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The general construction of semiclassically concentrated solutions to the Hartree type
equation, based on the complex WKB-Maslov method, is presented. The formal solutions
of the Cauchy problem for this equation, asymptotic in small parameter � (� → 0), are
constructed with a power accuracy of O(�N/2), where N is any natural number. In con-
structing the semiclassically concentrated solutions, a set of Hamilton-Ehrenfest equations
(equations for centered moments) is essentially used. The nonlinear superposition princi-
ple has been formulated for the class of semiclassically concentrated solutions of Hartree
type equations. The results obtained are exemplified by a one-dimensional Hartree type
equation with a Gaussian potential.
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1. Introduction. The nonlinear Schrödinger equation

{−i∂t+�̂
(
t,|Ψ |2)}Ψ = 0, (1.1)

where �̂(t,|Ψ |2) is a nonlinear operator, arises in describing a broad spectrum of

physical phenomena. In statistical physics and quantum field theory, the generalized

model of the evolution of bosons is described in terms of the second quantization

formalism by the Schrödinger equation [24] which, in Hartree’s approximation, leads

to the classical multidimensional Schrödinger equation with a nonlocal nonlinearity

for one-particle functions, that is, a Hartree type equation.

The quantum effects associated with the propagation of an optical pulse in a non-

linear medium are also described in the second quantization formalism by the one-

dimensional Schrödinger equation with a delta-shaped interaction potential. In this

case, the Hartree approximation results in the classical nonlinear Schrödinger equa-

tion (one-dimensional with local cubic nonlinearity) [31, 32], which is integrated by

the Inverse Scattering Transform (IST) method and has soliton solutions [51]. Solitons

are localized wave packets propagating without distortion and interacting elastically

in mutual collisions. The soliton theory has found wide application in various fields

of nonlinear physics [1, 14, 42, 50].

Investigations of the statistical properties of optical fields have led to the concept

of compressed states of a field in which quantum fluctuations are minimized and the

highest possible accuracy of optical measurements is achieved. An important problem

of the correspondence between the stressed states describing the quantum properties

of radiation and the optical solitons is analyzed in [31, 32].
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The Hartree type equation is nonintegrable by the IST method. Nevertheless, ap-

proximate solutions showing some properties characteristic of solitons can be con-

structed. Solutions of this type are referred to as solitary waves or “quasi-solitons” to

differentiate them from the solitons (in the strict sense) arising in the IST integrable

models.

An efficient method for constructing solutions of this type is offered by the tech-

nique of semiclassical asymptotics. Thus, for nonlinear operators of the self-consistent

field type, the theory of canonical operators with a real phase has been constructed

for a Cauchy problem [36, 38] and for spectral problems, including those with sin-

gular potentials [25, 27] (see also [2, 39, 49]). Soliton-like solutions of a Hartree type

equation and some types of interaction potentials have also been constructed [18].

In this paper, localized solutions of a (nonlinear) Hartree type equation asymptotic

in small parameter � (�→ 0) are constructed using the so-called WKB method or the

Maslov complex germ theory [5, 37]. The constructed solutions are a generalization

of the well-known quantum mechanical coherent and compressed states for linear

equations [9, 34] for the case of nonlinear Hartree type equations with variable coeffi-

cients. We refer to the corresponding asymptotic solutions, like in the linear case [5],

as semiclassically concentrated solutions (or states).

The most typical of solitary waves (“quasi-solitons”) is that they show some prop-

erties characteristic of particles. For the “quasi-solitons” being semiclassically con-

centrated states of a Hartree type equation, these properties are represented by a

dynamic set of ordinary differential equations for the “quantum” means �X(t,�) and
�P(t,�) of the operators of coordinates x̂ and momenta p̂ and for the centered higher-

order moments. In the limit of � → 0, the centroid of such a quasi-soliton moves in

the phase space along the trajectory of this dynamic system: at each point in time, the

semiclassically concentrated state is efficiently concentrated in the neighborhood of

the point �X(t,0) (in the x representation) and in the neighborhood of the point �P(t,0)
(in the p representation). Note that a similar set of equations in quantum means has

been obtained in [3, 4] for the linear case (Schrödinger equation), and in [5] for a more

general case. It has been shown [7, 8] that these equations are Poisson equations with

respect to the (degenerate) nonlinear Dirac bracket. Therefore, we call the equations

in quantum means for a Hartree type equation, like in the linear case [5], Hamilton-

Ehrenfest equations. The Hamiltonian character of these equations is the subject of a

special study. Nevertheless, it should be noted that, as distinct from the linear case,

the construction of the semiclassically concentrated states for a Hartree type equation

essentially uses the solutions of the correspondent Hamilton-Ehrenfest equations.

The specificity of the Hartree type equation, where nonlinear terms are only under

the integral sign, is that it shows some properties inherent in linear equations. In

particular, it has been demonstrated that for the class of semiclassically concentrated

solutions of this type of equation (with a given accuracy �, � → 0), the nonlinear

superposition principle is valid.

In terms of the approach under consideration, the formal asymptotic solutions of

the Cauchy problem for this equation and the evolution operator have been con-

structed in the class of trajectory-concentrated functions, allowing any accuracy in

small parameter �, �→ 0.
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It should be stressed that throughout this paper we deal with the construction of

the formal asymptotic solutions to a Hartree type equation with the residual whose

norm has a small estimate in parameter �, �→ 0. To substantiate these asymptotics

for finite times t ∈ [0,T ], T = const, is a special nontrivial mathematical problem.

This problem is concerned with obtaining a priori estimates uniform in parameter

� ∈]0,1] for the solution of nonlinear equation (1.1), and is beyond the scope of

the present work. Note that, in view of the heuristic considerations given in [25],

it seems that the difference between an exact solution and the constructed formal

asymptotic solution can be found with the use of the method developed in [25, 35].

Asymptotic solutions in T →∞ of the scattering problem were constructed for some

special cases of the Hartree type equation in a number of papers (see, e.g., [19, 20, 23]

and the references therein). The existence of semiclassical wave packets for the linear

Schrödinger equation was studied in [10, 12, 35, 46, 47, 53] and their time evolution

was discussed in [5, 11, 33, 40]. Finally, we mention a class of nonlinear equations in

which nonlinear terms are local and nonlocal terms are linear [41]. These equations

are different from the Hartree type equation under consideration.

This paper is arranged as follows. Section 2 gives principal notions and definitions.

In Section 3, a class of trajectory-concentrated functions is specified and the simplest

properties of these functions are considered. In Section 4, Hamilton-Ehrenfest equa-

tions are constructed which describe the “particle-like” properties of the semiclas-

sically concentrated solutions of the Hartree type equation. In Section 5, the Hartree

type equation is linearized for the solutions of Hamilton-Ehrenfest equations, and a set

of associated linear equations which determine the asymptotic solution of the start-

ing problem is obtained. In Section 6, we construct, accurate to O(�3/2), semiclassical

coherent solutions to the Hartree type equation. In Section 7, the principal term of

the semiclassical asymptotic of this equation is obtained in a class of semiclassically

concentrated functions. The semiclassically concentrated solutions to the Hartree

type equation are constructed with an arbitrary accuracy in
√
� in Section 8, while

the kernel of the evolution operator (Green function) of the Hartree type equation is

constructed in Section 9. Herein, the nonlinear superposition principle is substanti-

ated for the class of semiclassically concentrated solutions. In Section 10, a Hartree

type equation with a Gaussian potential is considered as an example. The appendix

presents the properties of the solutions of equations in variations necessary to con-

struct the asymptotic solutions and the approximate evolution operator to the Hartree

type equation.

2. The Hartree type equation. In this paper, by the Hartree type equation is meant

the equation

{−i�∂t+�̂(t)+�V̂(t,Ψ)}Ψ = 0, Ψ ∈ L2
(
Rnx
)
. (2.1)

Here, the operators

�̂(t)=�(ẑ,t), (2.2)

V̂ (t,Ψ)=
∫
Rn
d�y Ψ∗( �y,t)V(ẑ,ŵ,t)Ψ( �y,t) (2.3)
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are functions of the noncommuting operators

ẑ =
(
−i� ∂

∂�x
, �x
)
, ŵ =

(
−i� ∂

∂ �y
, �y
)
, �x, �y ∈Rn, (2.4)

the function Ψ∗ is complex conjugate to Ψ , � is a real parameter, and � is a small

parameter, �∈ [0,1[. For the operators ẑ and ŵ, the following commutative relations

are valid:

[
ẑk, ẑj

]
− =

[
ŵk,ŵj

]
− = i�Jkj,[

ẑk,ŵj
]
− = 0, k,j = 1,2n,

(2.5)

where J = ‖Jkj‖2n×2n is a unit symplectic matrix

J =
(

0 −I
I 0

)
2n×2n

. (2.6)

For the functions of noncommuting variables, we use the Weyl ordering [13, 26]. In

this case, we can write, for instance, for the operator �̂

�̂(t)Ψ(�x,t,�)

= 1
(2π�)n

∫
R2n

d�yd�pexp
(
i
�

〈
(�x− �y), �p〉)�

(
�p,
�x+ �y

2
, t
)
Ψ( �y,t,�),

(2.7)

where �(z,t) = �(�p, �x,t) is the Weyl symbol of the operator �̂(t) and 〈·,·〉 is the

Euclidean scalar product of the vectors

〈�p, �x〉 =
n∑
j=1

pjxj, �p, �x ∈Rn, 〈z,w〉 =
2n∑
j=1

zjwj, z,w ∈R2n. (2.8)

Here we are interested in localized solutions of (2.1), for each fixed � ∈ [0,1[ and

t ∈ R, belonging to the Schwartz space with respect to the variable �x ∈ Rn. For the

operators �̂(t) and V̂ (t,Ψ) to be at work in this space, it is sufficient that their Weyl

symbols �(z,t) and V(z,w,t) be smooth functions and grow, together with their

derivatives, with |z| → ∞ and |w| → ∞ no more rapidly as the polynomial and uni-

formly in t ∈R1. (In what follows we assume that for all the operators under consid-

eration, Â=A(ẑ,t), their Weyl symbols satisfy Supposition 2.1.) Therefore, we believe

that the following conditions for the functions �(z) and V(z,w,t) are satisfied.

Supposition 2.1. For any multi-indices α, β, µ, and ν there exist constants Cαβ (T)
and Cαµβν (T), such that the inequalities

∣∣∣∣zα ∂|β|�(z,t)∂zβ

∣∣∣∣≤ Cαβ (T),
∣∣∣∣zαwµ ∂|β+ν|V(z,w,t)

∂zβ∂wν

∣∣∣∣≤ Cαµβν (T), z,w ∈R2n, 0≤ t ≤ T
(2.9)

are fulfilled.
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Here, α, β, µ, and ν are multi-indices (α,β,µ,ν ∈ Z2n+ ) defined as

α= (α1,α2, . . . ,α2n
)
, |α| =α1+α2+···+α2n, zα = zα1

1 zα2
2 ···zα2n

2n ,

∂|α|V(z)
∂zα

= ∂|α|V(z)
∂zα1

1 ∂zα2
2 ···∂zα2n

2n
, αj = 0,∞, j = 1,2n.

(2.10)

We are coming now to the description of the class of functions for which we will

seek asymptotic solutions to (2.1).

3. The class of trajectory-concentrated functions. We introduce a class of func-

tions singularly depending on a small parameter �, which is a generalization of the no-

tion of a solitary wave. It appears that asymptotic solutions of (2.1) can be constructed

based on functions of this class, which depend on the phase trajectory z = Z(t,�),
the real function S(t,�) (analogous to the classical action at �= 0 in the linear case),

and the parameter �. For � → 0, the functions of this class are concentrated in the

neighborhood of a point moving along a given phase curve z = Z(t,0). Functions

of this type are well known in quantum mechanics. In particular, among these are

coherent and compressed states of quantum systems with a quadric Hamiltonian

[9, 21, 22, 28, 29, 30, 34, 43, 45, 48]. Note that a soliton solution localized only with

respect to spatial (but not momentum) variables does not belong to this class.

We denote this class of functions as �t
�(Z(t,�),S(t,�)), and define it as

�t
� =�t

�

(
Z(t,�),S(t,�)

)
=
{
Φ : Φ(�x,t,�)=ϕ

(
∆�x√
�
, t,�

)
exp

[
i
�

(
S(t,�)+〈�P(t,�),∆�x〉)]}, (3.1)

where the function ϕ(�ξ,t,�) belongs to the Schwartz space S in the variable �ξ ∈
Rn, and depends smoothly on t and regularly on

√
� for � → 0. Here, ∆�x = �x −

�X(t,�), and the real function S(t,�), and the 2n-dimensional vector function Z(t,�)=
(�P(t,�), �X(t,�)), which characterize the class �t

�(Z(t,�),S(t,�)), depend regularly on√
� in the neighborhood of �= 0 and are to be determined. In the cases where this does

not give rise to ambiguity, we use a shorthand symbol of �t
� for �t

�(Z(t,�),S(t,�)).
The functions of the class �t

� are normalized to

∥∥Φ(t)∥∥2 = 〈Φ(t)|Φ(t)〉 (3.2)

in the space L2(Rnx) with the scalar product

〈
Ψ(t)|Φ(t)〉=

∫
Rn
d�xΨ∗(�x,t,�)Φ(�x,t,�). (3.3)

In the subsequent manipulation, the argument t in the expression for the norm may

be omitted, ‖Φ(t)‖2= ‖Φ‖2.
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In constructing asymptotic solutions, it is useful to define, along with the class of

functions �t
�(Z(t,�),S(t,�)), the following class of functions:

�t�
(
Z(t,�),S(t,�)

)
=
{
Φ : Φ(�x,t,�)=ϕ

(
∆�x√
�
, t
)

exp
[
i
�

(
S(t,�)+〈�P(t,�),∆�x〉)]}, (3.4)

where the functions ϕ, as distinct from (3.1), are independent of �.

