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Consider a compact, connected Lie groupG acting isometrically on a sphere Sn of radius 1.
Two-dimensional quotient spaces of the type Sn/G have been investigated extensively.
This paper provides an elementary introduction, for nonspecialists, to this important field
by way of several classical examples and supplies an explicit list of all the isotropy sub-
groups involved in these examples.
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1. Introduction. Spheres have long been an active area of investigation for geome-

ters, algebraists, and physicists because of the richness of symmetry and beguiling

simplicity they offer. In particular, a sphere is associated with an enormous group of

transformations that preserve its underlying metric; these transformations are called

isometries. Careful study of these actions has led to deeper understanding of spherical

geometry, to the discovery of many examples of minimal submanifolds, and hypersur-

faces on Stiefel manifolds and Grassmannian manifolds. Moreover, it is interesting to

see how simple linear algebra reveals the secrets of the geometry of these orbit spaces.

Before describing specifically the content of this paper, we present a motivating

example.

Example 1.1. Suppose that we allow matrices of the form

g =




cosθ −sinθ 0

sinθ cosθ 0

0 0 1


 (1.1)

to operate on S2 = {(x,y,z) : x2 +y2 + z2 = 1} by matrix multiplication. This is a

rotation around the z-axis by an angle θ. There is an obvious isomorphism between

this group G of matrices g and the circle S1 = {eiθ : θ ∈ [0,2π)}, so we will think

of this action as an action of S1 on S2. Given a point (x,y,z) ∈ S2, we consider the

collection of all the images of this point under multiplication by elements g of S1.

That is, consider G((x,y,z)) = {g((x,y,z)) : g ∈ G}. (This set is called the orbit of

(x,y,z).) As no matrix of this type changes the value of z, the orbit is the intersection

of a plane z = a with the two-sphere: a circle centered on the z-axis and contained

in S2. These sets, the orbits of the points in S2, decompose S2 into disjoint sets, they

therefore define an equivalence relation on S2. We consider these sets as the points

in a new space S2/S1, called the orbit space of the S1 action on S2. This action fixes
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x = 0 x =y

Figure 1.1

the xy-plane in R3, since


cosθ −sinθ 0

sinθ cosθ 0

0 0 1





x
y
0


=



x cosθ−y sinθ
x sinθ+y cosθ

0


 . (1.2)

It also fixes the normal space, the z-axis. Because the action fixes these two normal

subspaces, it is called reducible. If we intersect the sphere with the half plane {(x,0,z) :

x ≥ 0}, we have exactly one point in the sphere for each orbit. We see then that the

orbit space is an interval, isometric to a closed half-circle of radius one.

Distance in the orbit space is defined to be the distance between orbits in the original

space. Since the distance between the north pole and the south pole in S2 is π (half

the circumference of a circle in S2 joining them), this is the length of the orbit space. It

is not a manifold (although it is a manifold with boundary) because of the endpoints.

(See Figure 1.1.)

In this paper, we see how to generalize the techniques used in analyzing the ex-

ample above to actions on n-dimensional spheres. We will work out several cases,

as described below. In brief, the contents of this paper are as follows. In Section 2,

we begin with some necessary definitions. In Section 3, we offer some background

and examples from classical theory on group actions on spheres. In Section 4, we

describe in detail the following reducible actions on spheres: (G,φ) = (SO(n1) ×
SO(n2)×SO(n3),ρn1+ρn2+ρn3), where ρn is the standard representation of SO(n),
(G,φ)= (SO(2)×SO(m),ρ2⊗ρm+1), where 1 is a one-dimensional trivial representa-

tion, and (G,φ)= (SO(k),2ρk), for k≥ 3. (Even though the groups in these three cases

are getting smaller, the actions are actually becoming more complicated, as we shall

see. The subset of GL(n,R) for which all elements A satisfy A−1 =AT is called O(n);
is its connected component of the identity.) In Section 5, we describe the following ir-

reducible actions: (G,φ)= (SO(3)×SO(n),ρ3⊗ρn), (G,φ)= (SO(3)×SO(3),ρ3⊗ρ3),
(G,φ)= (U(3)×SU(n),ρ2×µ3⊗µn), and (G,φ)= (Sp(3)×Sp(n),ν3⊗νn). In Section 6,

we offer our conclusions and a suggestion for new areas of investigation. This method

for finding these isotropy subgroups is of interest because of the understanding it

lends to classical Lie groups and certain manifolds associated with them, which are
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of concern to physicists as well as geometers. We hope this method makes this infor-

mation more accessible to physicists and nonspecialists who may have an interest in

these orbit spaces. Moreover, the decompositions themselves are of interest, in that

many of them are not well known, especially those that correspond to irreducible

actions.

