IJMMS 32:5 (2002) 285-292
PIL. S0161171202201210
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

RANDOM SUBGRAPHS OF CERTAIN GRAPH POWERS

LANE CLARK

Received 4 March 2002

We determine the limiting probability that a random subgraph of the Cartesian power K}
or of K ; is connected.
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1. Introduction. A finite, simple, undirected graph G has vertex set V(G) and edge
set E(G). The order of G is |V (G)| and the size e(G) of G is |E(G)|. For S € V(G), let
G[S] denote the subgraph of G induced by S and G[S,V (G) —S] denote the spanning
subgraph of G with edges xy where x € S and y € V(G) —S. For U < V(G), let
N¢g(U) ={y € V(G) : dxy € E(G) with x € U} and ﬁG(U) = N¢(U) uU. Of course,
N¢(v) = Ng({v}) and the degree dg(v) of v in G is |[Ng(v)| for v € V(G). For S <
V(G),let bg(S) = |{xy € E(G):x €S, y e V(G)—-S}| and bs(s) = min{bs(S): S <
V(G), ISI =5} (0=s=<|V(G)]).

The Cartesian product GOH of graphs G and H is the graph with vertex set V(G) X
V (H) where vertices (g1,h1) and (g», h») are adjacent if and only if g, = g> and h 1 h» €
E(H),or, h; = hy and g1g» € E(G). For a graph G, define G! = G and G = G"~'0G for
n = 2. We use the following recent isoperimetric result of Tillich [6]. Here K, denotes
the complete graph of order a and K, , denotes the complete bipartite graph with
parts of order a.

LEMMA 1.1 (see [6]). For G =KJ witha=2andn =1,
bg(s) = (a-1)s(n—log,s) forl<s<a” (1.1)
and, for G =K}, witha>=1andn > 1,
bg(s) = as(n—log,,s) forl<s<(a)™. (1.2)
Let G be a graph of order n and size N. The probability space 4(G,p) consists of
all spanning subgraphs H of G where edges of G are chosen for H independently with
probability 0 < p = p(n) < 1, so that, Pr(H) = p¢HgN-¢H) whereqg = g(n) = 1-p(n).
(We denote the random graphs in 4(G, p) generally by G,.)
In this paper, we determine the limiting probability that G, is connected for G = K}}

and K/ ;. Specifically, we show that

lim Pr (G, € 4(K/, p) is connected) = e (1.3)
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for fixed a > 2 where p = p(n) = 1 - q(n) with g(n) = [(A(n))/"/a]/@@-D and
limy, . A(n) = A € (0,). In addition, we show that

lim Pr (G, € 4(K},,p) is connected) = e~ (1.4)

Nn—oo

for fixed a = 1 where p = p(n) = 1 — gq(n) with g(n) = [(A(n))/"/2a]'/* and
limy, .o A(n) = A € (0,00). Our first result includes those of Burtin [3], Erdos and
Spencer [5], and Bollobas [1] as a special case (a = 2). Our approach is similar to [1].

The rth factorial moment of a random variable (r.v.) X is denoted by E, (X). We
write X, 2 X when the sequence X, of r.v.s converges in distribution to the r.v. X.
Also, we write Py for a r.v. having Poisson distribution with mean A.

Let [n] = {1,...,n} when n is a positive integer. For a real number x and a positive
integer n, let (x)o =1 and (x),, = (x)---(x —n+1). The cardinality of a set S is
denoted by |S|. The greatest (least) integer at most (least) the real number x is denoted
by |x] ([x1). We write < for an inequality that holds absolutely for the parameters
considered and < for an inequality that holds for the parameters considered and all
sufficiently large n. We refer the reader to Bollobas [2] for random graph theory and
to Durrett [4] for probability.

2. Results. We use the following result from [1].

LEMMA 2.1 (see [1]). If G is a simple graph having order n > 1, maximum degree
A(G) < A, average degree d = d(G) = 2e(G)/n,and A+1 <u <n—-A-1, then there
exists a u-set U < V(G) with

(2.1)

|Ne(U) | Zn%{l—exp(—w>}.

n

Assume n = 2A + 4, since the result is vacuously true otherwise, and A > 0 (the right-
hand side is defined to be O for A =0).