At any fixed point in time t ∈ R1, the functions belonging to the class �t
� are

concentrated, in the limit of � → 0, in the neighborhood of a point lying on the

phase curve z = Z(t,0), t ∈ R1 (the sense of this property is established exactly in

Theorems 3.1, 3.2, and 3.4). Therefore, it is natural to refer to the functions of the

class �t
� as trajectory-concentrated functions. The definition of the class of trajectory-

concentrated functions includes the phase trajectory Z(t,�) and the scalar function

S(t,�) as free “parameters.” It appears that these “parameters” are determined unam-

biguously from the Hamilton-Ehrenfest equations (see Section 4) fitting the nonlinear

(�≠ 0) Hamiltonian of (2.1). Note that for a linear Schrödinger equation, in the limiting

case of � = 0, the principal term of the series in �→ 0 determines the phase trajec-

tory of the Hamilton system with the Hamiltonian �(�p, �x,t), and the function S(t,0)
is the classical action along this trajectory. In particular, in this case, the class �t

�

includes the well-known dynamic (compressed) coherent states of quantum systems

with quadric Hamiltonians when the amplitude of ϕ in (3.1) is taken as a Gaussian

exponential

ϕ
(�ξ,t)= exp

[
i
2

〈
�ξ,Q(t)�ξ

〉]
f(t), (3.5)

where Q(t) is a complex symmetric matrix with a positive imaginary part, and the

time factor is given by

f(t)= 4
√

detImQ(t)exp
[
− i

2

∫ t
0

SpReQ(τ)dτ
]

(3.6)

(see [5], for details).

Consider the principal properties of the functions of the class �t
�(Z(t,�),

S(t,�)), which are also valid for those of the class �t�(Z(t,�),S(t,�)).

Theorem 3.1. For the functions of the class �t
�(Z(t,�),S(t,�)), the following as-

ymptotic estimates are valid for centered moments ∆α(t,�) of order |α|, α∈ Z2n+ :

∆α(t,�)=
〈
Φ
∣∣{∆ẑ}α∣∣Φ〉
‖Φ‖2

=O(�|α|/2), � �→ 0. (3.7)

Here, {∆ẑ}α denotes the operator with the Weyl symbol (∆z)α,

∆z = z−Z(t,�)= (∆�p,∆�x), ∆�p = �p− �P(t,�), ∆�x = �x− �X(t,�). (3.8)
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Proof. The operator symbol {∆ẑ}α can be written as

(∆z)α = (∆�p)αp(∆�x)αx , (
αp,αx

)=α, (3.9)

and, hence, according to the definition of Weyl-ordered pseudodifferential operators

(2.7), we have for the mean value σα(t,�) of the operator {∆ẑ}α

σα(t,�)=
〈
Φ
∣∣{∆ẑ}α∣∣Φ〉

= 1
(2π�)n

∫
R3n

d�xd�yd�pΦ∗(�x,t,�)

×exp
(
i
�

〈
(�x− �y), �p〉)[∆�p]αp(∆�x+∆�y

2

)αx
Φ( �y,t,�).

(3.10)

Here, we have denoted

∆�y = �y− �X(t,�). (3.11)

After the change of variables,

∆�x =
√
��ξ, ∆�y =

√
��ζ, ∆�p =

√
� �ω, (3.12)

and taking into consideration the implicit form of the functions

Φ(�x,t,�)= exp
{
i/�

(
S(t,�)+〈�P(t,�),∆�x〉)}ϕ(∆�x√

�
, t,�

)
, (3.13)

belonging to the class �t
�(Z(t,�),S(t,�)), we find that

σα(t,�)= 1
(2π�)n

�3n/2�|α|/22−|αp|

×
∫
R3n

d�ξd�ζd �ωϕ∗(�ξ,t,�)exp
{
i
〈
(�ξ− �ζ), �ω〉} �ωαx(�ξ+ �ζ)αpϕ(�ζ,t,�)

= �(n+|α|)/2Mα(t,�),

‖Φ‖2 = �n/2
∫
Rn
d�ξϕ∗(�ξ,t,�)ϕ(�ξ,t,�)

= �n/2M0(t,�).
(3.14)

Since ϕ(�ξ,t,�) depends on
√
� regularly and M0(t,�) > 0, we get

∆α(t,�)= σα(t,�)‖Φ‖2

= �|α|/2Mα(t,�)
M0(t,�)

≤ �|α|/2 max
t∈[0,T ]

Mα(t,�)
M0(t,�)

=O(�|α|/2),
(3.15)

and the theorem is proved.
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Denote an operator F̂ , such that, for any function Φ belonging to the space

�t
�(z(t,�),S(t,�)), the asymptotic estimate

‖F̂Φ‖
‖Φ‖ =O(�ν), � �→ 0, (3.16)

is valid, by the symbol Ô(�ν).

Theorem 3.2. For the functions belonging to �t
�(Z(t,�),S(t,�)), the following as-

ymptotic estimates are valid:

{∆ẑ}α = Ô(�|α|/2), α∈ Z2n
+ , � �→ 0. (3.17)

Proof. The proof is similar to that of relation (3.7).

Corollary 3.3. For the functions belonging to �t
�(Z(t,�),S(t,�)), the following

asymptotic estimates are valid:

{−i�∂t− Ṡ(t,�)+〈�P(t,�), �̇X(t,�)〉+〈Ż(t,�),J∆ẑ〉}= Ô(�), (3.18)

∆x̂k = Ô
(√
�
)
, ∆p̂j = Ô

(√
�
)
, k,j = 1,n. (3.19)

Proof. Follows from the explicit form (3.13) of the trajectory-concentrated func-

tions [Φ(�x,t,�)∈�t
�, (3.4)] and from the estimates (3.17).

Theorem 3.4. For any function Φ(�x,t,�) ∈ �t
�(Z(t,�),S(t,�)), the limiting rela-

tions

lim
�→0

1
‖Φ‖2

∣∣Φ(�x,t,�)∣∣2 = δ(�x− �X(t,0)), (3.20)

lim
�→0

1

‖Φ̃‖2

∣∣Φ̃(�p,t,�)∣∣2 = δ(�p− �P(t,0)), (3.21)

where Φ̃(�p,t,�)= F�,�x→�pΦ(�x,t,�), F�,�x→�p is the �−1 Fourier transform [37], are valid.

Proof. Consider an arbitrary functionφ(�x)∈ S. Then, for any functionΦ(�x,t,�)∈
�t
�, the integral

〈∣∣Φ(t,�)∣∣2∥∥Φ(t,�)∥∥2

∣∣∣φ
〉
= 1∥∥Φ(t,�)∥∥2

∫
Rnx
φ(�x)

∣∣Φ(�x,t,�)∣∣2d�x

= 1∥∥ϕ(t,�)∥∥2

∫
Rnx
φ(�x)

∣∣∣∣ϕ
(
∆�x√
�
, t
)∣∣∣∣

2

d�x,

(3.22)

after the change of variables �ξ =∆�x/√�, becomes

〈∣∣Φ(t,�)∣∣2|φ〉= �n/2∥∥ϕ(t,�)∥∥2

∫
Rnξ

φ
( �X(t,�)+√��ξ)∣∣ϕ(�ξ,t,�)∣∣2d�ξ. (3.23)
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We pass in the last equality to the limit of �→ 0, and, in view of

∥∥ϕ(t,�)∥∥2 = �n/2
∫
Rnξ

∣∣ϕ(�ξ,t,�)∣∣2d�ξ (3.24)

and a regular dependence of the function ϕ(�ξ,t,�) on
√
�, we arrive at the required

statement.

The proof of relation (3.21) is similar to the previous one if we notice that the Fourier

transform of the function Φ(�x,t,�)∈�t
� can be represented as

Φ̃(�p,t,�)= exp
{
i
�

[
S(t,�)−〈�p, �X(t,�)〉]}ϕ̃( �p− �P(t,�)√

�
, t,�

)
, (3.25)

where

ϕ̃( �ω,t,�)= 1
(2π)n/2

∫
Rnξ

e−i〈 �ω,�ξ〉ϕ(�ξ,t,�)dξ. (3.26)

Denote by 〈L̂(t)〉 the mean value of the operator L̂(t), t ∈ R1, self-conjugate in

L2(Rnx), calculated from the function Φ(�x,t,�) ∈ �t
�. Then the following corollary is

valid.

Corollary 3.5. For any function Φ(�x,t,�)∈�t
�(Z(t,�),S(t,�)) and any operator

Â(t,�) whose Weyl symbol A(z,t,�) satisfies Supposition 2.1, the equality

lim
�→0

〈
Â(t,�)

〉= lim
�→0

1
‖Φ‖2

〈
Φ(�x,t,�)

∣∣Â(t,�)∣∣Φ(�x,t,�)〉
=A(Z(t,0),t,0) (3.27)

is valid.

Proof. The proof is similar to that of relations (3.20) and (3.21).

Following [5], we introduce the following definition.

Definition 3.6. We refer to the solution Φ(�x,t,�)∈�t
� of (2.1) as semiclassically

concentrated on the phase trajectory Z(t,�) for �→ 0, provided that the conditions

(3.20) and (3.21) are fulfilled.

Remark 3.7. The estimates (3.17) of operators {∆ẑ}α allow a consistent expansion

of the functions of the class �t
�(Z(t,�),S(t,�)) and the operator of (2.1) in a power

series of
√
�. This expansion gives rise to a set of recurrent equations which determine

the sought-for asymptotic solution of (2.1).

For any function Φ ∈�t
�(Z(t,�),S(t,�)), the representation

Φ(�x,t,�)=
N∑
k=0

�k/2Φ(k)(�x,t,�)+O(�(N+1)/2), (3.28)
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where Φ(k)(�x,t,�) ∈ �t�(Z(t,�),S(t,�)), is valid. Representation (3.28) naturally in-

duces the expansion of the space �t
�(Z(t,�),S(t,�)) in a direct sum of subspaces,

�t
�

(
Z(t,�),S(t,�)

)= ∞⊕
l=0

�t
�

(
Z(t,�),S(t,�),l

)
. (3.29)

Here, the functions Φ ∈�t
�(Z(t,�),S(t,�),l)⊂�t

�(Z(t,�),S(t,�)), according to (3.4),

have estimates by the norm

1
�n/2

‖Φ‖L2(Rnx) = �l/2µ(t), (3.30)

where the function µ(t) is independent of � and continuously differentiable with

respect to t.
Similar to the proof of the estimates (3.17) and (3.18), it can be shown that the

operators

{∆ẑ}α, {−i�∂t− Ṡ(t,�)+〈�P(t,�), �̇X(t,�)〉+〈Ż(t,�),J∆ẑ〉} (3.31)

do not disrupt the structure of the expansions (3.28), (3.29), and

{∆ẑ}α : �t
�

(
Z(t,�),S(t,�),l

)
�→�t

�

(
Z(t,�),S(t,�),l+|α|),{−i�∂t− Ṡ(t,�)+〈�P(t,�), �̇X(t,�)〉+〈Ż(t,�),J∆ẑ〉} :

�t
�

(
Z(t,�),S(t,�),l

)
�→�t

�

(
Z(t,�),S(t,�),l+2

)
.

(3.32)

Remark 3.8. From Corollary 3.5, it follows that the solution Ψ(�x,t,�) of (2.1),

belonging to the class �t
�, is semiclassically concentrated.

The limiting character of the conditions (3.20) and (3.21), and the asymptotic char-

acter of the estimates (3.7), (3.13), (3.17), and (3.18), valid for the class of trajectory-

concentrated functions, make it possible to construct semiclassically concentrated

solutions to the Hartree type equation, not exactly, but approximately. In this case,

the L2 norm of the error has an order of �α, α > 1, for � → 0 on any finite time in-

terval [0,T ]. Denote such an approximate solution as Ψas = Ψas(�x,t,�). This solution

satisfies the following problem:

[
−i� ∂

∂t
+�̂(t)+�V̂(t,Ψas

)]
Ψas =O

(
�α
)
, Ψas ∈�t

�

(
Z(t,�),S(t,�),�

)
, t ∈ [0,T ],

(3.33)

whereO(�α) denotes the function g(α)(�x,t,�), the “residual” of (2.1). For the residual,

the following estimate is valid:

max
0≤t≤T

∥∥g(α)(�x,t,�)∥∥=O(�α), � �→ 0. (3.34)

Below we refer to the function Ψas(�x,t,�), satisfying the problem (3.33) and (3.34), as

a semiclassically concentrated solution (mod�α, � → 0) of the Hartree type equation

(2.1).
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The main goal of this work is to construct semiclassically concentrated solutions

to the Hartree type equation (2.1) with any degree of accuracy in small parameter
√
�,

� → 0, that is, functions Ψas(�x,t,�) = Ψ (N)(�x,t,�) satisfying the problem (3.33) and

(3.34) in mod (�(N+1)/2), where N ≥ 2 is any natural number.

Thus, the semiclassically concentrated solutions Ψ (N)(�x,t,�) of the Hartree type

equation approximately describe the evolution of the initial state Ψ0(�x,�) if the latter

has been taken from a class of trajectory-concentrated functions �0
�. The operators

�̂(t) and V̂ (t,Ψ), entering in the Hartree type equation (2.1), leave the class �t
� in-

variant on a finite time interval 0≤ t ≤ T since their symbols satisfy Supposition 2.1.

Therefore, in constructing semiclassically concentrated solutions to the Cauchy prob-

lem, the initial conditions can be

Ψ(�x,t,�)
∣∣
t=0 = Ψ0(�x,�), Ψ0 ∈�0

�

(
z0,S0

)
. (3.35)

The functions from the class �0
� have the following form:

Ψ0(�x,�)

= exp
{
i
�

[
S(0,�)+〈�P0(�),

(
�x− �X0(�)

)〉]}
ϕ0

( �x− �X0(�)√
�

,�
)
, ϕ0(�ξ,�)∈ S

(
Rnξ
)
,

(3.36)

where Z0(�) = (�P0(�), �X0(�)) is an arbitrary point of the phase space R2n
px , and the

constant S0(�) can be put equal to zero, without loss of generality.

Let us bring two important examples of the initial conditions of type (3.36).

(1) The first case is

ϕ0(�ξ)= e−〈�ξ,A�ξ〉/2, (3.37)

where the real n×n matrix A is positive definite and symmetric. Then relationship

(3.36) defines the Gaussian packet.

(2) The second case is

ϕ0(�ξ)= ei〈�ξ,Q�ξ〉/2Hν(ImQ�ξ), (3.38)

where the complex n×n matrix Q is symmetric and has a positive definite imag-

inary part ImQ, and Hν(�η), �η ∈ Rn, are multidimensional Hermite polynomials of

multi-index ν = (ν1, . . . ,νn) [6]. In this case, relation (3.36) defines the Fock states of a

multidimensional oscillator.

The solution of the Cauchy problem (2.1), (3.35) leads in turn to a set of Hamilton-

Ehrenfest equations which we will study in the following section.

