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ABSTRACT. In an open bounded region of n-space occupied by a homogeneous and iso-
tropic medium, we control the temperature through the boundary. The normal deriv-
ative of the temperature (which measures the appropriate heat flux) is restricted
to be nonnegative. This gives rise to a free boundary in space-time separating
the areas of positive and zero heat flux. Under a natural monotonicity condition,
the free boundary is the graph of a function of space. This function is shown to
be locally Lipschitz. Moreover for n=2 the time derivative of the temperature is

proven to be continuous across the free boundary.
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1. INTRODUCTION
Let Q(:Rn be open, bounded and have smooth boundary 3Q2. Suppose that T, a

subset of the boundary, lies on the hyperplane Rn_l. Let u be a solution to

Hu = Au-g—‘t‘= 0 in 9x (0,

u(X,t) = £(X,t) on (30-T) x (0,)

u20, ~—=20 u - =0 on I'x (0,»)

u(X,0) = uo(X)

where X ¢ Rn, v is the unit outward normal and f, ug given.

J.L. Lions and G. Stampacchia showed in [S5] that (x) can be formulated as a var-
iational inequality and obtained a unique solution in the appropriate function spacec.
Regularity of the solution was considered by the author in [2]. He proved there that
ueC)l(’a(fzx (0,»)) (0<a<1) and ue Cg’l(fzx (0,=)) under the assumptions u e c? and £
is Lipschitz in time and twice continuously differentiable in space with f>0 on

AT x (0,).
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Throughout this note we shall assume, together with the above, that 3f/3t and Auo

are nonnegative.

2.  FREE BOUNDARY.

Let Q* be the reflection of Q about R

Put D=QuQ*. As in [2] the solution
u to (x) can be extended across Rn-1 in such a way that Hu=0 in D-{u|r=0} and u sat-
isfying the relevant conditions.

A careful examination of the proof of Lemma 1(i) in [2] proves the following
LEMMA 1. 23u/3t is nonnegative and subcaloric (i.e., Hut >0) in D x (0,x).
Let X = (x,y) where x eR"L and yeR. Set
$(x) = sup{t: u(x,0,t) =0, xeT}
then {t=¢(x)} is a well-defined function which we call the free boundary.
THEOREM 1. t=¢(x) is locally Lipschitz.

PROOF. Let B.'<(x0) denote an (n-1)-dimensional ball of radius k centered at Xq+

Set

1 2

_ 2 1
n(x,y,t) = ﬁ-[t t>H -to] rr(x) - =5y

where 2 A
4 1
r(x) = K—Z U|x-xo| -3 K]}

with

@ = , @ = lgl-@" .
0 if g<0

/2

Choose X < ((Kzu)/4u + n<2))1 so that

Hn < 0 in C(k,A,p)

where C(k,A,u) := B’;(xo)x(—)\,)\)x(to-u,to]. For 120 and gan-l, consider the func-

tion
w(x,y,t) = Tu, +E - ux-u+€n

where u, = (uxl,...,uxn_l,O) and 0<eg<<)A. Since

Hw = eHn in C(x,A,u) - {u(x,0,t) =0}

by minimum principle, the minimum of w is attained on 3'(C(k,X,u)-{u(x,0,t) =0})
(3'-parabolic boundary). First suppose it occurs on (3'C(x,A,u)-{u(x,0,t) =0}) nN6
where Né denotes a §-neighborhood of {u(x,0,t) =0} in R"-1 (6§ to be chosen), then

using the regularity of u and Lemma 1,
2
W= Tu +Eeu -u+en 2 —C]E[Ka-C61+a+e {l—i-]
X )\2

Choosing |&] < cx®1(e/4) and 6 < (C-1(€/4))1/(1+OL)

occurs on a'C(K,)\,u)-Né, since u >0 in C(K,)\,u)-Né,

we have w>0. Now, suppose it
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w2t -S-u-¢
t 4

2T - inf{ut: (X,Y,t) € C(k, A, W) 'NG} - sup{u: (x,y,t) e C(x,A,u)} - ;S‘-C

choosing T large enough we see that w2>0. Finally, if it occurs on

3{u(x,0,t) >0} nC(k,A,u),
w = e[{t+%u—to]-+g(x)} >0 .

In any case w20 in C(k,A,u)-{u(x,0,t) =0}. Therefore,

Tut+£ R 0 in C(k/2,0,u/2) - {u(x,0,t) =0} .

Hence if (x,0,t) is a free boundary point there is a cone K of rays emanating from

(x,0,t) such that u is increasing.
qed.

The idea of using the solution as a barrier to the directional derivative was

introduced by H.W. Alt in the ''Dam Problem" (see [1]).

3. CONTINUITY.

In this section we assume that n=2.

THEOREM 2. u, is continuous across the free boundary.

PROOF. Let (xo,O,to) be a free boundary point. By Theorem 1, there is a cone
‘K= {(x,0,t): to-tzclx-xol} for some c >0 such that

u =0 in Kn (BK(XO,O) x (to-)"to])

for k,A >0 and BK(xo,O) denotes a two-dimensional ball of radius k centered at
(xo,O). With no loss of generality let k=1 and A<c. Let h be a harmonic function
in Bl(xo,O)-{x: |x-x°|s)\/c} with h=0 on 331("0’0) and on {x: [x-xo| <A/c}. Also let
Cap (L) denote the newtonian capacity of L. Then

inf{h(x,y): (x,y) € Br(xo,O)} 2 C Cap{lx-xol <A/c}

for A/c<r<1.

Set v = (l—ut)/M1 where M

1° C(Slu,pk)ut and C(1,)) = Bl(xo,O)X(to-X,to]. Observe

that
v 2 h - hxF in Cl(l,X)

where hxF denotes the convolution of h with the fundamental solution F of the heat

operator
v 2 Ch on Bro(xo,O)X{t=to-)\/2}

for )\/c«< ro< r. Since Hv<0, 0<v<1, by Green's representation formula,

v 2 Ch in Bro/z(xo,O) x (to - 1/4)\,1:0]
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inf{v(,y,t): (6y,t) e C(r/2,2/4)} = -

Therefore suppose inductively we have proved that

infv(x,y,t): (X,y,t) eC(r°/2k+l, A (42)%%)) 2 ¢ cap {x: |x-x, | s% 2'2"}

where M, = sup{u, (x,7,1): (x,y,t) e C(r/2¥"1,1/4-22)}. Therefore
ko c
M = 1 (1 -—J
ko o K
oo oo
Hence Mk-+0 if kHl(l-(C/k)) goes to zero. But knl(l-(c/k)) goes to zero if and only

if § C/k diverges.
k=1 qed.
The above proof fails for n>3. The situation here is similar to the one-phase

Stefan Problem considered by Caffarelli in [3] (see also [4]).
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