We first consider G = K}l with V(G) = [a]" for fixed a = 2 and for n = 3. Note
that V(G) is totally ordered lexicographically which naturally extends to u-subsets of
V(G). In Lemma 2.2 and Theorem 2.5, A(n) > 0 for all n.

LEMMA 2.2. For fixeda=2,q=qn)=[(A(n)Y"/a]'/@D wherelim, .. A(n) =
A€ (0,0),andp =pn)=1-qg(n), we have

lim Pr (G, € 4(KZ,p) has no isolated vertices) = e~ (2.2)

n—oo
PROOF. Recall that G = K!. Let X,,(G,) denote the number of isolated vertices in
Gp.Fixr € P and let o4, denote the set of r-tuples of V with distinct coordinates; %, =
{(v1,...,vy) € Ay - e(G[{V1,...,V,}]) # 0} and 6, = A, — By = {(V1,...,Vy) € Ay -
e(G[{v1,...,vy}]) = 0}. Then |B,| < (a"),1ran < a™ VYran and |, | = (a), —

* ,
|9y | > ane-r*/a" _gn(r-1yan. Observe that the number of edges in G incident with
{v1,...,v,}is atleast (a—1)r(n—-r) for all (vy,...,v,) € A,y
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First,
0< > Pr(de,(vi)=---=dg,(vy) =0) < | B, |g@ VD)
(V] yerey Uy ) EBy -
-y 2 ]
<a™ Vyran Am)" "™ _ Am)"" "ran.
a’V(‘VLfY) an—‘l’z
Next,
> Pr(dg, (v1) = ---=dg,(v,) =0) = €, |qaDnr
(V1 ,eey Uy ) ECy
; [a””e*”fz/a" _ an(rfl)run] A" (n) 2.4)
B anr
P v
A (et A (Wran
an
while,
Z Pr (de (1.)1) S de (Ur) — 0) < anrq(a—l)nr — A (n). 2.5)
(V] ey Uy ) EGy
Hence,
2
2 AT(m)ran x A My an
A (nyer /e *(T <Er(Xn) s?\’(n)+% 2.6)
so that,
Jim Er (Xn) = A7 2.7)
and X,, < Py (see [4]). _

LEMMA 2.3. For fixeda =2,q=qn) = [(Inn)"/a]V/@V and p = p(n) =1-
q(n), we have

Pr (G, € 4(K2,p) has a component of order s with2 <s <a"/2) =0(1) asn — co.
(2.8)

PROOF. Recall that G =K. Let s ={S<cV(G):|S| =5} (1 <s <a™). We consider
four cases.
CASE1 (2 <s<s; =|a™?/n|). We have

| {S € ods:G[S]is connected} | <a™-(a-1)n-2(a-1)n---(s—1)(a-1)n

< an+sn57133 (2'9)
so that (Lemma 1.1)
> Pr(G,[S]is a component) < a"*n*"ls$qbc®
Seds
1 1/n 7s(n-logg s)
:aTHSTLS*lSS[%] (2.10)

_1[ans’lnn]’
“nl ana-1s
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By examining the derivative f(s)In(ce?s?/a") withrespect to s of f(s) = ¢$s25/ans—D
with ¢ = anlnn, we see that f(s) is decreasing for s € [2,a™/?/ec/?]. Here f(s) z
£(2) =16a2n?In®n/a™. Hence,

S1

< : 16a* nln n
> > Pr(GplS]is a component) < z

s=2 Seds §=2

=0(l) asn — oo, (2.11)

CASE2(s1+1 <s<s3=|a"/2]). LetB;={S € As:bs(S) = (a—1)s(n-log,(s/n))}
and €5 = As —Bs = {S €A :bs(S) < (a-1)s(n-log,(s/n))}.
First,

n
> Pr(G,[S]is a component) < (as )q(“l)“"l"gﬂ (s/m)

SeBs

ea”) [(mn)l/n]sm logg (s/m))

IA

(2.12)

*
<

[e(lnn)l (1/n)log, (s/n) ]
(elnn)