4. The set of Hamilton-Ehrenfest equations. In view of Supposition 2.1 for the

symbols �(z,t) and V(z,w,t), the operator �(ẑ,t) in (2.2) is self-conjugate to the

scalar product 〈Ψ |Φ〉 in the space L2(Rnx) and the operator V(ẑ,ŵ,t) (2.3) is self-

conjugate to the scalar product L2(R2n
xy):

〈
Ψ(t)|Φ(t)〉R2n =

∫
R2n

d�xd�yΨ∗(�x, �y,t,�)Φ(�x, �y,t,�). (4.1)
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Therefore, we have for the exact solutions of (2.1)

∥∥Ψ(t)∥∥2 = ∥∥Ψ(0)∥∥2, (4.2)

and for the mean values of the operator Â(t)=A(ẑ,t), calculated for these solutions,

the equality

d
dt
〈
Â(t)

〉=〈∂Â(t)
∂t

�
+ i
�

〈[
�̂, Â(t)

]
−
〉

+ i�
�

〈∫
d�yΨ∗( �y,t,�)

[
V(ẑ,ŵ,t),Â(t)

]
−Ψ( �y,t,�)

�
,

(4.3)

where [Â, B̂]− = ÂB̂−B̂Â is the commutator of the operators Â and B̂, is valid. We refer

to (4.3) as the Ehrenfest equation for the operator Â and function Ψ(�x,t,�). This term

was chosen in view of the fact that in the linear case (�= 0), (2.1) goes into a quantum

mechanical Schrödinger equation, and relation (4.3) into an Ehrenfest equation [17].

We have the following notations:

ẑ = ( �̂p, �̂x), Z(t,�)= (�P(t,�), �X(t,�)), ∆ẑ = ẑ−Z(t,�). (4.4)

Using the rules of composition for Weyl symbols [26], we find, for the symbol of the

operator Ĉ = ÂB̂,

C(z)=A

 2
z + i�

2
J

1
∂
∂z


B(z)= B


 2
z − i�

2
J

1
∂
∂z


A(z). (4.5)

Here, the index over an operator symbol specifies the turn of its action. We suppose

that, for the Hartree type equation (2.1), exact solutions (or solutions differing from

exact ones by a quantityO(�∞)) exist in the class of trajectory-concentrated functions.

We write Ehrenfest equations (4.3) for the mean values of the operators ẑj and {∆ẑ}α
calculated from such (trajectory-coherent) solutions of (2.1). After cumbersome, but

not complicated calculations similar to those performed for the linear case with �= 0

(see [5], for details), we then obtain, restricting ourselves to the moments of order N,

the following set of ordinary differential equations:

ż =
N∑

|µ|=0

1
µ!
J


�zµ(z,t)∆µ+ �̃

N∑
|ν|=0

1
ν !
Vzµν(z,t)∆µ∆ν


,

∆̇α =
N∑

|µ+γ|=0

(−i�)|γ|−1

[
(−1)|γp| −(−1)|γx |

]
α!β!θ(α−γ)θ(β−γ)

γ!(α−γ)!(β−γ)!µ!

×

�µ(z,t)+ �̃

N∑
|ν|=0

1
ν !
Vµν(z,t)∆ν


∆α−γ+Jβ−Jγ−

2n∑
k=1

żkαk∆α(k),

(4.6)

with initial conditions

z|t=0 = z0 =
〈
Ψ0|ẑ|Ψ0

〉
, ∆α|t=0 =

〈
Ψ0

∣∣∣{ẑ−z0
}α∣∣∣Ψ0

〉
, α∈ Z2n

+ , |α| ≤N. (4.7)



THE TRAJECTORY-COHERENT APPROXIMATION . . . 337

Here, �̃= �‖Ψ0(�x,�)‖2 and Ψ0(�x,�) is the initial function from (3.35),

�µ(z,t)= ∂
|µ|�(z,t)
∂zµ

, Vµν(z,t)= ∂
|µ+ν|V(z,w,t)
∂zµ∂wν

∣∣∣∣
ω=z

,

�zµ(t,�)= ∂z�µ(t,�), α= (αp,αx), Jα= (αx,αp),
θ(α−β)=

2n∏
k=1

θ
(
αk−βk

)
, α(k)= (α1−δ1,k, . . . ,α2n−δ2n,k

)
.

(4.8)

By analogy with the linear theory (�= 0) [5], we refer to (4.6) as Hamilton-Ehrenfest

equations of order N. In view of the estimates (3.7) for the class �t
�, these equations

are equivalent up to O(�(N+1)/2) to the nonlinear Hartree type equation (2.1).

For the case of N = 2, the Hamilton-Ehrenfest equations take the form

ż = J∂z
(

1+ 1
2

〈
∂z,∆2∂z

〉+ 1
2

〈
∂ω,∆2∂ω

〉)(
�(z,t)+ �̃V(z,ω,t))∣∣ω=z,

∆̇2 = JM∆2−∆2MJ,
(4.9)

where

M = [�zz(z,t)+ �̃Vzz(z,ω,t)
]∣∣
ω=z, ∆2 =

∥∥∆ij∥∥2n×2n. (4.10)

Equations (4.9) can be written in the equivalent form if we put in the second equation

∆2(t)=A(t)∆2(0)A+(t), (4.11)

and then it becomes

Ȧ= JMA, A(0)= I. (4.12)

5. Linearization of the Hartree type equation. Now, we construct a semiclassically

concentrated (for �→ 0) solution of (2.1), satisfying the initial condition (3.35).

Designate by

y(N)(t,�)= (Zj1 ,∆(2)j2j3 ,∆(3)j4j5j6 , . . .)= (Z(t,�),∆α(t,�)), |α| ≤N, (5.1)

the solution of the Hamilton-Ehrenfest equations of order N, (4.6), with the initial

data y(N)(0,�), (4.7), determined by the initial function Ψ0(�x,�), (3.35), that is, the

mean values Z(0,�) and ∆α(0,�) are calculated from the function Ψ0(�x,�). Expand

the “kernel” of the operator V̂ (t,Ψ) in a Taylor power series of the operators ∆ŵ =
ŵ−Z(t,�),

V(ẑ,ŵ,t)=
∞∑

|α|=0

1
α!
∂|α|V(ẑ,w,t)

∂wα

∣∣∣
w=Z(t,�){∆ŵ}

α. (5.2)
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Substituting this series into (2.1), we obtain for the functions Ψ ∈�t
�


−i�∂t+�(ẑ,t)+ �̃

N∑
|α|=0

1
α!
∂|α|V(ẑ,w,t)

∂wα

∣∣∣∣
w=Z(t,�)

∆α(t,�)


Ψ =O(�(N+1)/2),

Ψ |t=0 = Ψ0,

(5.3)

where

Z(t,�)= 1∥∥Ψ(t,�)∥∥2

〈
Ψ(t,�)|ẑ|Ψ(t,�)〉,

∆α(t,�)= 1∥∥Ψ(t,�)∥∥2

〈
Ψ(t,�)

∣∣{∆ẑ}α∣∣Ψ(t,�)〉. (5.4)

In view of the asymptotic estimates (3.7), the functions z(t,�) and ∆α(t,�) can be

determined with any degree of accuracy from the Hamilton-Ehrenfest equations (4.6)

as

z(t,�)= z(t,�,N)+O(�(N+1)/2);
∆α(t,�)=∆α(t,�,N)+O

(
�(N+1)/2), |α| ≤N, (5.5)

where z(t,�,N) and ∆α(t,�,N) are solutions of the Hamilton-Ehrenfest equations

of order N, which are completely determined by the initial condition of the Cauchy

problem for the Hartree type equation, Ψ0(�x,t,�), and do not use the explicit form of

the solution Ψ(�x,t,�) in (5.3). Thus, the change of the mean values of the operators

for the solutions of the Hamilton-Ehrenfest equations of order N, (5.5), linearizes the

Hartree type equation (5.3) up toO(�(N+1)/2). So, to find an asymptotic solution to the

Hartree type equation (2.1), we should consider the linear Schrödinger type equation

L̂(N)
(
t,Ψ0

)
Φ =O(�(N+1)/2), Φ

∣∣
t=0 = Φ0; (5.6)

L̂(N)
(
t,Ψ0

)=−i�∂t+�(ẑ,t)+ �̃
N∑

|α|=0

1
α!
∂|α|V(ẑ,w,t)

∂wα

∣∣∣
w=Z(t,�,N)∆α(t,�,N). (5.7)

Definition 5.1. We call an equation of type (5.6) with a given Ψ0 a Hartree equation

in the trajectory-coherent approximation or a linear associated Schrödinger equation

of order N for the Hartree type equation (2.1).

The following statement is valid.

Statement 5.2. If the function Φ(N)(�x,t,�,Ψ0) ∈ �t
� is an asymptotic (up to

O(�(N+1)/2), � → 0) solution of (5.6), satisfying the initial condition Φ|t=0 = Ψ0, the

function

Ψ (N)(�x,t,�)= Φ(N)(�x,t,�,Ψ0
)

(5.8)

is an asymptotic (up to O(�(N+1)/2), �→ 0) solution of the Hartree type equation (2.1).
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Now, we expand the operators

�(ẑ,t),
∂|α|V(ẑ,w,t)

∂wα

∣∣∣
w=Z(t,�,N) (5.9)

in a Taylor power series of the operator ∆ẑ and present the operator −i�∂t in the

form

−i�∂t =
{−〈�P(t,�,N), �̇X(t,�,N)〉+ Ṡ(t,�)}−〈Ż(t,�,N),J∆ẑ〉
+{−i�∂t− Ṡ(t,�)+〈�P(t,�,N), �̇X(t,�,N)〉+〈Ż(t,�,N),J∆ẑ〉}. (5.10)

Here, the group of terms in braces containing −i�∂t , in view of (3.32), has an order of

Ô(�). The other terms can be estimated, in view of (3.18), by the parameter �. Sub-

stitute the obtained expansions into (5.6). Take (to within O(�N/2)) the real function

S(t,�) entering in the definition of the class �t
�(Z(t,�),S(t,�)) in the form

S(t,�)= S(N)(t,�)

=
∫ t

0


〈�P(t,�,N) �̇X(t,�,N)〉−�

(
Z(t,�,N),t

)

− �̃
N∑

|α|=0

1
α!
∂|α|V

(
Z(t,�,N),w,t

)
∂wα

∣∣∣∣
w=Z(t,�,N)

∆α(t,�,N)


dt.

(5.11)

As a result, (5.6) will not contain operators of multiplication by functions depending

only on t and �.

In view of the estimates (3.17) and (3.18), valid for the class �t
�(Z(t,�),S(t,�)), we

obtain for (5.3)

{−i�∂t+Ĥ0
(
t,Ψ0

)+�Ĥ(N)
(
t,Ψ0

)}
Φ =O(�(N+1)/2), (5.12)

where

Ĥ(N)
(
t,Ψ0

)= N∑
k=1

�k/2Ĥk
(
t,Ψ0

)
, (5.13)

Ĥ0
(
t,Ψ0

)=−Ṡ(t,�)+〈�P(t,�), �̇X(t,�)〉
+〈Ż(t,�),J∆ẑ〉+ 1

2

〈
∆ẑ,Hzz

(
t,Ψ0

)
∆ẑ
〉
,

(5.14)

Hzz
(
t,Ψ0

)= [�zz(z,t)+ �̃Vzz(z,w,t)
]∣∣
z=w=Z(t,�,N),

�(k+2)/2Ĥk
(
t,Ψ0

)=−�(k+1)/2〈Ż(k+1)(t),J∆ẑ
〉+ ∑

|α|=k+2

1
α!
∂|α|�(z,t)

∂zα

∣∣∣∣
z=Z(t,�,N)

{∆ẑ}α

+ �̃
∑

|α+β|=k+2

1
α!β!

∂|α+β|V(z,w,t)
∂zβ∂wα

∣∣∣
z=w=Z(t,�,N){∆ẑ}

β∆α(t,�,N).

(5.15)

Here, k = 1,N and the functions Z(k)(t) are the coefficients of the expansion of the

projection Z(t,�) of the solution y(N)(t,�) of the Hamilton-Ehrenfest equations on
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the phase space R2n in a power series of
√
� in terms of the regular perturbation

theory,

Z(t,�)= Z(t,�,N)= Z(t,0)+
N∑
k=2

�k/2Z(k)(t). (5.16)

From the Hamilton-Ehrenfest equations, in view of the fact that the first-order mo-

ments are zero (∆α(t,�,N) = 0 for |α| = 1), it follows that the coefficient Ż(1)(t) is

equal to zero.

Remark 5.3. The solutions of the set of Hamilton-Ehrenfest equations depend on

the index N that denotes the highest order of the centered moments ∆α, α∈ Z2n+ . We

will omit the index N if this does not give rise to ambiguity.

The operators Ĥ0(t), (5.14), and Ĥk(t), (5.15), depend on the mean Z(t,�) and mo-

ments ∆α(t,�), that is, on the solution y(N)(t,�) of the Hamilton-Ehrenfest equations

(4.6). The solutions of (5.12) in turn depend implicitly on y(N)(t,�),

Φ(�x,t,�)= Φ(�x,t,�,y(N)(t,�)). (5.17)

Below the function arguments y(N)(t,�) or Ψ0 can be omitted if this does not give rise

to ambiguity. For example, we may put H0(t)= Ĥ0(t,Ψ0).
In accordance with the expansions (3.29) and (3.28), the solution of (5.12) can be

represented in the form

Φ
(
�x,t,�,Ψ0

)= N∑
k=0

�k/2Φ(k)
(
�x,t,�,Ψ0

)+O(�(N+1)/2), (5.18)

where

Φ(k)
(
�x,t,�,Ψ0

)∈�t�
(
Z(t,�),S(t,�)

)
. (5.19)

In view of (3.32), for the operators {−i�∂t+ Ĥ0(t,Ψ0)} in (5.14) and �(k+2)/2Ĥk(t,Ψ0),
k= 1,N, in (5.15), the following is valid:

�(k+2)/2Ĥk
(
t,Ψ0

)
: �t

�

(
Z(t,�),S(t,�),l

)
�→�t

�

(
Z(t,�),S(t,�),l+k+2

)
,{−i�∂t+Ĥ0

(
t,Ψ0

)}
: �t

�

(
Z(t,�),S(t,�),l

)
�→�t

�

(
Z(t,�),S(t,�),l+2

)
.