Hsiang and Lawson’s classical paper on this subject [4] describes most of the orbit

spaces produced by irreducible, maximal linear groups on the standard sphere and

computes the principal isotropy subgroups in each case. Straume’s comprehensive

work on the subject [9, 10] describes not only all these actions in detail, but also actions

on homotopy spheres as well. In these, he completes the proof of the classification of

spheres with orbit spaces of dimensions 1 and 2. He provides the list of orbit spaces of

those cases omitted by Hsiang and Lawson in [8]. Both [4, 9] list the principal isotropy

groups involved and, in the case of the polar actions, the associated symmetric spaces

as well. The intermediate isotropy groups (i.e., those on the edges and vertices of the

orbit spaces) are not explicitly included in any of these papers; however, they may be

computed using the configuration of the spherical triangle in question and the list of

possible cohomogeneity-one actions.

With respect to the specific examples included herein, except for the SO(3)×SO(3)
example, Hsiang and Lawson [4] list all the orbit spaces resulting from the irreducible

actions in Section 5 applied to Rn, and their principal isotropy subgroups. In addi-

tion, they describe the orbit space resulting from the reducible SO(k) action on Rn,

where the isotropy subgroups are also listed. Straume [8] also lists the orbit space

resulting from this SO(k) action on S2n−1. While the orbit space resulting from the

SO(3)×SO(3) action on S8 can be deduced by reference to all three of [8, 9, 10], it is

nowhere explicitly calculated. (Hsiang and Lawson [4] do include an explicit statement

about the orbit space S8/SO(3)×SO(3), but they erroneously list it as the same orbit

space as S3n−1/SO(3)×SO(n) for n > 3.) The orbit spaces of the first two reducible

actions in Section 4 are not listed anywhere, as they are very easy to compute from

the cohomogeneity-one actions, which [4, 9, 10] classify.

2. Definitions. In our introduction, we gave some rough definitions. Here, we will

formalize some of them and add a few others. All the actions we will consider are

actions on spheres which, of course, are manifolds.

Definition 2.1. An n-dimensional manifold M is Hausdorff topological space fur-

nished with a collection of open sets Uα, such that

(1) M =⋃α∈AUα;

(2) on any open set Uα, there is a homeomorphism, φα, from Uα to Rn, such that,

whenever the intersection of any pair of these open sets Uα∩Uβ is nonempty,

φα◦φβ−1|φβ(Uα∩Uβ) is a smooth (C∞) homeomorphism between subsets of Rn.

Some manifolds have other special properties as well. On any n-dimensional Rie-

mannian manifold M , there are several naturally associated functions, such as curva-

ture and distance [5]. For this reason, certain numbers come to be associated with a

manifold. For instance, on a manifold whose curvature is constant, like a sphere, that

constant is an invariant (under isometry) of the manifold.
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Since we restrict our attention to the standard sphere Sn embedded in Rn+1, for

the sake of simplicity in the next definition, we assume our manifold to be embedded

in Euclidean space, where we have a well-defined notion of arclength.

Definition 2.2. The distance d(x,y) between two points x and y in M is the

infimum of the lengths of all piecewise smooth curves in M that join x and y . This

definition will satisfy all the usual properties of a metric:

(i) d(x,y)≥ 0,

(ii) d(x,y)= d(y,x),
(iii) d(x,y)+d(y,z)≥ d(x,z).
Definition 2.3. An isometry is a diffeomorphism φ : M → N that preserves the

distance function dN(φ(x),φ(y))= dM(x,y).
A group G is said to act isometrically on a manifold M if

(i) each element g in G defines a distance-preserving map from M to itself,

(ii) the composition of two such maps coincides with the group operation g(h(x))
= gh(x) for every x in M and for every pair g and h in G,

(iii) the identity element of G, id, is the identity map on M .

(An example to keep in mind with respect to group actions is the group of orthog-

onal matrices acting on Rn.)

Definition 2.4. The orbit of a pointx is the setG(x)={y∈M :y=g(x) for some

g ∈G}.
Such an action defines an equivalence relation on M , since two orbits are either

identical or disjoint. (Suppose, for example, y is in the orbit of x. Then for some g in

G, g(x)=y . Then the orbit of y is contained in the orbit of x, since h(y)= h(g(x))
for every h in G. However, g−1(g(x)) = g−1(y), so x = g−1(y), and x is also in the

orbit of y . So we have containment in both directions, and the orbits must be equal.)

These orbits are considered as points in a new space, M/G, called the orbit space. If

M is a metric space, this orbit space is endowed with a natural metric: the distance

between points G(x) and G(y) in M/G is the same as the distance between the two

sets G(x) and G(y) in M . When G is compact, this distance is zero only when the

orbits coincide.

Definition 2.5. In general, forM a Riemannian n-manifold, we say that G acts by

cohomogeneity k on M when dim(M/G)= k.

For instance, Example 1.1 exhibits a cohomogeneity-one action.

The isometries under consideration are from the sphere to itself. We will show how

various orbit spaces are obtained. We will also find which subgroups of G—called

isotropy subgroups—fix different points in the manifold.

Definition 2.6. When a manifold M is acted on by a group G, the isotropy sub-

group (or stability subgroup)Gx of a point x in the manifold is the subgroup that fixes

x; that is, Gx = {g ∈G : g(x)= x}.
By the definition of a group action, Gx always contains the identity element of the

group. If two points x and y in M belong to the same orbit, their isotropy subgroups
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are conjugate. If g(x)=y , then for any h∈Gy , h(g(x))= h(y)=y , and g−1(hg(x))
= g−1(y)= x, so g−1hg ∈Gx . Therefore, g−1Gyg ⊂Gx . Since x=g−1(y), gGxg−1 ⊂
Gy . Since we have containment both ways, gGxg−1 =Gy . Two orbits G(x) and G(y)
are of the same type if Gx and Gy are conjugate in G.