Hence,

53 S3 s
Z ZPr(G,,[S]isacomponent); Z (elzn) =0(1) asn— . (2.13)

s=s1+1 SeBs s=s1+1

Next, for S € €6,, let H = G[S]. Then

(a-1)sn= Z dg(v) =2e(H)+bg(S) <2e(H) +(a71)s(nfloga%>, (2.14)

ves

so that
2e(H) = (aﬂ)sloga% (2.15)
and the average degree d in H satisfies

d> (a—l)loga%. (2.16)

CASE3 (s1+1<s<s = [a"/lnznj). Let u =|s/n], so that (a—-1)n+1 2 u i
s—(a—1)n-1, and by Lemma 2.1, for sufficiently large n, there exists U c S, |U| =
and

u[(a—l)n+1]>}

~ *x S S
| N () | zlogan{lexp( S

>éloga withd=1-e ' =0.631....
n n

(2.17)

Let t = [(6s/n)log,(s/n)], so that u i t i s,and let w = s—t = s(1 —x) — T with
x = (6/n)log,(s/n) and 0 < T < 1. Observe that §/4 < x < 6 here. For sufficiently
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large n, take the smallest such u-set U = {d4,...,d,} in S (¢ V(G)) which is totally
ordered; take the (uniquely determined) first t — u vertices of (Ng(d1)N(S—-U)) U
-+~ U(Ng(dy)Nn(§-U)) (€ V(G)); and add the remaining w vertices W of S. Then

S — ({du,...,du};Ng(d1) N (S=U),...,Ng(du) N (S=U); W) (2.18)

is an injection. Hence,

1 2 (7w ()
u w

ny\u n\ w
- (%) Z(a—lmu(%) (2.19)
u w
<<enan)5/n2(a—1)s< eam )S(I—X)
N ) s(1—-x)
Then (Where x —1/n ; 0, Lemma 1.1)
> Pr(Gp[S]is a component)
Sebs
< [ |q%e
i (enan>s/n2(uil)5< eal )s(l—x)[(lnn)l/n]s(n—logas)
- S s(1-x) a (2.20)
1-x x-1/n s
_ [(en)l/nza—l< e ) <i> (lnn)l—(l/n)logas]
1-x an
x e 1-x K
< [(en)l/nzafl( ) (lnn)1+(2/n)72x7(1/n)10ga5:| .
1-x
Here
1 2 1 4 2 x 1
2X+ﬁlogus_1_ﬂZé_ﬁ_ﬁlogan_ﬁzﬁ' (2.21)
so that

1-x s
> Pr(G,[S]is a component) z [(en)”"Z“’1 (ﬁ) (lnn)’o'l] ) (2.22)
Sebs

Hence,

52
> > Pr(Gpl[S]is a component)
s=s1+1 Se%s
2 e 1-x s
< > [(en)”"Z“‘l(m) (lnn)‘o'l]

s=s51+1

(2.23)

=0(1) asn — oo,
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CASE4 (sp+1<s<s3). ForSe%;,and H=G[S],letT={veS:dyv)=(a-
)n—log>n}, t = |T| and H; = H[T] = G[T]. Then

2e¢(Hy) =2e(H)—-2e(H[S-T,T])—2e(H[S-T])

> (a—l)sloga%—Z(a—l)n(s—t) (2.24)
= (a—l)s[loga%—zTn(s—t)].
Here
loga% : n-2log,n, (2.25)
so that

sa-Hn—-(s-vlogin= > dy(w)+ > dH(ﬂu)>(aﬁl)slogai
ver vésoT (226
: (a-1)s(n-2log,n),

hence,

* 2(a-1)
tZS(l— log, n ) (2.27)

We take the first t vertices of T for H; where t = s(1 —¢) with se =|2(a—1)s/log, n|
sothat0 < (a—1)/log,n 2 € 2 2(a—1)/log,n 2 1/5. Then

2e(Hy) > (a—1)s[(1-2e)n-2log, n] (2.28)

and the average degree d; in H; satisfies

d; 3¢ 1)[ € a2 ]i( 1)(1-3e€) (2.29)
1> a— n_l—Gn_l—E og,n|=a— —J€E)Nn. .