(5.20)

Substitute (5.18) into (5.12) and equate the terms having the same order in �1/2,

�→ 0 in the sense of (5.20). As a result, we obtain a set of recurrent associated linear

equations of order k to determine the functions Φ(k)(�x,t,�,Ψ0),

{−i�∂t+Ĥ0
(
t,Ψ0

)}
Φ(0) = 0, for �1 (5.21){−i�∂t+Ĥ0

(
t,Ψ0

)}
Φ(1)+�Ĥ1

(
t,Ψ0

)
Φ(0) = 0, for �3/2 (5.22){−i�∂t+Ĥ0

(
t,Ψ0

)}
Φ(2)+�Ĥ1

(
t,Ψ0

)
Φ(1)+�3/2Ĥ2

(
t,Ψ0

)
Φ(0) = 0, for �2 (5.23)

...
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It is natural to call (5.21) for the principal term of the asymptotic solution as

the Hartree type equation in the trajectory-coherent approximation in mod�3/2. This

equation is a Schrödinger equation with the Hamiltonian quadric with respect to the

operators �̂p and �̂x.

6. The trajectory-coherent solutions of the Hartree type equation. The solution

of the Schrödinger equation with a quadric Hamiltonian is well known [9, 34]. For our

purposes, it is convenient to take semiclassical trajectory-coherent states (TCSs) [5]

as a basis of solutions to (5.21). We will refer to the solution of the nonlinear Hartree

type equation, which coincides with the TCS at the time zero, as a trajectory-coherent

solution of the Hartree type equation. Now, we pass to constructing solutions like this.

We write the symmetry operators â(t,Ψ0) of (5.21), linear with respect to the oper-

ators ∆ẑ, in the form

â
(
t,Ψ0

)=Na〈b(t,Ψ0
)
,∆ẑ

〉
, (6.1)

where Na is a constant and b(t) is a 2n-space vector. From the equation

−i�∂â(t)
∂t

+[Ĥ0
(
t,Ψ0

)
, â(t)

]
− = 0, (6.2)

which determines the operators â(t), in view of the explicit form of the operator

Ĥ0(t,Ψ0) in (5.14), we obtain

−i�〈ḃ(t),∆ẑ〉+i�〈b(t), Ż(t,�)〉
+
[{
− Ṡ(t,�)+〈�P(t,�), �̇X(t,�)〉+〈Ż(t,�),J∆ẑ〉

+ 1
2

〈
∆z,Hzz

(
t,Ψ0

)
∆ẑ
〉}
,
〈
b(t),∆ẑ

〉]= 0.

(6.3)

Taking into account the commutative relations

[
∆ẑj ,∆ẑk

]= i�Jjk, j,k= 1,2n, (6.4)

which follow from (2.5), we find that

−i�〈ḃ(t),∆ẑ〉+i�〈∆ẑ,Hzz(t)Jb(t)〉= 0. (6.5)

Hence, we have

ḃ = Hzz
(
t,Ψ0

)
Jb. (6.6)

Denote b(t)=−Ja(t). Then, for the determination of the 2n-space vector a(t) from

(6.6), we obtain

ȧ= JHzz
(
t,Ψ0

)
a. (6.7)

We call the set of (6.7), by analogy with the linear case [37], a set of equations in

variations.
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Thus, the operator

â(t)= â(t,Ψ0
)=Na〈b(t),∆ẑ〉=Na〈a(t),J∆ẑ〉 (6.8)

is a symmetry operator for (5.21) if the vector a(t) = a(t,Ψ0) is a solution of the

equations in variations (6.7).

For each given solution Z(t,�) of the Hamilton-Ehrenfest equations (4.6), we can

find 2n linearly independent solutions ak(t)∈ C2n to the equations in variations (6.7).

Since each 2n-space vector ak(t) is associated with an operator âk(t,Ψ0), we obtain

2n operators, n of which commutate with one another and form a complete set of

symmetry operators for (5.21).

Now, we turn to constructing the basis of solutions to (5.21) with the help of the

operators âk(t,Ψ0). Equation (5.21) is a (linear) Schrödinger equation with a quadric

Hamiltonian and admits solutions in the form of Gaussian wave packets

Φ
(
�x,t,Ψ0

)=N� exp
{
i
�

[
S(t,�)+iφ0(t)+i�φ1(t)

+〈�P(t,�),∆�x〉+ 1
2

〈
∆�x,Q(t)∆�x

〉]}
,

(6.9)

where the real phase S(t,�) is defined in (5.11), N� is a normalized constant, while

the real functions φ0(t) and φ1(t) and the complex n×n matrix Q(t) are to be

determined.

Remark 6.1. Asymptotic solutions in the form of Gaussian packets (6.9) for equa-

tions with an integral nonlinearity of more general form than (2.1) were constructed

in [52]. In this case, the Hamilton-Ehrenfest equations depend substantially on the

initial condition for the original nonlinear equation.

Substitution of (6.9) into (5.21) yields

Φ
{
Ṡ(t,�)+iφ̇0(t)+i�φ̇1(t)+

〈 �̇P(t,�),∆�x〉−〈�P(t,�), �̇X(t,�)〉+ 1
2

〈
∆�x,Q̇(t)∆�x

〉
−〈∆�x,Q(t) �̇X(t,�)〉− Ṡ(t,�)+〈�P(t,�), �̇X(t,�)〉+〈 �̇X(t,�),Q(t)∆�x〉−〈 �̇P(t,�),∆�x〉
+ 1

2

{〈
∆�x,Hxx

(
t,Ψ0

)
∆�x
〉+〈∆�x,Hpx(t,Ψ0

)
Q(t)∆�x

〉
+〈[−i�∇+Q(t)∆�x],Hpx(t,Ψ0

)
∆�x
〉

+〈[−i�∇+Q(t)∆�x],Hpp(t,Ψ0
)[−i�∇+Q(t)∆�x]〉}}= 0.

(6.10)

Equating the coefficients of the terms with the same powers of the parameter � and

the operator ∆�x, we obtain

iφ̇0(t)= 0 for (∆�x)0�0;

iφ̇1(t)+ −i
2

Sp
[
Hpx

(
t,Ψ0

)+Hpp
(
t,Ψ0

)
Q(t)

]= 0 for (∆�x)0�1;

〈∆�x,0〉 = 0 for (∆�x)1�0;〈
∆�x,

[
Q̇(t)+Hxx

(
t,Ψ0

)+Hxp
(
t,Ψ0

)
Q(t)+Q(t)Hpx

(
t,Ψ0

)
+Q(t)Hpp

(
t,Ψ0

)
Q(t)

]
∆�x
〉= 0 for (∆�x)2�0.

(6.11)
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As a result, we have

φ0(t)= 0,

φ1(t)= 1
2

∫ t
0

Sp
[
Hpx(t)+Hpp(t)Q(t)

]
dt.

(6.12)

The matrix Q(t) is determined from the Riccati type equation

Q̇(t)+Hxx(t)+Q(t)Hpx(t)+Hxp(t)Q(t)+Q(t)Hpp(t)Q(t)= 0. (6.13)

Thus, the construction of a solution to (5.21) in the form of the Gaussian packet (6.9)

is reduced to solving the set of ordinary differential equations (6.13).

Now, we construct the Fock basis of solutions to a (linear) Hartree type equation in

the trajectory-coherent approximation (5.21). This is the first step in constructing the

solution to recurrent equations (5.21), (5.22), and (5.23).

Consider the properties of the symmetry operators âk(t) in (6.8) of the zero-order

associated Schrödinger equation (5.21), which are necessary to construct the Fock

basis.

Statement 6.2. Let a1(t) and a2(t) be two solutions of the equations in variations

and let â1(t) and â2(t) be the respective symmetry operators of (5.21), defined in (6.8).

Then the equality

[
â1(t), â2(t)

]= i�N1N2
{
a1(t),a2(t)

}= i�N1N2
{
a1(0),a2(0)

}
(6.14)

is valid.

Actually, upon direct checking, we are convinced that

[
â1(t), â2(t)

]=N1N2
[〈
a1(t),J∆ẑ

〉
,
〈
a2(t),J∆ẑ

〉]
= i�N1N2

〈
Ja1(t),JJa2(t)

〉
= i�N1N2

〈
a1(t),JJJa2(t)

〉
= i�N1N2

〈
a1(t),Ja2(t)

〉
= i�N1N2

{
a1(t),a2(t)

}
.

(6.15)

Here, we have used the rules of commutation for the operators ∆ẑ. The skew scalar

product holds and, hence, the statement is proved.

Remark 6.3. If the initial conditions for the equations in variations are taken such

that

{
aj(0),ak(0)

}= {a∗j (0),a∗k (0)}= 0,
{
aj(0),a∗k (0)

}= idkδkj, dk > 0, k,j = 1,n,
(6.16)

and Nk = 1/
√
�dk, then the following canonical commutation relations for the boson

operators of creation (â+k (t)) and annihilation (âk(t)) are valid:

[
âk(t), âj(t)

]= [â+k (t), â+j (t)], [
âk(t), â+j (t)

]= δkj. (6.17)
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The simplest example of initial data satisfying the conditions (6.16) is

a1(0)=
(
b1,0, . . . ,0,1,0, . . .

)
;

a2(0)=
(
0,b2, . . . ,0,0,1, . . .

)
;

...

(6.18)

Here, dk = 2Imbk > 0, k= 1,n.

Theorem 6.4. The function

|0, t〉 = ∣∣0, t,Ψ0
〉

= N�
detC(t)

exp
{
i
�

[
S(t,�)+〈�P(t,�),∆�x〉+ 1

2

〈
∆�x,Q(t)∆�x

〉]}
,

(6.19)

where N� = [(π�)−ndetD0]1/4 is a vacuum state for the operators âj(t), such that

âj(t)|0, t〉 = 0, j = 1,n. (6.20)

Proof. Actually, substituting (6.8) and (6.19) into (6.20), we get

|0, t〉[〈 �Zj(t),Q(t)∆�x〉−〈 �Wj(t),∆�x〉]= 0, (6.21)

since

Q(t) �Zj(t)= B(t)C−1(t) �Zj(t)= �Wj(t). (6.22)

Recall that from the fact that the matrix D0 is positive definite and diagonal, it

follows that detC(t)≠ 0, and so the matrix ImQ(t) is positive definite as well (see the

appendix).

Define the denumerable set of states |ν,t〉 as the result of the action of the creation

operators upon the vacuum state |0, t〉,

|ν,t〉 = ∣∣ν,t,Ψ0
〉= 1√

ν !

(
â+
(
t,Ψ0

))ν∣∣0, t,Ψ0
〉= n∏

k=1

1√
νk!
(
â+k
(
t,Ψ0

))νk∣∣0, t,Ψ0
〉
. (6.23)

By analogy with the linear theory (�= 0), we call the functions |ν,t〉 in (6.23) semi-

classical trajectory-coherent states and consider their simplest properties.

Statement 6.5. The relations

âk|ν,t〉 = √νk
∣∣ν̃(−)k ,t

〉
,

â+k |ν,t〉 =
√
νk+1

∣∣ν̃(+)k ,t
〉
,

ν̃(±)k = (ν1±δ1,k,ν2±δ2,k, . . . ,νn±δn,k
) (6.24)

are valid.

Actually, we have

[
âj ,

(
â+k
)νk]= νk(â+k )νk−1δj,k. (6.25)
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It follows that

âj|ν,t〉 =
n∏
k=1

1√
νk!
[
âj ,

(
â+k
)νk]|0, t〉 = n∏

k=1

νj√
νk!
(
â+k
)νk−δk,j |0, t〉

= √νj
n∏
k=1

1√(
νk−δk,j

)
!

(
â+k
)νk−δk,j |0, t〉

= √νj∣∣ν̃(−)k ,t
〉
;

â+j |ν,t〉 =
n∏
k=1

1√
νk!
(
â+k
)νk+δk,j |0, t〉

=
n∏
k=1

√
νj+1√(
νk+δk,j

)
!

(
â+k
)νk+δk,j |0, t〉

=
√
νj+1

∣∣ν̃(+)k ,t
〉
,

(6.26)

and thus the statement is proved.

Statement 6.6. The states |ν,t,Ψ0〉with t ∈R and Ψ0 ∈�0
� form a set of orthonor-

mal functions

〈
Ψ0, t,ν′|ν,t,Ψ0

〉= δν,ν′ , ν,ν′ ∈ Zn+. (6.27)

Consider the expression

〈
Ψ0, t,ν′|ν,t,Ψ0

〉= 1√
ν′!ν !

〈
Ψ0, t,0

∣∣ �̂aν′(t,Ψ0
)[
�̂a+
]ν(t,Ψ0

)∣∣0, t,Ψ0
〉
. (6.28)

Commuting the operators of creation and annihilation in view of commutation rela-

tions (6.17) and using relation (6.20), we obtain

〈
t,ν′|ν,t〉= 〈t,0|0, t〉δν,ν′ . (6.29)

Then we calculate

〈
t,0|0, t〉= N2

�∣∣detC(t)
∣∣
∫

exp
[
− 2
�

ImS(�x,t)
]
d�x. (6.30)

In view of (A.18) and the explicit form of the complex phase in (6.19), we have

ImS(�x,t)= 1
2

〈
∆�x, ImQ(t)∆�x

〉
. (6.31)

The matrix ImQ(t) is real and positive definite; hence, the matrix
√

ImQ(t) does exist,

such that

det
√

ImQ(t)=
√

detD0∣∣detC(t)
∣∣ . (6.32)
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We perform in the integral of (6.30) the change

�ξ = 1√
�

√
ImQ(t)∆�x, (6.33)

then we obtain

〈t,0|0, t〉 = N2
�√

detD0
�n/2

∫
e−�ξ

2
d�ξ = (π�)

n/2N2
�√

detD0
= 1, (6.34)

since detD0 =
∏n
k=1 Imbk. Thus, the functions |ν,t,Ψ0〉 (6.23) form the Fock basis of

solutions to (5.21).

