Hence, Lemma 2.2 gives

lim
n→∞Pr

(
Gp is disconnected

)= lim
n→∞Pr

(
Gp has isolated vertices

)= 1−e−λ. (2.41)

We state the result forG =Kna,a since its proof is similar to the proof of Theorem 2.5.

Theorem 2.6. For fixed a≥ 1, q = q(n)= [(λ(n))1/n/2a]1/a where limn→∞λ(n)=
λ∈ (0,∞), and p = p(n)= 1−q(n), we have

lim
n→∞Pr

(
Gp ∈ �

(
Kna,a

)
is connected

)= e−λ. (2.42)
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