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ABSTRACT. The convolution of two functions f(Z) X a z and
n

n=0

n ng(z) 7. b z is defined as (f,g) (z) a b zn. For f(z)=z- r a z and
n=0

n
n=0

n n
n=2

n

g(z) z/(l-z)
2(I-)

the extremal function for the class of functions starlike of

order y, we investigate functions h, where h(z) (f,g)(z), which satisfy the

inequality (zh’/h)-II/l (zh’/h) + (i-2) < 8, 0 <_ < i, 0 < 8 <_ i, for all z in

the unit disk. Such functions are said to be 7-prestarlike of order u and type

8. We characterize this family in terms of its coefficients, and then determine ex-

treme points, distortion theorems, and radii of univalence, starlikeness, and convex-

ity. All results are sharp.

KEY WOS AN PHRASES: Convolution, Starlike Functions, and Univalent Functions.
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1. INTRODUCTION.
n

Let S denote the class of functions of the form f(z) z + 7 a z that are
n

n=2

analytic and univalent in the unit disk E {z Izl < i} A function f e S is

said to be starlike of order and type 8 if the inequality

l(zf’/f)-ll/l (zf’/f) + (i-2*) < 8
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holds for some ,8(0 < e < i, 0 < 8 < I) and for all z in E. The class of all

such functions shall be denoted by S*(e,8) Note that S*(e,l) S*(), the class

of functions starlike of order e, and that S* (0,@) is a subclass of starlike

functions studied by Padmanabhan [i]. For f e S*(e,8), 0 < 8 < I, the values of

zf’/f lie in a disk centered at (i + (i-2e)82)/(i-82) whose radius is

28 (l-e) / (1-82 ).

n
The convolution or Hadamard product of ,o power series f(z) Z, a z and

n
n=0

n n
g(z) 7. b z is defined as the power series (f,g) (z) 7. a b z A function

n n n
n=0 n=0

f, analytic in E and normalized by f(0) f’ (0)-I 0, is said to be in the

class of prestarlike functions introduced by Ruscheweyh [2] if f,s e S*(y), where

2 (l-y)
s (z) z/(l-z) with 0<_y<l is the well-known extremal function for the class

S* (y). We say that a normalized analytic function f is y-prestarlike of order

and type 8 (0<e<l, 0<8<1), denoted R (e,8), if f,s e S*(e,8)

Our main interest will be with functions f in S*(e), S*(,8), or R (,8)
Y

n
that may be expressed as f(z) z 7. a z a >0 We denote these classes,

n n--
n=2

respectively, by S*[e], S*[e,8], and R [e,8]. The class R [e,l) R[e] was

studied in [3] while the class S*[,8] was investigated in [4]. For y 1/2

and 8 i, the class reduces to the family S*[] studied in [5].

We begin with a characterization of the class R [e,8], from which we determine
Y

the extreme points, distortion properties, and radii of univalence, starlikeness, and

convexity.

2. COEFFICIENT INEQUALITIES.

In the sequel, we set

n
C(y,n) H (k-2y)/(n-l)! (n 2,3 ),

k=2
(2.1)

so that s may be written in the form s (z) z/(l-z)
Y

2 (l-y)
z + 7. C(y,n) z

n=2

Note that C(y,n) is a decreasing function of y, 0<_y<l, with



CONVOLUTIONS OF PRESTARLIKE FUNCTIONS 61

y<i/2

lim C(y,n) i, y=i/2
n+

0, y>I/2

nTHEOREM i. A function f(z) z 7. a z a >0, is in the class R [e,8] if
n=2

n n-- y

and only i_f

[(n-l)+ 8(n+l-2e)] C(y,n)a

n=2 28 (l-s)
< 1 (2.2)

PROOF. If f e R [,8], then g(z) (f,s) (z) z 7. C(y,n)a e S*[,],
Y y

n=2
n

so that

l(z,’/,) + (--o)I

E (n-l)C(y,n)a z
n

n=2

2(l-e) 7. (n+l-2e)C(y,n)a z
n-I

n=2
n

< 8 (2.3)

for all z e E. Since the denominator in (2.3) is positive for small positive values

of z and, consequently, for all z, 0 < z < i, we let z + i" to obtain

(n-l)C(y,n)a < B[2(l-e) 7. (n+l-2e)C(y,n)a
n=2

n
n=2

n

which is equivalent to (2.2).