Theorem 6.7. Let the symbols of the operators �̂(t) and V̂ (t,Ψ) satisfy the condi-

tions of Supposition 2.1. Then, for any ν ∈ Zn+, the function

Ψν(�x,t,�)= |ν,t〉, (6.35)

where the functions |ν,t〉 are defined by formula (6.23), is an asymptotic (up toO(�3/2),
�→ 0) solution of the Hartree type equation (2.1) with the initial conditions

Ψν(�x,t,�)|t=0 = |ν,t〉|t=0. (6.36)

7. The principal term of the semiclassical asymptotic. The solution of the Cauchy

problem (2.1), (6.36) is a special case of the semiclassically concentrated solutions

of (2.1). However, in the case of arbitrary initial conditions (3.35) belonging to the

class �t
�, the functions |ν,t〉 are not asymptotic solutions of the Hartree type equa-

tion (2.1). This is a fundamental difference between the complex germ method for

the Hartree type equation (2.1), being developed here, and a similar method devel-

oped for linear equations [5, 37]. The coefficients of the Hartree type equation in the

trajectory-coherent approximation (5.21) depend on the initial condition (3.35) since

they are determined by the solutions of the set of Hamilton-Ehrenfest equations. It

follows that among the whole set of solutions to (5.21) only one (satisfying the con-

dition Ψ(�x,t,�)|t=0 = Ψ0(�x,�)) will be an asymptotic (up to O(�3/2)) solution of (2.1).

However, the Fock basis (TCS’s) |ν,t〉makes it possible to construct in explicit form an

asymptotic solution to (2.1), with any degree of accuracy in �1/2, �→ 0, which would

satisfy the initial condition (3.35).

We illustrate in more detail the relation of the solutions of an associated linear

Schrödinger equation to the solution of a Hartree type equation. To do this, we

construct the Green function of the Cauchy problem for the zero-order associated

Schrödinger equation. Although the Green function G(0)(�x, �y,t,s) for quadric quan-

tum systems is well known [15, 16, 34, 44], we give for completeness its explicit form,

as convenient to us. This function will allow us to demonstrate explicitly the nontrivial

dependence of the evolution operator of the associated linear equation on the initial

conditions for the original Hartree type equation.
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By definition,

[−i�∂t+Ĥ0
(
t,Ψ0

)]
G(0)

(
�x, �y,t,s,Ψ0

)= 0,

lim
t→s
G(0)

(
�x, �y,t,s,Ψ0

)= δ(�x− �y), (7.1)

where the operator Ĥ0 is defined in (5.14). We make use of the simplifying assumption

that

detHpp(s)≠ 0, det
∥∥∥∥∂pk

(
t,z0

)
∂p0j

∥∥∥∥≠ 0. (7.2)

If condition (7.2) is not valid, the solution of the problem can be found follow-

ing the work [15, 16]. For the problem under consideration, exact solutions of the

Schrödinger equation (5.21) are known, these are the functions |ν,t,Ψ0〉 in (6.23) that

form a complete set of functions. Thus we have

G(0)
(
�x, �y,t,s,Ψ0

)= ∞∑
|ν|=0

Φν(�x,t,�)Φ∗ν ( �y,s,�), (7.3)

where

Φν(�x,t,�)=
∣∣ν,t,Ψ0

〉
. (7.4)

Details of similar calculations can be found, for instance, in [34]. However, for our

purposes, the following approach seems to be convenient.

We carry out an �−1 Fourier transform in (7.1). For the Fourier transformation of

the Green function

G̃(0)
(
�p, �y,t,s,Ψ0

)=
∫
Rn

d�x
(2πi�)n/2

G(0)
(
�x, �y,t,s,Ψ0

)
exp

{
− i
�
〈�x, �p〉

}
, (7.5)

we obtain [−i�∂t+H̃0
(
�̂p, �̂x,t,Ψ0

)]
G̃(0)

(
�p, �y,t,s,Ψ0

)= 0,

lim
t→s
G̃
(
�p, �y,t,s,Ψ0

)= 1
(2πi�)n/2

exp
{
− i
�
〈�p, �y〉

}
.

(7.6)

Here, �̂p = �p, �̂x = i�(∂/∂ �p), and the symbols of the operators of (7.1) and (7.6) coincide,

H̃0(�p, �x,t)= H0(�p, �x,t). (7.7)

Equation (7.6) coincides up to notations with (5.21) and, hence, admits solutions of

type (6.9),

G̃(0)
(
�p, �y,t,s,Ψ0

)
= exp

{
− i
�

[
S0(t,s, �y)+

〈 �G(t,s, �y),∆�p〉+ 1
2

〈
∆�p,Q̃(t,s, �y)∆�p

〉]}
,

(7.8)
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where ∆�p = �p− �P(t,�). Here, the functions S0(t,s, �y) = S0(t), �G(t,s, �y) = �G(t), and

Q̃(t,s, �y) = Q̃(t) are to be determined and, according to (7.6), satisfy the initial con-

ditions

lim
t→s
Q̃(t,s, �y)= 0, lim

t→s
�G(t,s, �y)= �y, lim

t→s
S0(t,s, �y)=

〈
�p0, �y

〉
. (7.9)

Substituting (7.8) into (7.6), we write

G̃(0)
(
�p, �y,t,s,Ψ0

){− Ṡ0(t)−
〈 �̇G(t),∆�p(t)〉+〈 �G(t), �̇P(t,�)〉− 1

2

〈
∆�p, ˙̃Q(t)∆�p

〉
+〈 �̇P(t,�),Q̃(t)∆�p〉− Ṡ(t,�)−〈 �̇P(t,�),( �G(t)+Q̃(t)∆�p− �P(t,�))〉
+〈 �̇X(t,�),∆�p〉
+ 1

2

[〈( �G(t)+Q̃(t)∆�p− �P(t,�)),Hxx(t)( �G(t)+Q̃(t)∆�p− �P(t,�))〉
+〈(G̃(t)+Q̃(t)∆�p− �P(t,�)),Hxp(t)∆�p〉+〈∆�p,Hpp(t)∆�p〉
+〈∆�p,Hpx(t)(G̃(t)+Q̃(t)∆�p− �P(t,�))〉]

+ i�
2

Sp
[
Hxx(t)Q̃(t)+Hxp(t)

]}= 0.

(7.10)

Equating the terms with the same powers of ∆�p, we obtain the following set of equa-

tions:

− ˙̃Q= Hpx(t)Q̃+Q̃Hxp(t)+Q̃Hxx(t)Q̃+Hpp(t)= 0, (7.11)

−( �̇G− �̇P(t,�))+Q̃(t)Hxx(t)( �G− �P(t,�))+Hpx(t)
( �G− �P(t,�))= 0, (7.12)

−Ṡ0+
〈 �X(t,�), �̇P(t,�)〉− Ṡ(t,�)+ i�

2
Sp
[
Hxx(t)Q̃(t)+Hxp(t)

]

+1
2

〈( �G(t)− �P(t,�)),Hxx(t)( �G(t)− �P(t,�))〉= 0,
(7.13)

with the initial conditions (7.9).

Let B̃(t) and C̃(t) be solutions of equations in variations (A.4) with the initial con-

ditions

B̃(t)|t=s = B0(s), C̃(t)|t=s = 0, Bt0(s)= B0(s), (7.14)

and let the matrix ImB0(s) be positive definite.

In view of (7.2), the solution of the Cauchy problem (A.4) and (7.14) will then have

the form

B̃(t)= λt4(∆t)B0(s), C̃(t)=−λt3(∆t)B0(s), ∆t = t−s, (7.15)

where the matrices λt3(t) and λt4(t) are defined in (A.30). The matrix

Q̃(t)= C̃(t)B̃−1(t)=−λt3(∆t)
(
λ−1

4 (∆t)
)t

(7.16)

will then satisfy (7.11) with the initial conditions (7.9).
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Provided that (7.2) is valid, from (A.25) and (A.21), it follows that

�G(t)= (B̃−1(t)
)tBt0(s)(�y− �x0

)+ �X(t,�)= λ−1
4 (∆t)

(
�y− �x0

)+ �X(t,�). (7.17)

In a similar manner, we obtain, for S0,

S0(t,s,�)= S(t,�)−S(s,�)+ i�
2

∫ t
s
dτ Sp

[
Hxp(τ)+Hxx(τ)Q̃(τ)

]

+ 1
2

∫ t
s
dτ
〈( �G(τ)− �X(τ,�)),Hxx(τ)( �G(τ)− �X(τ,�))〉+〈�p0, �y

〉
.

(7.18)

In view of (A.25) and Liouville’s lemma (Lemma A.14), we obtain

1
2

∫ t
s
dτ Sp

[
Hxp(τ)+Hxx(τ)Q̃(τ)

]= 1
2

lndet B̃−1(τ)|ts

= 1
2

ln
(

detB0(s)
det B̃(t)

)

=−1
2

lndetλ4(∆t).

(7.19)

To calculate the integral in (7.19), we use relation (A.29) and, in view of (7.18), we get

1
2

∫ t
s
dτ
〈( �G(τ)− �X(τ,�)),Hxx(τ)( �G(τ)− �X(τ,�))〉

= 1
2

〈(
�y− �x0

)
,λ2(∆t)λ−1

4 (∆t)
(
�y− �x0

)〉
,

(7.20)

where the matrix λt2(t) is defined in (A.30). Hence,

S0(t,s,�)= S(t,�)−S(s,�)− i�
2

ln
(
detλ4(∆t)

)

+ 1
2

〈(
�y− �x0

)
,λ2(∆t)λ−1

4 (∆t)
(
�y− �x0

)〉+〈�p0, �y
〉
.

(7.21)

Substituting (7.21), (7.18), and (7.16) into (7.8), we obtain the well-known expression

(see, e.g., [15])

G̃(0)
(
�p, �y,t,s,Ψ0

)= 1
(2πi�)n/2

1√
detλ4(∆t)

×exp
{
− i
�

(
S(t,�)−S(s,�))

− i
2�

〈(
�y− �x0

)
,λ2(∆t)λ−1

4 (∆t)
(
�y− �x0

)〉

− i
�

〈
�p0, �y

〉− i
�

〈
∆�p, �X(t,�)

〉− i
�

〈
∆�p,λ−1

4 (∆t)
(
�y− �x0

)〉

+ i
2�

〈
∆�p,λ−1

4 (∆t)λ3(∆t)∆�p
〉}
.

(7.22)

Now, we substitute (7.22) into (7.5) and make use of the relation

∫
Rn
d�xexp

[
− 1

2
〈�x,Γ �x〉+〈�b, �x〉

]
=
√
(2π)ndetΓ−1 exp

{〈�b,Γ−1�b〉
2

}
, (7.23)
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in which we put Γ =−(i/�)λ−1
4 (∆t)λ3(∆t), �b =−(i/�)[ �X(t,�)− �x+λ−1

4 (∆t)( �y− �x0)].
Then we obtain

G(0)
(
�x, �y,t,s,Ψ0

)= 1√
det

(−i2π�λ3(∆t)
)

×exp
{
i
�

[
S(t,�)−S(s,�)+〈�P(t,�),∆�x〉−〈�p0,

(
�y− �x0

)〉

− 1
2

〈(
�y− �x0

)
,λ1(∆t)λ−1

3 (∆t)
(
�y− �x0

)〉

− 1
2

〈
∆�x,λ−1

3 (∆t)
(
�y− �x0

)〉

− 1
2

〈
∆�x,λ−1

3 (∆t)λ4(∆t)∆�x
〉]}

.

(7.24)

Here, we used the relations

λt1(t)λ4(t)−λt3(t)λ2(t)= In×n, λ3(t)λt4(t)−λ4(t)λt3(t)= 0, (7.25)

that follow immediately from (A.10), (A.37), and from the definition of matriciant

(A.30).

Consider the limit of expression (7.24) for ∆t = t−s → 0. We obtain

λ1(∆t)= In×n+O(∆t), λt3(∆t)=−Hpp(s)∆t+O
(
(∆t)2

)
,

λ−1
3 (∆t)=− 1

∆t
H−1
pp(s)+O

(
(∆t)0

)
, λ4(∆t)= In×n+O(∆t),

λ2(∆t)=O(∆t).
(7.26)

It follows that, for short times (see, e.g., [40])

lim
∆t→0

G(0)
(
�x, �y,t,s,Ψ0

)

= 1√
det

(−i2π�∆tHpp(s)) exp
{

i
2�∆t

〈
(�x− �y),H−1

pp(s)(�x− �y)
〉+O(∆t0)}.

(7.27)

Thus we have proved the following theorem.

Theorem 7.1. Let the symbols of the operators �̂(t) and V̂ (t,Ψ) satisfy the condi-

tions of Supposition 2.1. Then the function

Ψ (0)(�x,t,�)= Û(0)(t,0,Ψ0
)
Ψ0, (7.28)

where Û(0)(t,0,Ψ0) is the evolution operator of the zero-order associated Schrödinger

equation (5.21) with the kernelG(0)(�x, �y,t,0,Ψ0), is an asymptotic (up toO(�3/2), �→ 0)

solution of the Hartree type equation (2.1) and satisfies the initial condition

Ψ (0)(�x,t,�)|t=0 = Ψ0. (7.29)
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Remark 7.2. The principal term of the semiclassical asymptotic Ψ (0)(�x,t,�) will

not change (to within O(�3/2), �→ 0) if the phase function S(N)(t,�) in the operator

Ĥ0(t,Ψ0) is substituted by its value S2(t,�) for N = 2 and we restrict ourselves to the

first terms in � → 0 in the phase trajectory Z(2)(t,�), and in the other expressions

Z(N)(t,�) is changed by Z0(t,�).

8. Semiclassically concentrated solutions. Now, we construct asymptotic solu-

tions to the Hartree type equation (2.1) with an arbitrary accuracy in powers of
√
�.