Definition 2.7. A principal isotropy subgroup (in terms of dimension, the “small-

est”) is an isotropy subgroup H of G such that for every other isotropy subgroup K,

K ⊇ gHg−1 for some g in G.

This group (all principal isotropy subgroups are conjugate and hence isomorphic)

is associated with a special class of orbits.

Definition 2.8. Orbits having a conjugate of H as their isotropy subgroup are

called the principal orbits.

Orbits whose isotropy subgroups are of a strictly higher dimension than H are

called singular orbits.

The union of these principal orbits form an open, dense submanifold of M , called

the regular part of M [6].

In Example 1.1, the principal isotropy subgroup is the identity, because any point

in S2 without zero entries is not fixed by any nontrivial subgroup of the circle. That

is, for x and y nonzero, 

x cosθ−y sinθ
x sinθ+y cosθ

z


=



x
y
z


 (2.1)

implies that cosθ = 1. However, at the points (0,0,±1), the isotropy subgroup is all

of S1, because the whole circle fixes these points. Therefore, these are singular orbits,

and their associated isotropy subgroup is S1.

Principal orbits form the interior of the orbit space M/G, and singular orbits form

the boundary.

Definition 2.9. A representation of a group G on a vector space V is homomor-

phism ρ from G to the group of all invertible linear transformations on V ; that is,

ρ :G→ GL(V).
A representation of G on V is called reducible if there is a proper, nontrivial G-

invariant subspace of V . Otherwise, it is called irreducible.

We wish to study the representations of G into GL(V) such that ρ(G) acts on Sn

for some n. For the sake of brevity, we often write g(v) for ρ(g)(v), when ρ is clear

from the context.

3. Background and examples

Definition 3.1. A Lie group G is a group that is also a manifold, on which the

group operations define differentiable maps. That is, µ :G×G→G by µ(g,h)= gh is

a differentiable map, as is g→ g−1. (The circle S1 is a Lie group under multiplication:

0eiθeiφ = ei(θ+φ).)
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Let G be a compact, connected Lie group, acting isometrically on Sn, the standard

sphere in Rn+1 of radius 1.

As previously mentioned, in Example 1.1, we have an action of cohomogeneity one

(since the orbit space is one dimensional). On the other hand, if we allow the entire

orthogonal group to act on Sn, there is only one orbit, since every point x ∈ Sn is the

image of the point (1,0, . . . ,0) under multiplication by a matrix with the vector x in

the first column. This is a cohomogeneity-zero action.

Definition 3.2. A geodesic on a manifold M is a parameterized curve c whose

acceleration c′′ is always perpendicular to M .

Example 3.3. One of the classic examples of a group action on a sphere is the Hopf

action S1 acting on S3. This action can be represented as

[
eiθ 0

0 e−iθ

][
reiα

seiβ

]
, (3.1)

where r and s are nonnegative real numbers with r 2+s2 = 1. This is a reducible action;

it fixes the geodesics
[
eiα
0

]
and

[
0
eiβ

]
. By choosing θ =−α, we see that a typical orbit

contains a point of the type (r ,seiφ); therefore, the orbit space has dimension one

less than S3: it is two dimensional. Only the identity fixes a point of this type, so the

principal isotropy group is trivial. Moreover, there are no singular orbits, and hence,

no edges or vertices.

In the examples below, we find the orbit spaces and the isotropy subgroups asso-

ciated with these actions through repeated use of the following facts:

(1) constant matrices, that is, kIn, where k is a scalar, are in the center of GL(n,V).
This is because multiplication by a scalar matrix is identical to multiplication

by the scalar itself as it multiplies every entry in the other matrix by that

scalar;

(2) over a commutative field such as R or C, the only matrices that commute with

diagonal matrices having unequal entries along the diagonal are other diagonal

matrices;

(3) the two diagonal entries in a diagonal 2×2 matrix may be interchanged through

conjugation by

[
0 1

−1 0

]
. (3.2)

Consequently, any two diagonal entries in any diagonal matrix may be interchanged

through an appropriate conjugation by elementary matrices.

One method of determining the orbit decomposition of a cohomogeneity-two ac-

tion by a group G is to rely on the classification of cohomogeneity-one actions
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(cf. [3, 4, 8, 9, 10, 11]). We note that when Sn/G = D2, the singular orbits form the

boundary of the disk and the singular isotropy subgroups at those points act on the

unit normal subspace to the orbits by cohomogeneity one. Since the cohomogeneity-

one actions have been classified, it suffices to find the singular isotropy subgroups K
with H ⊂K ⊂G that act on the normal subspace by cohomogeneity one.