Conversely, if (2.2) holds, we wish to show that g f,s is in S*[,8]. For
Y

Iz r < I, we have

(zg’/g)_-.l,
(zg’/g) + (l-2e)

7. (n-l)C(y,n)a z
n

1’1=2

zn-12(i-) 7. (n+l-2)C( n)a
n=2

n

7. (n-i) C (Y,n) a
n=2

n

2 (l-e)- 7. (n+l --2) C (y,n) a
n=2

n

The function g is in S* [,] if the last expression is < 8 which is equivalent

to (2.2) Hence, f e R [,8] and the theorem is proved.
Y
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COROLLARY. I__f f(z) z- 7. a z e R [e,8], then a < 28(l-e)/[(n-l) +n y nn=2

+ 8(n+l)-2)]C(,n) n > 2, with fo__r functions of the form

f (z) z-28(l-)zn/[(n-1) + n+l-2)]C(y,n)n

Tt follows from Theorem 1 that R [:8] is a closed convex family. We shall nowy
show that the extreme points of the closed convex hull are those that maximize the

coe fficients.

THEOREM 2. Set

fl(z) z and f (z) z-28(l-)zn/’ n-l) +8 (n+l-2) C (y n)
n (2.4)

n 2,3 Then f e R [e,8], 0 < , y < i, 0 < _< i, if and only if it can be

expressed as f(z) 7. I f (z) where > 0 and 7. 1 i
n n n n

n=l n=l

PROOF If f(z) 7. f (z) then
n n

n=l

Z [(n-l)+8(n+l-2) ]C(y,n) 1n(28) (l-a)
r.. )t 1-X

1
< 1

n=2 2B (i-) (n-l) +8 (n+l-2) ]C (y,n)
n=2

n

and f e R [,]

n
Conversely, if f(z) z- 7. a z e R [e,8], then set

n y
n=2

[(n-l) + 8(n+l-2e)]C(y,n)a /28(i-e) n 2,3 and set 11 1 7.
n n n

n=2

We see from Theorem i that" > 0 Since f(z) l f (z) the proof is corn-
i-- n n

n=l

plete.

3. DISTORTION THEOREMS.

We may now find bounds on the modulus of f and f’ for f e R [,8]
Y

THEOREM 3. If f e R [e,8], 0 < e < i, 0 < 8 < i, and either

0 < y < (2+38-eS)/(2+48-2eS) o__r r <_ (i+28-e8)/(i+38-28), then, fo__r Izl <_ r

max{0,r-8(l-e)r2/[(l+8(3-2e)] (l-y) }<If(z)l<_r+8(l-)r2/[l+8(3-2e)] (l-y) Th___e bg..unds

2are sharp, with extremal function f2(z) z-B(l-e)z /[i+8(3-2e)](l-y)
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n
28(l-e)r } < If(z)I< r+maxmax{0,r-max

[(n_l)+8(n+l_2)]C(,n)n n

n
28 (l-e) r

(n-l) +8 (n+l-2e) ]C(y,n)

Under the constraints for y and r, it suffices to show that

(e,8,y,r,n) 28(l-e)rn/[(n-l)+8(n+l-2e)]C(y,n)
is a decreasing function of n for n>_2. From (2.1) we see that

(3.1)

C(y,n+l) [(n+l-2y)/n]C(y,n) so that (a,8,y,r,n) > (e,8,7,r,n+l) if and only if

h(e,8,y,r,n) (n+l-2y) [n+8(n+2-2e)]-rn[n-l+8(n+l-2) > 0 (3.2)

For e and 8 fixed, the function h is decreasing in 7 and r and increasing

in n. Hence, h(,8,y,r,n) > h(,8,(2+38-eS)/(2+48-28), 1,2) 0 for

0<_7<_(2+38-8)/(2+4-28), r < I, and n _> 2. Similarly,

h(e.8,y,r,n) > h(e,8,1, (I+28-e8)/(i+38-28), 2) 0 for

0<_y<l, r<(l+28-eS)/(l+38-2eS), and n>_2. Thus max (e,,y,r,n) is attained at

n>2

n=2, and the proof is complete.

As a special case of Theorem 3, we get the result in [3] as a

COROLLARY. If f e R [e,l], 0 < < i, then

2 2
r-r /2(2-() <_ If(z) < r+r /2(2-e) (Izl=r)

PROOF. When 8 i, we have y e < (5-)/(6-2e) so that the first con-

dition in Theorem 3 is satisfied.