To do this, we find asymptotic solutions of the associated linear Schrödinger equa-

tion (5.6) with an arbitrary accuracy in powers of
√
�. We present an arbitrary initial

condition Φ0(�x,�)∈�0
� as

Φ0(�x,�)=
N∑
k=0

�k/2Φ(k)0 (�x,�), (8.1)

where

Φ(k)0 (�x,�)∈�t�
(
z0,S0

)
. (8.2)

Then, for the recurrent associated linear equations (5.21), (5.22), and (5.23), we arrive

at a Cauchy problem with initial data

Φ(k)
∣∣
t=0 = Φ(k)0 (�x,�), k= 0,N. (8.3)

The solution of these recurrent equations can readily be constructed as its expansion

over the complete set of orthonormal Fock functions |ν,t〉 in (6.20). As a result, we

obtain

Φ(0)(�x,t,�)=
∞∑

|ν|=0

∣∣ν,t,Ψ0
〉〈
Ψ0,0,ν|Φ(0)0 (�x,�)

〉
, (8.4)

Φ(1)(�x,t,�)=
∞∑

|ν|=0

∣∣ν,t,Ψ0
〉〈
Ψ0,0,ν|Φ(1)0 (�x,�)

〉

− i
�

∞∑
|ν|=0

∣∣ν,t,Ψ0
〉∫ t

0
dτ
〈
Ψ0,τ,ν|Ĥ1

(
t,Ψ0

)
Φ(0)(�x,τ,�)

〉
,

(8.5)

Φ(2)(�x,t,�)=
∞∑

|ν|=0

∣∣ν,t,Ψ0
〉〈
Ψ0,0,ν|Φ(2)0 (�x,�)

〉

− i
�

∞∑
|ν|=0

∣∣ν,t,Ψ0
〉∫ t

0
dτ
〈
Ψ0,τ,ν|Ĥ1

(
t,Ψ0

)
Φ(1)(�x,τ,�)

〉

− i
�

∞∑
|ν|=0

∣∣ν,t,Ψ0
〉∫ t

0
dτ
〈
Ψ0,τ,ν|Ĥ2

(
t,Ψ0

)
Φ(0)(�x,τ,�)

〉
,

...

(8.6)

Denote by �̂(N)(t,Ψ0) the operator defined by the relation

�̂(N)(t,Ψ0
)
Φ(�x,t)=

∫ t
0
dτÛ0

(
t,τ,Ψ0

)
Ĥ(N)

(
τ,Ψ0

)
Φ(�x,τ), (8.7)
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where Û0(t,τ) is the evolution operator of the associated Schrödinger equation (5.21)

and

Ĥ(N)
(
t,Ψ0

)= N∑
k=1

�k/2Ĥk
(
t,Ψ0

)
. (8.8)

Thus we have proved the following theorem.

Theorem 8.1. Let the symbols of the operators �̂(t) and V̂ (t,Ψ) satisfy the condi-

tions of Supposition 2.1. Then the function

Ψ (N)(�x,t,�)=
N∑
k=0

1
k!

{
− i
�

�̂(N)(t,Ψ0
)}k

Û0
(
t,0,Ψ0

)
Ψ0(�x,�), (8.9)

whereN ≥ 2, is an asymptotic, up toO(�(N+1)/2), solution of (2.1) and satisfies the initial

condition (3.20).

9. The Green function and the nonlinear superposition principle. We show that

in the class of trajectory-concentrated functions for the Hartree type equation (2.1) we

can construct, with any given accuracy in �1/2, the kernel of the evolution operator or

the Green function of the Cauchy problem for (2.1). The explicit form of the semiclas-

sical asymptotics Ψ (N)(�x,t,�) in (8.9) makes it possible to obtain an expression for

the Green function G(N)(�x, �y,t,s,Ψ0) valid on finite time intervals t ∈ [0,T ]. Actually,

according to (8.9), for any function ϕ(�x,�)∈�0
�, the solution of the Cauchy problem

with the initial condition

Φ(�x,t,�)|t=0 =ϕ(�x,�), (9.1)

for the associated linear Schrödinger equation (5.12), has the form

Φ(N)(�x,t,�)= R̂(N)(t,Ψ0
)∫

Rn
d�yG(0)

(
�x, �y,t,0,Ψ0

)
ϕ(�y,�)+O(�(N+1)/2)

=
∫
Rn
d�yG(N)

(
�x, �y,t,0,Ψ0

)
ϕ(�y,�)+O(�(N+1)/2), (9.2)

where

R̂(N)
(
t,Ψ0

)= N∑
k=0

1
k!

{
− i
�

�̂(N)(t,Ψ0
)}k

, (9.3)

and the function G(0)(�x, �y,t,s,Ψ0) is defined in (7.24).

It follows that

G(N)
(
�x, �y,t,0,Ψ0

)= R̂(N)(t,Ψ0
)
G(0)

(
�x, �y,t,0,Ψ0

)
. (9.4)

Since R̂(N)(0,Ψ0)= 1, we have, for an arbitrary s < t,

G(N)
(
�x, �y,t,s,Ψ0

)= R̂(N)(t,Ψ0
)
G(0)

(
�x, �y,t,s,Ψ0

)(
R̂(N)

(
s,Ψ0

))+, (9.5)
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which is the Green function of the Cauchy problem (9.1) with s ≠ 0. Obviously, for the

functions G(N)(�x, �y,t,s,Ψ0), the following composition rule is valid:

∫
d�uG(N)

(
�x, �u,t,τ,Ψ0

)
G(N)

(
�u, �y,τ,s,Ψ0

)=G(N)(�x, �y,t,s,Ψ0
)+O(�(N+1)/2). (9.6)

Denoting by Û(N)(t,0,Ψ0) the approximate evolution operator of the linear equation

(5.12), then

Û(N)
(
t,0,Ψ0

)
ϕ(�x,�)=

∫
d�yG(N)

(
�x, �y,t,0,Ψ0

)
ϕ(�y,�), (9.7)

we obtain it from (9.5) in the form of the T -ordered Dyson expansion,

Û(N)
(
t,0,Ψ0

)= N∑
k=0

(
− i
�

)k∫
∆>k
dkτĤ1

(
τ1, t,Ψ0

)···Ĥ1
(
τk,t,Ψ0

)
Û0
(
t,0,Ψ0

)
. (9.8)

Here, we have used the following notations [40]: the domain of integration is an open

hypertriangle,

∆>k ≡
{
τ ∈ [0, t]k | t > τ1 > τ2 > ···> τN > s

}
, (9.9)

the operator Ĥ1(τ,t,Ψ0) is a perturbation operator in the representation of the inter-

action

Ĥ1(τ,t)= Û0
(
t,τ,Ψ0

)
Ĥ(N)

(
τ,Ψ0

)
Û+0
(
τ,t,Ψ0

)
, (9.10)

where Ĥ(N)(t,Ψ0) has been defined in (5.13), and Û0(t,s,Ψ0) is the evolution operator of

the associated linear Schrödinger equation with the kernel G(0)(�x, �y,t,s,Ψ0) in (7.24).

In view of Statement 5.2, the action of operator (9.8) on the function ϕ = Ψ0(�x,�)
determines the asymptotic solution of the Cauchy problem (2.1), (3.35) for the Hartree

type equation (2.1)

Ψ (N)(�x,t,�)= Û(N)(t,0,Ψ0
)
Ψ0(�x,�), Ψ0(�x,�)∈�0

�. (9.11)

It follows that the operator (9.8) is an approximate evolution operator for the Hartree

type equation (2.1) in the class of trajectory-concentrated functions.

For the constructed asymptotic solutions, from expression (9.11) immediately fol-

lows the following theorem.

Theorem 9.1 (nonlinear superposition principle). Let Ψ1(�x,t,�,y
(N)
1 (t,�)) be an

asymptotic, up to O(�(N+1)/2), solution of the Cauchy problem for the Hartree type

equation (2.1) with the initial condition Ψ01(�x,�), and let the function Ψ2(�x,t,�,
y(N)2 (t,�)) be a solution of the same problem with the initial condition Ψ02(�x,�). Then

the solution of the Cauchy problem with the initial condition

Ψ03(�x,�)= c1Ψ01(�x,�)+c2Ψ02(�x,�), c1,c2 = const, (9.12)
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has the form

Ψ3
(
�x,t,�,y(N)3 (t,�)

)= Û(N)(t,0,Ψ03
)
Ψ03(�x)

= c1Û(N)
(
t,0,Ψ03

)
Ψ01(�x)+c2Û(N)

(
t,0,Ψ03

)
Ψ02(�x)

= c1Ψ1
(
�x,t,�,y(N)3 (t,�)

)+c2Ψ2
(
�x,t,�,y(N)3 (t,�)

)
.

(9.13)

Here, y(N)k (t,�) denotes the solution of the Hamilton-Ehrenfest equations of order N,

N ≥ 2, (4.6), with an initial condition which is determined from the functions Ψ0k(�x,�),
k= 1,3, respectively.

10. The one-dimensional Hartree type equation with a Gaussian potential. We

illustrate the above scheme for asymptotic solutions construction by the example of

the Hartree type equation with a Gaussian self-action potential


−i�∂t+ (p̂)

2

2m
+ �̃V0

∫ +∞
−∞

dy exp
[
− (x−y)

2

2γ2

]∣∣Ψ(y,t)∣∣2

‖Ψ‖2


Ψ = 0. (10.1)

Here, γ and V0 are parameters of the potential, �̃ is a nonlinear parameter, and p̂ =
−i�∂/∂x, x ∈R1.

We will solve the example in two steps. First, we will seek solutions concentrated

on a phase trajectory Z(t) = (P(t),X(t)) that does not depend on �. In this case, a

countable set of semiclassical trajectory-concentrated solutions can be constructed.

Each of these solutions is a squeezed coherent state that is well known in quantum

mechanics (see, e.g., [34]) and is an asymptotic solution of (10.1) with the accuracy

of O(�3/2), �→ 0. Provided that, a linear combination of the constructed functions is

not a solution (even not an approximate one), which, however, is natural since we deal

with a nonlinear equation.

At the second step, we solve the problem of constructing an asymptotic solution

for (10.1) under the additional condition: any linear combination (with a modification)

of such solutions is an approximate solution of the equation, too.

It can be found that this problem is solvable if, first, the sought-for functions are

concentrated on the phase trajectory Z(t,�)= (P(t,�),X(t,�)), regularly depends on√
�, that is, they belong to the class �t

�(S(t,�),Z(t,�)) in (3.1). Second, the functions

(P(t,�) and X(t,�)), that determine the phase trajectory z = Z(t,�), are approximate

solutions of the Hamilton-Ehrenfest system.

In addition, we can clarify a nonlinearity of the generalised superposition principle

for the Hartree type equation. Namely, the constructed solutions depend on the two

parameters Θ1 and Θ2 that are determined by the initial condition Ψ0 ∈ �t
�. Then, a

linear combination of approximate solutions

G1Ψ1
(
x,t,�,Θ(1)1 ,Θ(1)2

)+G2Ψ2
(
x,t,�,Θ(2)1 ,Θ(2)2

)
(10.2)
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is an asymptotic solution too, if the parameters Θ(l)k k,l = 1,2 are substituted by the

parameters Θ(3)k , respectively, that are calculated by the linear combination at zero

time moment,

G1Ψ2(x,0,�)+G2Ψ2(x,0,�). (10.3)

We seek a solution of (10.1) in the form of the following statement:

Ψ(x,t,�)=ϕ
(
∆x√
�
, t,
√
�
)

exp
[
i
�

(
S(t,�)+P(t)∆x)]. (10.4)

Here, ϕ(ξ,t,
√
�) ∈ S is a function in Schwartz space with respect to the variable

ξ =∆x/√�, and depends regularly on
√
�,�→ 0, and∆x = x−X(t). The real functions

S(t,�), Z(t)= (P(t),X(t)) are to be determined.

We expand the exponential in (10.1) in a Taylor series of ∆x = x −X(t), ∆y =
y−X(t) and restrict ourselves to the terms of the order of not above four in ∆x and

∆y . In view of estimates (3.19), (10.1) will then take the form

{
−i�∂t+ P

2(t)
2m

+ P(t)∆p̂
m

+ ∆p̂
2

2m

+ �̃V0

[
1− 1

2γ2

(
∆x2−2∆xα(1)Ψ (t,�)+α(2)Ψ (t,�)

)

+ 1
8γ4

(
∆x4−4∆x3α(1)Ψ (t,�)+6∆x2α(2)Ψ (t,�)

−4∆xα(3)Ψ (t,�)+α(4)Ψ (t,�)
)]}

Ψ =O(�5/2),

(10.5)

where ∆p̂ = p̂−P(t), and

α(k)Ψ (t,�)= 1
‖Ψ‖2

∫ +∞
−∞
(∆y)k

∣∣Ψ(y,t)∣∣2dy, k= 0,∞, (10.6)

are the k-order moments centered about X(t). Equation (10.5) can be simplified if we

make the change

Ψ(x,t,�)= exp

{
i
�

∫ t
0

[
P(t)Ẋ(t)− P

2(t)
2m

− �̃V0

− �̃
2γ2

V0σxx(t,�)+ 1
8γ4

α(4)Ψ (t,�)
]
dt
}
Φ(x,t,�),

(10.7)

where

σxx(t,�)=α(2)Ψ (t,�)= 1
‖Ψ‖2

∫ +∞
−∞
∆y2

∣∣Ψ(y,t)∣∣2dy (10.8)

is the variance. The function Φ(x,t,�) belongs to the class �t
�

(
S̃(t,�),Z(t)

)
, where

S̃(t,�)= S(t,�)−
∫ t

0

[
P(t)Ẋ(t)− P

2(t)
2m

− �̃V0− �̃
2γ2

V0σxx(t,�)+ 1
8γ4

α(4)Ψ (t,�)
]
dt,

(10.9)
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and satisfies the equation

{
−i�∂t+P(t)Ẋ(t)+ P(t)∆p̂m

+ ∆p̂
2

2m

+ �̃V0

[
− 1

2γ2

(
∆x2−2∆xα(1)Φ (t,�)

)

+ 1
8γ4

(
∆x4−4∆x3α(1)Φ (t,�)+6∆x2α(2)Φ (t,�)−4∆xα(3)Φ (t,�)

)]}
Φ

=O(�5/2).

(10.10)

Here, we have made use of

α(k)Ψ (t,�)=α(k)Φ (t,�), k= 1,N. (10.11)

We will seek the approximate (mod�5/2) solution Φ(x,t,�) to (10.10) in the form

Φ(x,t,�)= Φ(0)(x,t)+
√
�Φ(1)(x,t)+�Φ(2)(x,t)+··· , (10.12)

where Φ(k)(x,t)∈�t�(S(t,�),Z(t)). Denote by L̂0 and L̂1 the operators

L̂0 =−i�∂t+P(t)Ẋ(t)+ 1
m
P(t)∆p̂+ 1

2m
∆p̂2− �̃V0

2γ2
∆x2;

L̂1 = �̃V0

8�γ4

[
∆x4−4∆x3α(1)Φ (t,�)+6∆x2α(2)Φ (t,�)−4∆xα(3)Φ (t,�)

]
.