Another method entails looking at the matrix representation of G in the group of

n×n orthogonal matrices O(n). We then take a “typical” vector in Sn, and try to

see how G identifies that vector with other vectors. Basically, we try to reduce the

dimensions in the (n+ 1)-vector by replacing as many entries as possible by zero,

and still remain within the same orbit. Then, we use this simplified vector to see

what subgroup of G would fix that vector. In this way, we find the principal isotropy

subgroup. We look at less typical vectors, ones with more zeros, perhaps, or more

identifications among the entries, to find other possible isotropy subgroups. These

computations give a very explicit description of the elements in the orbit space as

subspaces in Rn, and any edges and vertices. Sometimes, however, it is very difficult

to write out an explicit matrix description of the group action. Therefore, we need the

two methods to complement one another.

4. Reducible examples. A whole body of very simple reducible examples is ob-

tained by adding either a one-dimensional trivial action (1) or a transitive action by

SO(k) to cohomogeneity-one actions on spheres. In this section, we will look at the

reducible actions (G,φ) = (SO(n1)× SO(n2)× SO(n3),ρn1 +ρn2 +ρn3), where ρn is

the standard representation of SO(n), (G,φ)= (SO(2)×SO(m) (m> 2),ρ2⊗ρm+1),
where 1 is a one-dimensional trivial representation, and (G,φ) = (SO(k),2ρk), for

k≥ 3. We will describe the resulting orbit spaces under these actions.

Example 4.1. The action of SO(n1)×SO(n2)×SO(n3) on Sn1+n2+n3−1.

If we add a transitive action by SO(n) to a cohomogeneity-one action, as in (G,φ)=
(SO(n1)×SO(n2)×SO(n3),ρn1 +ρn2 +ρn3), we add another dimension to our orbit

space. Under this action, vectors in Rn1+n2+n3 are acted on by matrices of the type



A

B
C


 , (4.1)

where A is in SO(n1), B is in SO(n2), and C is in SO(n3). Each matrix may be taken to

reduce the vector of the appropriate dimension to its length. Think of the appropriate

vector in Rn1+n2+n3 as the direct sum of v1 ∈ Rn1 , v2 ∈ Rn2 , and v3 ∈ Rn3 ; that is,

((v1),(v2),(v3)). Then, by choosing the first row in A to be a unit vector parallel

to v1, the first n1 entries of the image are reduced to (‖v1‖,0, . . . ,0). Similarly, B
and C can be chosen to reduce v2 and v3 to their lengths. Thus, every orbit space

contains an element of the form (x,0, . . . ,0,y,0, . . . ,0,z,0, . . . ,0), where x, y , and z
are all nonnegative. As the three direct summands do not interact with each other,

there are no further identifications. (We cannot interchange the x and y , for instance.)
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Therefore, the principal isotropy group is isomorphic to SO(n1 − 1)× SO(n2 − 1)×
SO(n3−1), in a form conjugate to




1

A′

1

B′

1

C′



, (4.2)

where A′ is an element of SO(n1−1), B′ is an element of SO(n2−1), and C′ is an

element of SO(n3−1). The orbit space may be described as the triangle in the two-

sphere that inhabits the first octant: {(x,y,z) ∈ S2 : x ≥ 0; y ≥ 0; z ≥ 0}. The edges

are x = 0, y = 0, and z = 0. On these edges, the submatrix that corresponds to the

subspace of the zero vector acts trivially, so the isotropy subgroup on the edge cor-

responding to the ni-dimensional vector has a factor of SO(ni) replacing the factor

SO(ni−1), SO(n1)× SO(n2−1)× SO(n3−1) is the isotropy subgroup of points for

which v1 = 0, for instance. At the vertices, (1,0,0), (0,1,0), and (0,0,1), two of the

SO(ni−1) factors are replaced by SO(ni). We have now found the orbit space and all

the isotropy subgroups. The decomposition of this action is given in Figure 4.1.

SO(n1)×SO(n2)×SO(n3)

SO(n1)×SO(n2)×SO(n3−1)
y = 0
x = 0

SO(n1−1)×SO(n2)×SO(n3−1)
SO(n1)×SO(n2−1)×SO(n3−1)

SO(n1)×SO(n2)×SO(n3−1)
SO(n1−1)×SO(n2−1)×SO(n3−1)

z = 0

SO(n1−1)×SO(n2−1)×SO(n3)
SO(n1−1)×SO(n2)×SO(n3)

Figure 4.1

Example 4.2. The action of SO(2)×SO(m) on S2m.

Suppose, instead, that we add a trivial action to a cohomogeneity-one action. For

example, take (G,φ) = (SO(2)×SO(m),ρ2⊗ρm+1). Under this action, the first 2m
entries in the (2m+1)-vector in S2m are represented as a 2×m matrix. This matrix

is acted on by left multiplication by elements of SO(2) and by right multiplication

by elements of SO(m). The last entry of the (2m+1)-vector in S2m is the object of

the trivial action; that is, it is left unchanged. The right and left actions by SO(2) and
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SO(m), respectively, can serve to “diagonalize” the 2×m matrix, that is, to leave all

the entries zero save a11 and a22. (This is a standard theorem of linear algebra. See,

e.g., [7, page 179].) Moreover, we may assume both entries to be positive, since either

may be made positive by multiplication by an appropriate element of SO(m). As we

have noted in (3), we can interchange x andy , so we may assume that x ≥y ≥ 0. Thus,

the orbit space is the subset of the two-sphere given by {(x,y,z) ∈ S2 : x ≥ y ≥ 0}.
It is the spherical lune cut by the planes x = y and y = 0. Along the edge x = y ,

the isotropy subgroup is isomorphic to SO(2)× SO(m− 2), in a form conjugate to

{B⊗
[
B−1

A

]
: B ∈ SO(2); A∈ SO(m−2)}.