REMARK. The function f2(z) 0 in Theorem 3 when

z [i+8(3-2e) (i-7)/8(i-) Letting z 1 we thus have

If(z) > r 8(l-e)r2/[l+8(3-2e)] (l-y) for all z in E if and only if

0<_y<[l+8 (2-e)]/[1+6 (3-2e) ].

Theorem 3 leaves open the question of an upper bound for fl when

>(2+38-8)/(2+48-2e8) and r>(l+28-eS)/(l+38-2eS). We resolve this with

THEOREM 4. Set rn0(e,8,Y)=(n0+l-2y) [n0+8(n0+2-2)]/n0[n0-1+8(n0+I-2)]

If f e R [e,8], 0<e<l, 0<6<1

(i+8) n0+8 (l-s) i+ (i+8) n0+8 (2-e)

I+ (i+8) n0+8 (3-2e) 0Y0 n0+8(n0+2-2e)
< Y < Y1 (n =2,3
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and r (,B,Y) < r < i, thenn
0

no+lIf(z) <_ r + 28(I-)r /[n0+8(n0+2-2) ]C(y,n0+l) (Izl=r)

with equality for f given in (2.4).
n0#l

PROOF. It suffices to determine when (e,8,y,r,n) defined in (3.1), is max-

imized for n n
O

+ 1 > 2. The function attains its maximum value at

n n
O
+i if the function h defined in (3.2), is negative for n n

O
and

positive for n no +i, which occurs for r (,8,Y) < r < rn0n
O

+i
{,8,Y) however,

rn0(,8,Y) < 1 if and only if Y>--Y0 and r +l(e,8,y) > i for y<y
n
O

1
There fore,

max (e,8,y,r,n) occurs at n n0+l for r (e,8,Y) < r < i and yn<<y<_y and the
n n 1

0
proof is complete.

We use similar methods to determine a distortion theorem for f’.

THEOREM 5. If f e R [e,8], 0 < e < i, 0 < 8 < i, and either 0 <’y < 1/2 or

r <_ (2+48-2eS)/(3+98-6eS) r
0

then

1-28(l-e)r/[l+8(3-2e) (l-y) <_ If’ (z) <_ l+28(l-e)#u/[l+8(3-2e)] (l-y) for Izl r

with equality when f2(z) z-28(l-)z2/[l+8(3-2e)] (l-y).

1
PROOF. For A(e,8,y, r,n) 28(l-)nr

n-
/[(n-l)+8(n+l-2e)]C(y,n) we have,

according to Theorem 2,

1- max A(e,8,y,r,n) < If’(z) < 1 + max A(,8,y,r,n) But A is a decreas-
n>2 n>2

ing function of n if and only if

hl(e,8,y,r,n) (n+l-2y)[n+8(n+2-2e)] (n+l)r[(n-l)+8(n+l-2e)] > 0.

Since h
i

is decreasing in r and y for y <_ 1/2 and increasing in n, we have

hI(e,8,Y,r,n) _> hI(,8,1/2,1,2) i-8(I-2) _> 0

for 0 < y < 1/2 and

hl(e,8,y,r,n) _> hl(e,8,l,r0,2) 0 for r _< r
0

This completes the proof.

REMARK. The theorem is the best possible in that hl(,8,1/2,r,2) < 0 for
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r > r
0

and A(e,8,y,l,n) > A(e,8,y,l,2) for each fixed y > 1/2 and n n(y)

sufficiently large.

4. RADII OF UNIVALENCE, STARLIKENESS, AND CONVEXITY.

As we have seen in Theorem 3, it is possible to have f(z0) 0, 0 < Iz01 < 1

for f in R [e,8], which means that f need not be univalent. We now determine
Y

when the family contains only univalent functions.

THEOREM 6. R [,8] _- S if and only if y < 1/2.
y

n
PROOF. Since z + 7. anZ S if 7 n a

n _< 1 if suffices to show
n=2 n=2

for < 1/2 according to Theorem 1 that

[(n-l)+8 (n+l-2e) ]C(,n)/28(i-) > n for n=2,3 (4.1)

But C(y,n) > C(i/2,n) 1 for y < 1/2 so we need only prove (4.1) for 1/2,

which is equivalent to n[i+8-28(i-)] > i-8(I-2e). This last inequality is true

for n=2, and consequently for all n > 2.