(10.13)

Earlier we have shown that L̂0 = Ô(�) and L̂1 = Ô(�). In (10.10), we equate the terms

having the same estimate in
√
� in the sense of (3.19). Then,

[
L̂0+ �̃

γ2
∆xα(1)Φ(0)

]
Φ(0) = 0, for �1; (10.14)

[
L̂0+ �̃

γ2
∆xα(1)Φ(0)

]
Φ(1) =−2

�̃V0

γ2
∆xRe

〈
Φ(0)|∆x|Φ(1)〉Φ(0), for �3/2; (10.15)

[
L̂0+ �̃

γ2
∆xα(1)Φ(0)

]
Φ(2) =− �̃V0

γ2
∆x
{[

2Re
〈
Φ(0)|∆x|Φ(2)〉+α(1)Φ(1)]Φ(0)

+2Re
〈
Φ(0)|∆x|Φ(1)〉Φ(1)}− L̂1Φ(0), for �2.

(10.16)

The function

Φ(0)0 (x,t)=N�
(

1
C(t)

)1/2
exp

{
i
�

(
P(t)∆x+m

2
Ċ(t)
C(t)

∆x2
)}

(10.17)

is a solution of (10.14). Here, we have made use of the fact that X(t) and P(t) are

solutions of the ordinary differential equations

Ṗ = 0, Ẋ = P
m
, (10.18)
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and C(t) denotes the complex function satisfying the equations

Ḃ = �̃V0

γ2
C, Ċ = B

m
. (10.19)

Equations (10.18) are Hamiltonian equations with the Hamiltonian �(p,x,t) =
p2/(2m) and their solution is

P(t)= p0, X(t)= p0

m
t+x0. (10.20)

Similarly, (10.19) are Hamiltonian equations for a harmonic oscillator with frequency

Ω=
√
�̃|V0|
mγ2

, (10.21)

and their solution is

C(t)= c1 exp

(
−
√
�̃
∣∣V0

∣∣
mγ2

t
)
+c2 exp

(√
�̃
∣∣V0

∣∣
mγ2

t
)

C1,C2 = const,

B(t)=mĊ(t).
(10.22)

For the initial conditions (6.18)

C(0)= 1, B(0)= b, Imb > 0, (10.23)

two cases are possible,

C(t)=




ch(Ωt)+ b
Ω

sh(Ωt), �̃V0 > 0,

cos(Ωt)+ b
Ω

sin(Ωt), �̃V0 < 0.
(10.24)

In the linear case (�̃= 0), the frequency Ω = 0 and (10.19) become equations in varia-

tions for (10.18). In view of (10.19), N� = (m Imb/π�)1/4 and we find the variance of

the coordinate x in explicit form,

σxx(t,�)=
√
m Imb
π�

·
∫ +∞
−∞

∆x2∣∣C(t)∣∣ exp

[
−m
�
∆x2 Imb∣∣C(t)∣∣2

]
dx =

∣∣C(t)∣∣2
�

2m· Imb . (10.25)

Then,

Ψ (0)0 (x,t,�)= exp

{
i
�

[(
p2

0

2m
− �̃V0

)
t+ ��̃V0

2m· Imb
∫ t

0

∣∣C(t)∣∣2dt
]}
Φ(0)0 (x,t,�).

(10.26)

It can readily be noticed that α(2)Ψ(0) (t,�)=α
(2)
Φ(0) (t,�). Hence, from (10.24) and (10.25),

it can be inferred that for �̃V0 < 0 the variance α(2)Φ(0) (t,�) is limited in t, that is,

|σxx(t)| ≤M , M = const, while for �̃V0 > 0 it increases exponentially. In the limit of

γ → 0 and with V0 = (2πγ)−1/2, (10.10) becomes a nonlinear Schrödinger equation,

while in the case where �̃V0 < 0 (�̃V0 > 0), it corresponds to the condition of existence
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(nonexistence) of solitons. Note that, if α(1)Φ(0) (t,�) = 0, the equation for the function

Φ(0) takes the form

L̂0Φ(0) = 0, (10.27)

becoming a Schrödinger equation with a quadric Hamiltonian. We will find the solution

to (10.27) satisfying an additional condition α(1)Φ(0) (t,�)= 0. To do this, we denote

â(t)=Na
(
C(t)∆p̂−B(t)∆x). (10.28)

If C(t) and B(t) are solutions of (10.19), the operator â(t) commutates with the op-

erator L̂0. So the function

Φ(0)k = 1
k!

(
â+(t)

)kΦ(0)0 (10.29)

will also be a solution of the Schrödinger equation (10.10). Commuting the operators

â+(t) with the function Φ(0)0 (x,t,�), we obtain the Fock basis of solutions for linear

equation (10.27)

Φ(0)k (x,t)= 1
k!
NkaΦ

(0)
0 (x,t)(−i)k[C∗(t)]k

[
�
∂
∂x

− 2m Imb∣∣C(t)∣∣2∆x
]k

1

= 1
k!
NkaΦ

(0)
0 (x,t)(−i)k[C∗(t)]k

(√
�m Imb∣∣C(t)∣∣

)k
Hk

(
∆x

√
m Imb∣∣C(t)∣∣√�

)
,

(10.30)

where Hn(ξ) are Hermite polynomials. Determining Na from the condition [â(t),
â+(t)]= 1 and representing the solution of the equations in variations as

C(t)= ∣∣C(t)∣∣exp
{
iarg

[
C(t)

]}
, (10.31)

we get

Φ(0)k (x,t)= 1
k!
(−i)k exp

{−ikarg
[
C(t)

]}( 1√
2

)k
Hk

(
∆x

√
m Imb∣∣C(t)∣∣√�

)
Φ(0)0 (x,t).

(10.32)

Using the properties of Hermite polynomials, we can obtain that the meanα(1)
Φ(0)k
(t,�)=

0, k= 0,∞. Then,

Ψ (0)k (x,t,�)= exp

{
i
�

[(
p2

0

2m
− �̃V0

)
t− �̃V0

2γ2
α(2)
Φ(0)k
(t,�)

]}
Φ(0)k (x,t,�). (10.33)

Similarly, we find

α(2)
Φ(0)ν
(t,�)= 1

2νν !
√
π

∫∞
−∞
∆x2

∣∣Φ(0)ν (x,t)
∣∣2dx = �

∣∣C(t)∣∣2(2ν+1)
2m Imb

, (10.34)
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and for the functions Ψ (0)k (t,�)

Ψ (0)k (x,t,�)= exp

{
i
�

[(
p2

0

2m
− �̃V0

)
t− �̃V0

2γ2

�(2k+1)
2m Imb

∫ t
0

∣∣C(τ)∣∣2dτ
]}
Φ(0)k (x,t,�).

(10.35)

The functions (10.35) are approximate, up to O(�3/2), solutions of the Hartree type

equation (10.1). However, since, for the linear combination

Φ(x,t)= c1Φ
(0)
k (x,t)+c2Φ

(0)
l (x,t), (10.36)

the condition α(1)Φ (t,�) = 0 is not fulfilled, Φ(x,t) is not a solution of (10.14) and,

hence, the linear superposition principle is invalid for the functions (10.35) even in the

class of asymptotic solutions �t
�(S(t,�),P(t),X(t)) up toO(�3/2). Thus, the presence

of the term α(1)Φ(0) (t,�) in (10.14) violates the linear superposition principle (10.36).

We seek the solution to (10.1) in the class �t
�(S(t,�),Z(t,�)), that is, we localize the

solution asymptotically in the neighborhood of the trajectory z = Z(t,�) depending

explicitly on parameter �. With that, the estimates (3.19) remain valid. We take the

dependence of Z(t,�) on the parameter �→ 0 such that the equation for the function

Φ(0)(x,t,�) is linear. For doing this, we subject the functions X(t,�) and P(t,�) to

the equations

Ṗ = �̃V0

γ2

(
α(1)Φ(0) (t,�)+

1
2γ2

α(3)Φ(0) (t,�)
)
, Ẋ = P

m
, (10.37)

and the functions C(t) and B(t) to the equations

Ḃ = �̃V0

γ2
C+ 3

4γ2
α(2)Φ(0) (t,�)C, Ċ = B

m
. (10.38)

The function Φ(0)(x,t,�) will then satisfy the equation

L̂0Φ(0) = 0. (10.39)

In contrast to (10.14), (10.18), (10.19), equations (10.37), (10.38), and (10.39) are de-

pendent. Note that, within the accuracy under consideration, the principal term of the

asymptotic will not change if (10.37) and (10.38) are solved accurate to O(�3/2) and

O(�), respectively. Then (10.37) become

ṗ = �̃V0

γ2
α(1)Φ(0) (t,�), ẋ = p

m
, (10.40)

and (10.38) coincide with (10.19) and their solution has the form (10.24). Equation

(10.39) is linear and its general solution can be represented as an expansion over a

complete set of orthonormal functions Φ(0)k (x,t,�),

Φ(0)(x,t,�)=
∞∑
k=0

ckΦ
(0)
k (x,t,�). (10.41)
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Here, Φ(0)k (x,t) is determined by expression (10.32), where X(t) and P(t) ought to be

replaced by X(t,�) and P(t,�), respectively. Substitute (10.41) into (10.24). In view of

the properties of Hermite polynomials,

∫ +∞
−∞
ξHn(ξ)Hl(ξ)e−ξ

2
dξ =

∫ +∞
−∞
ξ
[

1
2
Hn+1(ξ)+nHn−1(ξ)

]
Hl(ξ)e−ξ

2
dξ

= 1
2
δn+1,l+nδn−1,l,

(10.42)

we obtain

α(1)Φ(0) (t,�)=
√
�
∣∣C(t)∣∣
m Imb

∞∑
n=0

(
1
2
δn+1,l+nδn−1,l

)
cnc∗l

=
√
�
∣∣C(t)∣∣
m Imb

∞∑
n=0

(
1
2
c∗n+1+nc∗n−1

)
cn.

(10.43)

Equations (10.40) will then take the form

Ṗ =
√
�Θ1

∣∣C(t)∣∣, Ẋ = P
m
, (10.44)

where

Θ1 = �̃V0

mγ2 Imb

∞∑
n=0

(
1
2
c∗n+1+nc∗n−1

)
cn. (10.45)

Integration of the above equations, (10.44) yields

P(t,�)=mẊ(t,�),

X(t,�)=
√
�
Θ1

m

∫ t
0
dτ
∫ τ

0

∣∣C(s)∣∣ds+ p0

m
t+x0.

(10.46)

As a result, the principal term of the asymptotic can be represented in the form

Ψ (0)(x,t,�)= exp

{
i
�

[∫ t
0

(
m
2
Ẋ2(τ,�)− �̃V0−�Θ2

∣∣C(τ)∣∣2
)
dτ
]}
Φ(0)(x,t,�),

(10.47)

where

Θ2 = �̃V0

2m Imb

∞∑
n=0

[
1
4
c∗n+2+

(
n+ 1

2

)
c∗n+

(
n2−n)c∗n−2

]
cn. (10.48)

It follows that the function (10.47) depends on Θ1 and Θ2 as on parameters:

Ψ (0)(x,t,�)= Ψ (0)(x,t,�,Θ1,Θ2
)
. (10.49)

Here, Θ1 and Θ2 are determined by the sets of (10.45) and (10.48), respectively.



THE TRAJECTORY-COHERENT APPROXIMATION . . . 361

Consider the Cauchy problem for (10.1)

Ψ1

∣∣
t=0 = Ψ10(x), Ψ2

∣∣
t=0 = Ψ20(x),

Ψ3

∣∣
t=0 = Ψ30(x)=G1Ψ10(x)+G2Ψ20(x), Ψk(x)∈�t

�,
(10.50)

where Gk = const. Denote by Ψk(x,t,�,Θ
(k)
1 ,Θ(k)2 ) the principal term of the asymptotic

solution of (10.1), satisfying the initial conditions (10.50). Then, from the explicit form

of function (10.35) the following equation follows:

Ψ3
(
x,t,�,Θ(3)1 ,Θ(3)2

)=G1Ψ1
(
x,t,�,Θ(3)1 ,Θ(3)2

)+G2Ψ2
(
x,t,�,Θ(3)1 ,Θ(3)2

)
. (10.51)

The relation (10.51) represents the nonlinear superposition principle for the asymp-

totic solutions of (10.1) in the class �t
�(S(t,�),Z(t,�)).

Appendix

The set of equations in variations. We already mentioned that to construct so-

lutions to (5.21) in the class �t
�, it is necessary to find solutions to the equations in

variations (6.7) and to the Riccati type matrix equation (6.13). We show that the solu-

tions of the Riccati type matrix equation can be completely expressed in terms of the

solutions of the equations in variations a(t).
We present the 2n-space vector a(t) in the form

a
(
t,Ψ0

)= ( �W(t,Ψ0
)
, �Z
(
t,Ψ0

))
, (A.1)

where the n-space vector �W(t)= �W(t,Ψ0) is the “momentum” part and �Z(t)= �Z(t,Ψ0)
is the “coordinate” part of the solution of the equations in variations. Thus we can

write the latter as

�̇W =−Hxp
(
t,Ψ0

) �W −Hxx
(
t,Ψ0

) �Z,
�̇Z = Hpp

(
t,Ψ0

) �W +Hpx
(
t,Ψ0

) �Z. (A.2)

The set of (A.2) is called a set of equations in variations in vector form. Denote by B(t)
and C(t) the n×n matrices composed of the “momentum” and “coordinate” parts of

the solution of the equations in variations:

B(t)= ( �W1(t), �W2(t), . . . , �Wn(t)
)
, C(t)= ( �Z1(t), �Z2(t), . . . , �Zn(t)

)
. (A.3)

The matrices B(t) and C(t) satisfy the set of equations

Ḃ =−Hxp
(
t,Ψ0

)
B−Hxx

(
t,Ψ0

)
C,

Ċ = Hpp
(
t,Ψ0

)
B+Hpx(t)C,

(A.4)

which is called a set of equations in variations (6.7) in matrix form.
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Consider some properties of the solutions of this set of equations, which deter-

mine the explicit form of the asymptotic solution of the Hartree type equation and its

approximate evolution operator.

Remark A.1. The set of equations in variations (6.7) is a set of linear Hamiltonian

equations with the Hamiltonian function

H(a,t)= 1
2

〈
a,Hzz(t)a

〉
, a∈ C2n. (A.5)

The complex number {a1,a2} = 〈a1,Ja2〉 is called a skew-scalar product of the

vectors a1 and a2, ak ∈C2n.