SO(2)×SO(m)

x =yZ2×SO(m−1)

y = 0

SO(2)×SO(m)

SO(2)×SO(m−2)

Figure 4.2

Along the edge y = 0, the isotropy subgroup is isomorphic to Z2 × SO(m− 1),
in a form conjugate to {±I2 ⊗

[
±1

A

]
: A ∈ O(m− 1)}. (This group is also denoted

S(O(1)O(m− 1)).) For a fixed value of z, the decomposition of the orbit space is

exactly the same as it is for the cohomogeneity-one action. Thus, the decomposi-

tion of the cohomogeneity-two action may be thought of as a suspension of the

cohomogeneity-one action along each level z = c between the poles. The poles, z =±1,

are fixed points under the action. In Figure 4.2, there is a diagram of the orbit space

and the isotropy decomposition for the cohomogeneity-two action.

Example 4.3. The action of (G,φ)= (SO(k),2ρk) on S2k−1.

Finally, we examine a reducible cohomogeneity-two action that is not a direct sum

with a cohomogeneity-one action: (G,φ) = (SO(k),2ρk), for k ≥ 3. Under this action,

SO(k) acts on R2k by matrices of the form
[
A

A

]
, (4.3)

where A is in SO(k). We can think of the first k entries of the vector in R2k as one

vector, v1, in Rk, and the second k entries as another, v2. If these two vectors are

linearly independent, they span a plane. If we choose A to be a matrix in SO(k) whose

first two rows span the same plane, with the first row being parallel to the first k-

vector, and the second row resulting in the same orientation for the plane as the pair
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SO(k)

SO(k−2)

SO(k−1)

Figure 4.3

of k-vectors, the image of the R2k vector under multiplication by this matrix will be

a vector of the form (x,0, . . . ,0;y,z,0, . . . ,0), with x ≥ 0, and z ≥ 0. (The semicolon

signifies the end of the first k-vector.) The principal isotropy subgroup will therefore

be a conjugate of the group of matrices of the form



I2

B
I2

B


 , (4.4)

where B is in SO(k−2). We have larger isotropy subgroups when rank (v1,v2) = 1.

Then, either v1 is parallel to v2 or one of the vectors is zero. If they are parallel,

the orbit has an element of the form (x,0, . . . ,0;y,0, . . . ,0), and the isotropy sub-

group is isomorphic to SO(k−1). The isotropy subgroup is also SO(k−1) if either

v1 = 0 or v2 = 0, because the orbit representative is the same, except that either x
or y is zero. The orbit space is therefore a disk without vertices. In fact, it is the

upper hemisphere of the sphere of radius 1/2. We can see this by inspecting the

geodesics of the orbit space. The boundary geodesic is (cosθ,0, . . . ,0;sinθ,0, . . . ,0).
This geodesic closes at θ = π , since x = 1 and x = −1 are identified; it reaches

its most distant position at θ = π/2. Longitudinal geodesics may be described as

(cosαsinφ,0, . . . ,0;sinαsinφ,cosφ,0, . . . ,0), where α ∈ [0,π) is fixed, and φ ∈
[−π/2,π/2). As mentioned above, (x,0, . . . ,0;y,0, . . . ,0) and (−x,0, . . . ,0;−y,0, . . . ,0)
are identified under the group action, so the geodesic closes there. The piece of the ge-

odesic that lies in the orbit space is that with cosφ> 0. This is half the geodesic; it has

length π/2. These geodesics are perpendicular to the underlying orbits, because no

element of the group action changes the lengths of v1 or v2, and the geodesic moves

strictly in the direction that would change these lengths. The restriction z ≥ 0 makes

this orbit space the upper hemisphere. The orbit space diagram is given in Figure 4.3.

The resulting orbit spaces for the reducible cohomogeneity-two actions on Sn above

are given in Table 4.1.

Here, we label a spherical lune with both angles π/n as Dn, a spherical triangle

in the unit two-sphere with angles π/k, π/n, and π/m as ∆k,n,m, and the upper



AN INTRODUCTION TO SPHERICAL ORBIT SPACES 463

Table 4.1

Group Representation Orbit space

SO(n1)×SO(n2)×SO(n3) ρn1 +ρn2 +ρn3 ∆2,2,2

SO(2)×SO(m) ρ2⊗ρm+1 D4

SO(k) 2ρk (1/2)S2(1/2)

x = 0
x =y

y = z

K3

α3L1

H
L2

α1α2

L3
K1K2

Figure 4.4

Table 4.2. Reducible cohomogeneity-two orbit spaces.