Conversely, since C(y,n) / 0 for y > 1/2 we take f (z) defined by (2.4),
n

and note that

n-i
28 (l-e) nz

f’(,z) 1 0
n (n-l) +8 (n+l-2) ]C(y,n)

for

n-I
z [(n-l)+B(n+l-2) ]C(y,n)/28(l-e)n

which is less than 1 for n sufficiently larg6. Thus, f (z) is not univalent for
n

y > 1/2 and n n(y) sufficiently large.

n
Since functions of the form z l a z a > 0, are starlike if and only if

n n--
n=2

they are univalent [5], we have shown that functions in R [e,8], 0 < y < 1/2, are

all starlike. We now determine the largest disk in which such functions are star-

like of order 6, 0 < 6 < i.

n
THEOREM 7. If f(z) z 7. a z e R [,8] 0 < < 1

n 5"n=2

0 < < i, 0 < < 1/2, then f i__s starlike of order 6, 0 _< < i, in the disk
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Iz < r
0

where

r inf [(1-6) [(n-l)+8(n+l-2)]C(y,n)]
0

n 28 (l-e) (n-d)

i/(n-l)

with equality for a function of the form (2.4).

PROOF. It suffices to show that (zf’/f) 1 < 1-6 for Izl < r
0

But

I
(n-i)anlzl n-i

(zf,/f) ii <
n=2

< i- d (Izl r)
1 n=2 anlzl n-I

if and only if

n-d n-iZ I--- arn _< i
n=2

(4.2)

In view of Theorem i, we need only find values of r for which

n-d rn-i [(n-l)+8(n+l-2e) ]C(y,n)
(i-) <

28 (l-a)
(n=2,3

which will be true when r < r
0

and the theorem is proved.

COROLLARY i. If f e R [e,8], 0 < < i, 0 < 8 < i, 0 < y < 1/2, then f is

convex of order 6, 0 d < 1 in the disk zl < r_ where
I

r
I

inf
28(l-e)n(n-d)

n

(l-d) (n-l)+8 (n+l-2e) ]C(y,n) (n-l)

PROOF. Since z + % a z is convex of order d if and only ifn
n=2

n
z + % na z is starlike of order d, the proof follows that of Theorem 7, with an nn-2

replaced by na
n

By taking d 0 in Theorem 7, we may determine the radius of univalence (and
starlikeness) of R [e,8] when > 1/2
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COROLLARY 2. If f e R [e,8], 0 < < I, 0 < 8 < I, 1/2 < y < i, then f is

univalent an__d starlike for zl < r
2

where

r
2

inf
28n(1-a)

n

((n-l) +8 (n+l-2e)) C (y,n)
i/(n-l)

5. ORDER OF STARLIKENESS

Since functions in R [e,8], 0 < < 1/2, are starlike, it is of interest to
Y

determine the order of starlikeness. We do this in

THEOREM 8. If f e R [,8], 0 < < i, 0 < 8 < i, 0 < 7 < 1/2, then f is star-

like of order

[i+8(3-2)] (l-y)-28(l-e)
I

[i+8 3-2e) (l-y)-8 (l-e)

2
with equality for f(z) z-8(l-e)z /[i+8(3-2)](i-y)

PROOF. From Theorem 1 and [5], it suffices to show, for

n
f(z) z- E a z e R [,8], that E [(n-l)+8(n+l-2e)]C(y,n)a /28(i-e) < 1 implies

n=2
n y

n=2
n

[(n-l)/(1-1) ]a < i. This will be true if
n=2

n

(n-l)+8 (n+l-2e) ]C(y,n) (1-I)
g(e,8,y,n)

28(i-e) (n-l)
> 1 (n=2,3

For and 8 fixed, g can be shown to be an increasing function of

0 < y < 1/2, and an increasing function of n, n > 2, so that

g(e,8,y,n) > g(,8, 1/2,2) 1 for 0 < y < 1/2 and n > 2. This completes the proof.

Choosing 8 1 and y e in Theorem 8, we get the following result proved in

[3] as a

COROLLARY. If f e R [e,l], 0 < < 1/2, then f is starlike of order

(2-2) / (3-2).

This work was completed while the first author had a grant from the University of

Khartoum, while the second author was on sabbatical leave from the College of Charles-

ton, and while both authors were Visiting Scholars at the University of Michigan.
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