Obviously, the skew-scalar product is antisymmetric

{
a1,a2

}=−{a2,a1
}
. (A.6)

Statement A.2. The skew-scalar product {a1(t),a2(t)} of the solutions a1(t) and

a2(t) of the equations in variations (6.7) is invariable in time, that is,

{
a1(t),a2(t)

}= {a1(0),a2(0)
}= const, (A.7){

a1(t),a∗2 (t)
}= {a1(0),a∗2 (0)

}= const . (A.8)

This statement can be checked immediately by differentiating the skew-scalar prod-

uct {a1(t),a2(t)} with respect to t,

d
dt
{
a1(t),a2(t)

}= 〈ȧ1(t),Ja2(t)
〉+〈a1(t),Jȧ2(t)

〉
= 〈JHzz(t)a1(t),Ja2(t)

〉+〈a1(t),JJHzz(t)a2(t)
〉

= 〈a1(t),Hzz(t)a2(t)
〉−〈a2(t),Hzz(t)a2(t)

〉= 0.

(A.9)

Here, we have made use of the fact that J2 = −I2n×2n and Jt = −J. Relation (A.8)

follows from (A.8) since a∗2 (t) is also a solution of the equations in variations in view

of the fact that these equations are real and linear.

For the set of equations in variations in matrix form, Statement A.2 will be as fol-

lows.

Statement A.3. The matrices

D0 = 1
2i
[
C+(t)B(t)−B+(t)C(t)], (A.10)

D̃0 = Ct(t)B(t)−Bt(t)C(t), (A.11)

where the matrices B(t) and C(t) are arbitrary solutions of the set of equations in

variations (A.4), are invariable in time, and so we have

D0 = 1
(2i)

[
C+(0)B(0)−B+(0)C(0)] , D̃0 = Ct(0)B(0)−Bt(0)C(0). (A.12)

The relation of the matrices B(t) and C(t) to the matrix Q(t) and, in view of (6.9),

to the function φ1(t) yields the following statement.
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Statement A.4. Let the n×nmatrices B(t) and C(t) be solutions to equations in

variations (6.7). Then, if det C(t)≠ 0, t ∈ [0,T ], the matrixQ(t)= B(t)C−1(t) satisfies

the Riccati matrix equation (6.13).

Actually, in view of

Ċ−1(t)=−C−1(t)Ċ(t)C−1(t), (A.13)

and since from C−1(t)C(t)= I it follows that Ċ−1(t)C(t)+C−1(t)Ċ(t)= 0, we have

Q̇= Ḃ(t)C−1(t)+B(t)Ċ−1(t)= Ḃ(t)C−1(t)−Q(t)Ċ(t)C−1(t)

= [−Hxp(t)B−Hxx(t)C
]
C−1−Q[Hpp(t)B+Hpx(t)C

]
C−1

=−Hxp(t)Q−Hxx(t)−QHpp(t)Q−QHpx(t).

(A.14)

A similar property is also valid for the matrix Q−1(t)

−Q̇−1+Q−1Hxx(t)Q−1+Hpx(t)Q−1+Q−1Hxp(t)+Hpp(t)= 0. (A.15)

Statement A.5. If at the time zero the matrixQ(t) is symmetric (Q(0)=Qt(0) at

t = 0), it is symmetric at any time t ∈ [0,T ] (i.e., Q(t) =Qt(t)). Here, At denotes the

transpose to the matrix A.

Actually, from (6.13) it follows that

Q̇t+Htxx(t)+Htpx(t)Qt+QtHtxp(t)+QtHtpp(t)Qt = 0, (A.16)

since

Hxx = Htxx, Hpp = Htpp, Hpx = Htxp. (A.17)

Hence, the matrix Qt(t) satisfies (6.13) with the same initial conditions as the matrix

Q(t), since, as agreed, the matrix Q(0) is symmetric. The validity of the statement

follows from the uniqueness of the solution of the Cauchy problem.

Statement A.6. The imaginary parts of the matrices Q(t) and Q−1(t) can be rep-

resented in the form

ImQ(t)= (C+(t))−1D0C−1(t), (A.18)

ImQ−1(t)=−(B−1(t)
)+D0B−1(t). (A.19)

Here, the matrix D0 is defined by relation (A.10).

Actually, by definition,

ImQ(t)= i
2

[
Q+(t)−Q(t)]= i

2

{[
B(t)C−1(t)

]+−B(t)C−1(t)
}

= i
2

[
C+(t)

]−1[B+(t)C(t)−C+(t)B(t)]C−1(t)

= [C+(t)]−1D0C−1(t),

(A.20)

Similarly, relation (A.19) can be proved.
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Statement A.7. Let the matrix Q(t) be definite and symmetric and the compo-

nents of the vector �ytj (t), j = 1,n, be the row elements of the matrix C−1(t) in (A.45).

Then the vectors �ytj (t) satisfy the set of equations

�̇y =−�xp(t) �y−Q(t)�pp(t) �y. (A.21)

Actually, we have

Ċ−1 =−C−1ĊC−1, (A.22)

and hence,

Ċ−1 =−C−1[�pp(t)Q(t)+�px(t)
]
. (A.23)

Transposing relation (A.23) for the vectors �y(t) (A.45), we obtain (A.21).

Remark A.8. If the matrix

Q−1(t)= C(t)B−1(t) (A.24)

is definite and symmetric, the matrix B−1 satisfies the equation

Ḃ−1 = B−1[�xx(t)Q−1(t)+�xp(t)
]
. (A.25)

The proof is similar to that of Statement A.7.

Statement A.9. If the matrix D0 (A.10) is positive definite, the relation

2iB−1(t)�xx(t)
(
B−1(t)

)t = d
dt

[
D−1

0 B+(t)
(
Bt(t)

)−1
]

(A.26)

is valid.

Actually, from (A.19) it follows that

B−1(t)�xx(t)
(
B−1(t)

)t
= i

2
D−1

0 B+(t)
[
Q−1(t)−(Q∗(t)

)−1
]

�xx(t)
(
B−1(t)

)t
= i

2
D−1

0

[
B−1(t)

(
�xx(t)C(t)B−1(t)−�xx(t)C+(t)

(
B−1(t)

)∗+�px(t)B(t)B−1(t)

−�px(t)B∗(t)
(
B−1(t)

)∗)(
2i ImQ−1(t)

)
B∗(t)D−1

0

]t
= i

2
D−1

0

[
B−1(t)Ḃ(t)B−1(t)B∗(t)−B−1(t)Ḃ∗(t)

]t

= i
2
D−1

0

[
d
dt
B−1(t)B∗(t)

]t
.

(A.27)

Statement A.10. If for the equations in variations (A.4) the Cauchy problem is

formulated as

B̃(t)|t=s = B0, C̃(t)|t=s = 0, Bt0 = B0, (A.28)
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then the relation

∫ t
s
B̃−1(τ)�xx(t)

(
B̃−1(τ)

)t dτ = (B−1
0

)tλ2
(
∆t,Ψ0

)
λ−1

4

(
∆t,Ψ0

)(
B−1

0

)t
(A.29)

is valid. Here, λk(∆t,Ψ0), k = 1,4, denote the n×n matrices being blocks of the ma-

triciant of the set of equations in variations (6.7),

A
(
t,Ψ0

)=

λt4

(
t,Ψ0

)
λt2
(
t,Ψ0

)
λt3
(
t,Ψ0

)
λt1
(
t,Ψ0

)

 , A

(
0,Ψ0

)= I2n×2n. (A.30)

Consider an auxiliary Cauchy problem formulated as

B(t,ε)|t=s = B0, C(t,ε)|t=s = εI, I= ∥∥δk,j∥∥n×n. (A.31)

Obviously, we have

lim
ε→0

B(t,ε)= B̃(t), lim
ε→0

C(t,ε)= C̃(t),

D0(ε)= ε
2i
(
B0−B∗0

)
.

(A.32)

We assume that the matrix D0(ε) is symmetric and positive definite for ε≠ 0. Hence,

we may use relationship (A.26) and then obtain

∫ t
s
B−1(τ,ε)�xx(τ)

(
B−1(τ,ε)

)t dτ =−1
ε
(
B0−B∗0

)−1B+(τ,ε)
(
B−1(τ,ε)

)t∣∣∣t
s
. (A.33)

In view of (A.30), we have

B(t,ε)= λt4(∆t)B0−ελt2(∆t), (A.34)

and, hence,

B−1(t,ε)= (1+εB−1
0

(
λ−1

4 (∆t)
)tλt2(∆t))B−1

0

(
λ−1

4 (∆t)
)t+O(ε2). (A.35)

Then we obtain

lim
ε→0

1
ε
B+(τ,ε)

(
B−1(t,ε)

)t∣∣∣t
s

=
[

lim
ε→0

[
B−1(t,ε)B∗(t,ε)−B−1

0 B∗0
]]t

= lim
ε→0

1
ε
{
B−1

0 B∗0 −εB−1
0

(
λ−1

4 (∆t)
)tλt2(∆t)(1−B−1

0 B∗0
)−B−1

0 B∗0 +O
(
ε2)}t

=−(B0−B∗0
)(
B−1

0

)tλ2(∆t)λ−1
4 (∆t)

(
B−1

0

)t .

(A.36)

Substitution of the obtained expression into (A.33) yields (A.29).
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Statement A.11. If the matrix D0 in (A.10) is positive definite and, symmetric,

and the matrix D̃0 (A.11) is zero, the following relationships are valid:

C∗(t)D−1
0 Bt(t)−C(t)D−1

0 B+(t)= B(t)D−1
0 C+(t)−B∗(t)D−1

0 Ct(t)= 2iIn×n, (A.37)

C∗(t)D−1
0 Ct(t)−C(t)D−1

0 C+(t)= B(t)D−1
0 B+(t)−B∗(t)D−1

0 Bt(t)= 0n×n. (A.38)

Consider an auxiliary matrix T(t) of dimension 2n×2n,

T(t)= 1√
2


D−1/2

0 Ct(t) −D−1/2
0 Bt(t)

D−1/2
0 C+(t) −D−1/2

0 B+(t)


 , (A.39)

and find its inverse matrix. Direct checking makes us convinced that

T−1(t)=− i√
2


−

(
B(t)D−1/2

0

)∗ B(t)D−1/2
0

−(C(t)D−1/2
0

)∗ C(t)D−1/2
0


 . (A.40)

Actually, we have

T(t)T−1(t)

=− i
2


−

[
Ct(t)B∗(t)−Bt(t)C∗(t)](D−1

0

)∗ [
Ct(t)B(t)−Bt(t)C(t)]D−1

0

−[C+(t)B∗(t)−B+(t)C∗(t)](D−1
0

)∗ [
C+(t)B(t)−B+(t)C(t)]D−1

0




=− i
2


−D−1/2

0

(
2iD0

)∗(D−1/2
0

)∗ D−1/2
0 D̃0D

−1/2
0

−D−1/2
0 D̃∗0

(
D−1/2

0

)∗ iD−1/2
0 D0D

−1/2
0


= I2n×2n.

(A.41)

From the uniqueness of the inverse matrix follows,

T(t)T−1(t)= T−1(t)T(t)= I2n×2n, (A.42)

that is,

T(t)T−1(t)=− i
2


−

(
BD−1

0

)∗Ct+BD−1
0 C+

(
BD−1

0

)∗Bt+BD−1
0 B+

−(CD−1
0

)∗Ct+CD−1
0 C+

(
CD−1

0

)∗Bt+CD−1
0 B+




= I2n×2n.

(A.43)

However, as assigned, we have Dt0 =D0, and from definition (A.10) it follows that

D+0 =−
1
2i
(
C+B−B+C)+ = − 1

2i
(
B+C−C+B)=D0. (A.44)

We then have D∗0 = D0 and, hence, (D−1
0 )∗ = D−1

0 . Then from (A.43) we obtain (A.37)

and (A.38).

The following properties of the solutions to the set of equations in variations are

dramatically important for the construction of semiclassical asymptotics in the class

of functions �t
�(Z(t,�),S(t,�)).
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Lemma A.12. Let the matrix D0 be diagonal and positive definite and detC(t) ≠ 0.

The matrix ImQ(t) will then be positive definite as well.

Proof. Let D0 = diag(α1, . . . ,αn), αj > 0, j = 1,n. Denote by �ytj the rows of the

matrix C−1(t),

C−1(t)=




�yt1(t)

�yt2(t)
...

�ytn(t)



. (A.45)

Then for an arbitrary complex vector |�p|≠ 0, we obtain

(�p)+ ImQ(t)�p =
n∑
j=1

〈
�p, �yj(t)

〉+αj〈�yj(t), �p〉=
n∑
j=1

αj
∣∣〈�p, �yj(t)〉∣∣2 > 0. (A.46)

Inequality (A.46) is true since |�yj(t)| ≠ 0 and αj > 0, j = 1,n. From this inequality,

in view of the arbitrariness of the vector �p ∈ Cn, |�p|≠ 0, it follows that the lemma is

true.

Lemma A.13. The matrix C(t) is nondegenerate, detC(t) ≠ 0, if the matrix D0 =
(2i)−1(C+(0)B(0)−B+(0)C(0)) is positive definite.

Proof. Assume that, for some t1, detC(t1) = 0. Then a vector �k, |�k| ≠ 0, exists,

such that

C
(
t1
)·�k= 0,

(�k+C+(t1)= 0
)
. (A.47)

Since relation (A.11) is valid for any t, then

�k+D0
�k= �k+

{
i
2

[
B+
(
t1
)
C
(
t1
)−C+(t1)B(t1)]

}
�k= 0. (A.48)

As agreed, the matrix D0 is positive definite, and, hence, the above equality holds

only for |�k| = 0. The obtained contradiction proves the lemma.

Lemma A.14 (Liouville’s lemma). If the matrix Q(t) is continuous, the relation

exp
{
− 1

2

∫ t
0

Sp
[
Hpp(t)Q(t)+Hpx(t)

]
dt
}
=
√

detC(0)
detC(t)

(A.49)

is valid.

Proof. From (A.4) it follows that

Ċ = [Hpp(t)Q(t)+Hpx(t)
]
C, (A.50)
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where the matrix Q(t) is a solution of (6.13), and the matrices Hpp(t) and Hpx(t) are

continuous. Then for the matrix C(t) the Jacobi identity,

detC(t)= [detC(0)
]
exp

∫ t
0

Sp
[
Hpp(t)Q(t)+Hpx(t)

]
dt (A.51)

is valid. Raising the left and right parts of the equality to the power −1/2 yields (A.49).
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