Let u = [a"/Inn], so that (a—1)n+1 z u z t—(a—1)n-1, and by Lemma 2.1, for
all sufficiently large n, there exists U < T, |U| = u, and

Ny (U) | = | Ny, (U) | 2s(1e)(13e){1exp(”[(“_1)"+1]>}
t (2.30)
25(1-6)2(1-3€) = s(1 - 4e).

Lett = s—|4es], so that u z t < s, and w = |4es]. For sufficiently large n, take the
smallest such u-set U = {d;,...,dy} in S (€ V(G)); take the (uniquely determined) first
t —u vertices of (Ng(d1)N(S-U))U---U(Ng(dy)N(S-U)) (c V(G)); and add the
remaining w vertices W of S. Then

S — ({dl,...,du};NG(dl) —S,...,Ng(du) —S;W) (2.31)
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is an injection with |Ng(d;) — S| < [log5 n] (1 <i < u). Hence, with y = |log> n],

u
(),
W) k) €10, Y1 i=1 ki w

.......... (2.32)
({4 )
since
(M) =40, e,
Then
nau u(y+1) ny w
) 2 () e 22 () e

ean )“3’ <ea" )4“

2 6. \U
< (ecanln"n ( —
( ) log2n 4es

Hence, (Lemma 1.1)

> Pr(Gp[S] is a component)

Sebs
< [€s]q"c®
; uy n\ 4es 1/n qs(n-log,s)
(a4 ) (e O
logsn 4des a
4e 1-4e K
= [(ezwrlln611)”/5(eanln2 a)uy/s<£) (i> (lnn)l’(l/")logas’zuy/s]
4e an
(2.35)
Here
1 <eanln®a < e?anin®n, p<ULLUy: E ,
s s In“n (2.36)
1 2uy x 2 4 % :
1-—1 -—<—1 Inn- <
p OBat T T = 08 T =0
so that
* 5 1 6 \5/m2n( € \°€ s
> Pr(G,[S]is a component) < [(e3a2n2 In“aln’n) (4—€> 246‘1]
NE (2.37)
<(35)
=\5 5
3
since (e3a2n2In?aln®n)5/0°n . 1, (e/4€)* — 1 and € — 0 as n — 0. Hence,
53 % s53 2 s
> > Pr(Gp[S]is acomponent) < > (§> =o0(l) asm—oo.  (2.38)

s=sp+1 S€%6s s=sp+1 0
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REMARK 2.4. Forall a >2 and n > 2, bg(s) > 2 when 2 < s < a™/2. Hence, 0 <
d(m) < q(n) implies (§(n))?6® < (q(n))?¢) when 2 < s < a™/2. Then (2.10), (2.12),
(2.20), and (2.35) hold for G, where p(n) = 1 - (n) (the exponent in (2.12) is larger
than bg(s)). Hence, Lemma 2.3 holds for Gy, as well. The inequalities in the proof
of Lemma 2.3 hold for all sufficiently large n which can be determined from nineteen
appropriate inequalities there.

THEOREM 2.5. Forfixeda = 2,q=q(n)=[(A(n))'/"/a]" @D where lim,, ., A(n) =
A€ (0,0),andp =p(n) =1-q(n), we have

lim Pr (G, € G(K, p) is connected) = e . (2.39)

PROOF. We have

0 < Pr (G, is disconnected) — Pr (G, has isolated vertices)

2.40)
< Pr (G, has a component of order s with 2 <s <a™?) =0(1) asn — o, (

by Remark 2.4. Hence, Lemma 2.2 gives

%%Pr (Gp is disconnected) = 7lliarroloPr (Gp has isolated vertices) = 1—e™*.  (2.41)
O

We state the result for G = K7} , since its proof is similar to the proof of Theorem 2.5.

THEOREM 2.6. Forfixeda=1,q=qn)=[(A(n)"/2a]'’* wherelim,_..A(n) =
A€ (0,0),andp =pn)=1-qg(n), we have

lim Pr (G, € 4(K[!,) is connected) = e~ (2.42)

Nn—o0
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