Group SO(n1)×SO(n2)×SO(n3)
Representation ρn1 +ρn2 +ρn3

Angles α1 =π/2, α2 =π/2, α3 =π/2
H SO(n1−1)×SO(n2−1)×SO(n3−1)
L1 SO(n1−1)×SO(n2−1)×SO(n3)
L2 SO(n1)×SO(n2−1)×SO(n3−1)
L3 SO(n1−1)×SO(n2)×SO(n3−1)
K1 SO(n1−1)×SO(n2)×SO(n3)
K2 SO(n1)×SO(n2−1)×SO(n3)
K3 SO(n1)×SO(n2)×SO(n3−1)

Group SO(2)×SO(m) SO(k)
Representation ρ2⊗ρm+1 2ρk
Angles α1 =π/4, α2 =π/4, α3 =π α1 =π , α2 =π , α3 =π
H Z2×SO(m−2) SO(k−2)
L1 Z2×SO(m−1) SO(k−1)
L2 SO(2)×SO(m−2) —

L3 — —

K1 SO(2)×SO(m) —

K2 SO(2)×SO(m) —

K3 — —
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hemisphere of the sphere of radius r as (1/2)S2(r). The third orbit space is computed

and described in both [4, 8]; the other two may be readily seen by reference to the

cohomogeneity-one actions described in [4, 9, 10].

Moreover, they have decompositions as given in Table 4.2, where H, Li, and Ki are

the isotropy subgroups associated with the orbit space as in Figure 4.4. The principal

isotropy groups here are also presented in [4, 9, 10]. The others may be computed

easily with reference to [9, 10].

5. Irreducible examples. In this section, we will examine the following irreducible

actions: (G,φ)= (SO(3)×SO(n),ρ3⊗ρn) on S3n−1, (G,φ)= (SO(3)×SO(3),ρ3⊗ρ3) on

S8, (G,φ)= (U(3)×SU(n),ρ2×µ3⊗µn) on S6n−1, and (G,φ)= (Sp(3)×Sp(n),ν3⊗νn)
on S12n−1. Each of these examples relies on the following fact from linear algebra: an

arbitrary real (complex, quaternion) n×m matrix may be “diagonalized” under left

multiplication by an n×n orthogonal (unitary, symplectic) matrix and right multi-

plication by an m×m orthogonal (unitary, symplectic) matrix. By “diagonalized,” we

mean that the only nonzero terms are among the entries aii. (See [7, page 179].) All

four of the following group actions result in spherical triangles as orbit spaces, so

rather than include a figure for each one, we have included one figure at the end of

the section to describe them all.

Example 5.1. The action of SO(3)×SO(n), n> 3, on S3n−1.

One action that generates a triangular orbit space is (G,φ) = (SO(3)×SO(n),ρ3⊗
ρn), where n> 3. Under this action, points of S3n−1 are represented as 3×nmatrices,

operated on by SO(3) under left multiplication, and by SO(n) by right multiplication.

Appropriate choices for the left and right multipliers will reduce the middle matrix

(X) to one of the form



a 0 0 0 ···
0 b 0 0 ···
0 0 c 0 ···


 , (5.1)

where a2, b2, and c2 are eigenvalues of XXT .

These matrix actions render the signs of a, b, and c immaterial and allow for shifts

in the order of these entries so that a≥ b ≥ c ≥ 0. Since a2, b2, and c2 are eigenvalues

of XXT , no further identifications are possible. The orbit space is therefore the spher-

ical triangle {(x,y,z) ∈ S2 : x ≥ y ≥ z ≥ 0}. Since a diagonal matrix is fixed under

conjugation by other diagonal matrices, the principal isotropy group is conjugate to


A⊗


A−1 0

0 B


 , A∈ SO(3), A a diagonal matrix, B ∈O(n−3)


. (5.2)

The fact that A is diagonal and in SO(3) forces it to have entries equal to ±1 on its

diagonal (the number of minus signs being even). Therefore, the principal isotropy

group is isomorphic to S(O(1)O(1)O(1)O(n−3)).
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On one edge of the spherical triangle, where z = 0, the points will be fixed under

multiplication by group elements of the form




A 0

0 ±1


⊗


A−1 0

0 B


 , A∈O(2), A a diagonal matrix, B ∈O(n−2)


. (5.3)

That is, the upper block matrix, which conjugates the nonzero entries in X, can be

shrunk to a 2×2 block, since the z entry is now zero. The isotropy subgroup is there-

fore S(O(1)O(1)O(n−2)).
On the edges where x = y or y = z, the 2× 2 constant matrix is preserved by

conjugation by block matrices in O(2). The third (unequal) entry can still be con-

jugated by −1. The isotropy subgroup on these edges is therefore isomorphic to

S(O(2)O(1)O(n−3)).
The orbit space, which is a spherical triangle, has angles π/2, π/3, and π/4. The

isotropy subgroup at y = z = 0 is isomorphic to Z2×SO(2)×SO(n−1), since the zero-

block matrix will be unaffected by any matrix multiplication. The isotropy subgroup

at the intersection of x = y and z = 0 is isomorphic to SO(2)×Z2×SO(n−2), in a

form conjugate to




A 0

0 ±1


⊗


A−1 0

0 B


 , A∈O(2), B ∈O(n−2)


, (5.4)

since the 2×2 block matrix with equal entries on the diagonal will commute with any

2×2 matrix. At the point where x = y = z, the isotropy subgroup is isomorphic to

S(O(3)O(n−3)), since at this vertex, the 3×3 scalar block of the matrix X is fixed

under conjugation by any element of O(3).

