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ABSTRACT. A technique used by S. Haber to prove an elementary inequality is applied

here to obtain a more general inequality for convex sequences.
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I. INTRODUCTION.

Let a and b be non-negative. Then the following elementary inequality was

proved in [i].

a
n an-i b

n a+b.n
n$I[ + b+. + e (--) (n=0,1,2,...)... (i.I)

Now this inequality can be obtained at once by taking f(t) t
n

in the well-

known result
b

a+b.
f(t)dt > f(--) (I 2)

b-a
a

which holds whenever f is convex in [a,b]. However, the method used in [i] to obtain

(I.I) is interesting and it is the purpose of the present note to show that it can be

used to prove a considerably more general result about sequences. Indeed this more

general result will have (1.2) as a consequence.

2. MAIN RESULTS.

A lemma which we shall use is the following

LEMMA. If

> 2 _> >0 > I m

and

m
E 0
=0 V
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and if the ordering of the is such that each positive precedes all the nega-

tive ones, then

m
: vl3v -> 0

v=O

This lemma, which is easily proved, is not the one stated by Haber but, essentially,

it is what he used. For with b
i

defined as in

(i 0 2, []: n even)

we do not in fact have

Y. b. 0
i=0

which is what is needed to apply the lemma quoted there.

Our result is the following.
n

THEOREM. Let {u}=0
be a convex sequence. Then

n n1 n
11 u _>-- r. _(v) un-{--"-

v=0 2
n vv=O

(2.1)

To see that (1.2) is a consequence of (2.1) let the function f(x) be bounded

and convex (and hence continuous) on [a,b] and take

Then (2.1) reads

u f(a + v__ (b-a))
n

n n

In+l E f > E () f(a + (b-a))...(a + v
(b-a)) n v

n ^n nn--O v=Oz

(2.2)

On letting n the left-hand side here tends to the left-hand side of (1.2). And

by virtue of Bernsteln’s result

n
,im Y. (3)q (’) x(l-x)n- +(x) (2.3)
n- =0

.a+b.
whenever E C[O,I] we see that the right-hand side of (2.2) tends to f[---)
Merely take (x) f(a + x(b-a)) and x I/2 in (2.3)

We now proceed to prove (2.1)

PROOF. Following Haber let us put Q [] and write

Q , { 70qY + + 7Q if n Is odd
E 7v 1v-O 70+71 + + 7Q_ I + 7Q if n is even

Then
n n n Q*

n+-- r. uv - r. (v)uv" r. eEu + u
v=O v=O v-O v n-v
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where

n
Cv n+-- ’(X)

Since {u }n=0 is convex then

uv+ + u u + u (0<<Q-I)n-v-I < n-

which is to say that the sequence u + u }Q=0 is non-lncreaslng, we see too that
n-

the sequence {c }Q=0 is non-lncreasing and that * c 0. Appealing to the Lemma

quoted above we find that
--0

Q,
c[u +u

--0 n-

and this complets the proof of (2.1).

In conclusion I wish to thank the referee for his helpful advice concerning the

lemma used here.
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