Example 5.2. The action of SO(3)×SO(3) on S8.

A related action, but with a different orbit space, (G,φ)= (SO(3)×SO(3),ρ3⊗ρ3),
can again reduce the spherical 3×3 matrix (X) to diagonal form, where the squares

of the diagonal entries are the eigenvalues of XXT . As before, we can interchange any

pair of these entries. However, we can no longer change the sign of a single entry,

but must change them two at a time, since we no longer have the freedom to insert

a −1 entry below the upper 3×3 matrix in the right factor. Thus, we can ensure only

that the entries are in order of descending absolute value and that the first two are

positive: {(x,y,z)∈ S2 : x ≥y ≥ |z|}. This triangle is the double of the triangle under

the SO(3)×SO(n) action, reflected through the plane z = 0. The edges of this triangle

are the intersections of the two-sphere with the planes x =y , y = z, and y =−z.

The principal isotropy group must fix diagonal 3×3 matrices. As we saw above,

only conjugation by diagonal matrices will fix these; the diagonal matrices in SO(3)
are those with ±1 on the diagonal (with the number of −1’s being even). Hence, the

principal isotropy subgroup is S(O(1)O(1)O(1)). On the edges x = y and y = z, we

can clearly conjugate the 2×2 constant matrix by any element of O(2); therefore, the
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isotropy subgroups on these two edges are S(O(2)O(1)) and S(O(1)O(2)), respec-

tively. Moreover, we get an isomorphic group on the edge y =−z


±1

A




I2

−1





x 0 0

0 y 0

0 0 −y




±1

A−1




I2

−1


 , (5.5)

where A ∈ SO(2) if the ±1 in the upper-right corner is negative, and A ∈ O(2) with

determinant −1, if the sign of the 1 is positive. (Thus, the product of the first two

factors is in SO(3).) The isotropy subgroups on the vertices are computed analogously

with those in the previous action, except in the case of the third vertex, where we again

multiply on both sides by
[
I2
−1

]
to make the most use of the symmetries.

Example 5.3. The action of U(3)×SU(n) on S6n−1.

We can apply a similar action with the unitary group (G,φ) = (U(3)×SU(n),(ρ2×
µ3)⊗µn). The unitary group action behaves very similarly to the real action: the left

and right multiplication can reduce the 3×n matrix X to the three nonzero entries



x 0 0 0 ···
0 y 0 0 ···
0 0 z 0 ···


 . (5.6)

The squares of these entries are the eigenvalues of XXT , which are real because XXT

is Hermitian. Therefore, the entries x, y , and z are either real or purely imaginary;

they can be made real by multiplication by an appropriate element of U(3). They can

be arranged in order of descending absolute value, and, because the first factor group

is U(3), they can all be made positive; the orbit space is

{
(x,y,z)∈ S2 : x ≥y ≥ z ≥ 0

}
. (5.7)

The principal isotropy subgroup is S(U(1)3 U(n−3)), as any of the entries, x, y , or

z, can be conjugated by eiθ . On the edges and vertices, the isotropy subgroups are

analogous to those under the SO(3)×SO(n) action.

Example 5.4. The action of Sp(3)×Sp(n) on S12n−1.

The action by the symplectic group (G,φ) = (Sp(3)×Sp(n),ν3⊗νn), where Sp(n)
is the group of Hermitian matrices (A∗ =A−1) with quaternion entries, is similar. We

note that an n×m quaternionic matrix can be represented as a 2n× 2m complex

matrix of the form
[
A −B
B A

]
. (See, e.g., [2].) A symplectic matrix can be represented by

a unitary matrix of this same form. Hence, we are considering an action on 6×2n
complex matrices of the form above under left multiplication by a 6×6 matrix of that

form and right multiplication by a 2n×2n matrix of the same form. Now, we know

that a complex 6×2n matrix (X) can be “diagonalized” in the sense of diagonalizing

a 6×6 submatrix and leaving all other entries zero, but we need to know whether this

can be accomplished by this subgroup of SU(6)×SU(2n). The answer is yes, because
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Table 5.1

Group Representation Orbit space

SO(3)×SO(n) ρ3⊗ρn ∆2,3,4

SO(3)×SO(3) ρ3⊗ρ3 ∆2,3,3

U(3)×SU(3) ρ2×µ3⊗µn ∆2,3,4

Sp(3)×Sp(n) ν3⊗νn ∆2,3,4

we use the unitary matrix that would diagonalize XTX, which is a 2n×2n complex

matrix of the form
[
A −B
B A

]
. For any matrix of this form, if ((u),(v)) is an eigenvector

with eigenvalue λ, then ((−v),(u)) is also an eigenvector, with eigenvalue λ. Since

the unitary matrix that diagonalizes XTX by conjugation has the eigenvectors of XTX
as its columns, it, too, can be written in the desired form. Therefore, there exists a

2n×2n unitary matrix U2 of the desired form that diagonalizes XTX.

U2X
TXU−1

2 =




β1 0 ··· 0

0 β2 ··· 0
. . .

0 ··· 0 β2n



. (5.8)

The diagonal entries in the resulting matrix (βi) are the eigenvalues of XTX; they

are therefore real and nonnegative. If the column vectors of XU−1
2 are v1,v2, . . . ,v2n,

equation (5.8) shows that 〈vi,vj〉 = βiδij . At least 2n− 6 of the βi are zero. Since

the eigenvalues of XTX come in λ, λ pairs, there is an even number of zeros. Since

X and U2 are both in the subgroup of complex matrices that represent quaternionic

matrices, their product is, so the zeros are evenly distributed in the upper and lower

matrices. Therefore, for βi nonzero, the vi/
√
βi form an orthonormal system, and we

can let U1 be a unitary matrix with vTi /
√
βi as its ith row for each nonzero β. Then

U1XU−1
2 is a diagonal matrix, and U1 and U2 are symplectic matrices. The diagonal

entries are λ1, λ2, and λ3 and their conjugates. Since the λi are real, they are equal to

their conjugates. We may assume that they are positive and arranged in descending

order. Therefore, the orbit space is

{
(x,y,z)∈ S2 : x ≥y ≥ z ≥ 0

}
. (5.9)

The isotropy subgroups may be more easily determined by reference to the quater-

nionic form of the matrices if we remember that the center of the quaternionic group

is the reals. Then the reasoning runs analogously to that for U(3)×SU(n).
Therefore, we see that the resulting orbit spaces for these four irreducible cohomo-

geneity-two actions on Sn are given in Table 5.1.

Moreover, they have decompositions as given in the following table, where H, Li,
and Ki are the isotropy subgroups associated with the orbit space as in the following

diagram (Figure 5.1 and Table 5.2).
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x = 0 x =y
y = z

K3

α3L1

H
L2

α1α2

L3
K1K2

Figure 5.1

Table 5.2. Irreducible cohomogeneity-two actions.

Group SO(3)×SO(3) SO(3)×SO(3)
Representation ρ3⊗ρn ρ3⊗ρ3

Angles α1=π/2, α2=π/4, α3=π/3 α1=π/3, α2=π/2, α3=π/3
H S(O(1)2×O(n−3)) S(O(1)3)
L1 S(O(1)×O(2)×O(n−3)) S(O(1)×O(2))
L2 S(O(2)×O(1)×O(n−3)) S(O(2)×O(1))
L3 S(O(1)2×O(n−2)) S(O(1)×O(2))
K1 S(O(2)×O(n−2)) SO(3)
K2 S(O(1)×O(n−1)) S(O(2)2)
K3 S(O(3)×O(n−3)) SO(3)

Group U(n)×SU(n) Sp(1)×Sp(n)
Representation ρ3⊗µ3⊗µn ν1⊗νn
Angles α1=π/2, α2=π/4, α3=π/3 α1=π/2, α2=π/4, α3=π/3
H S(U(1)3×U(n−3)) Sp(1)3×Sp(n−3)
L1 S(U(1)×U(2)×U(n−3)) Sp(1)×Sp(2)×Sp(n−3)
L2 S(U(2)×U(1)×U(n−3)) Sp(2)×Sp(1)×Sp(n−3)
L3 S(U(1)2×U(n−2)) Sp(1)2×Sp(n−2)
K1 S(U(2)×U(n−2)) Sp(2)×Sp(n−2)
K2 S(U(1)×U(n−1)) Sp(1)×Sp(n−1)
K3 S(U(3)×U(n−3)) Sp(3)×Sp(n−3)

6. Conclusions. Much has been written about isometric actions on spheres, and in

particular, cohomogeneity-two actions have been studied by a great number of people.

Here, we have tried to give accessible, explicit descriptions of how these orbit spaces

and their underlying isotropy groups are computed.

A careful examination of all the actions leads to surprisingly few orbit spaces under

these actions. The orbit spaces are homeomorphic either to a sphere or to a disk. The
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disks may have zero, one, two, or three vertices. The angles at these vertices may be

π/2,π/3,π/4, orπ/6. In the case of irreducible actions, the orbit spaces are limited to

the spherical triangles ∆2,3,4, ∆2,3,3, and ∆2,2,3. These are all subsets of the two-sphere

of radius 1 or 1/2.

Some questions that remain in this area include:

(1) what are the orbit spaces associated with actions of cohomogeneity two on

manifolds of strictly positive sectional curvature? It is well known [1] that these

orbit spaces will be two-spheres or disks and we know geometrically that any

such disk can have at most three vertices, so the question remains as to which

angle configurations occur; and similarly,

(2) what are the orbit spaces associated with cohomogeneity-three actions on

spheres (and on manifolds of strictly positive curvature)? In particular, the ac-

tions themselves are yet to be classified.
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