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ABSTRACT. It is shown that "isoperimetric'" inequalities, relating measures and capa-
cities, hold for all sets in ]Rn if they are valid for all balls. As a corollary, the
necessary and sufficient conditions for the continuity of some imbeddings of M. Riesz
and Bessel potential spaces are obtained. The introduction contains a survey of known
results on inequalities of Sobolev type.
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1. INTRODUCTION.

(Notation is reyiewed in Section 2.1, capacity and related concepts in 2.2).

In accordance with the Sobolev [1] and I1'in [2] theorems for each n and p, there
is a > 0 so that for all s, any function u € C:(B{n) satisfies

[lu] 5 LY®R®)|| < a]|vu; PR,
&S '

wheren 2s >n-p >0, p>1, q = ps/(n - p). This result became the starting point

for many generalizations. Consider, for example, the inequality
[lu; LYR™50) || < A]|Vu; LP@®™ ], (1.1)

where u € C:(Bin); and Lq(DRn;u) refers to summability with respect to a measure U.
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According to a theorem by one of the authors [3] (see also [4], [5]), (1.1) follows

from the "isoperimetric" inequality

p/q

WE) < p P - P AP cap(x; wpl

)
with q 2 p and E being any Borel set in Rr".

On the other hand, if (1.1) holds, then for any E

p/q
(u(E)) < AP cap(E; wpl).

By wpl, we denote the completion of CSXIRH) with the norm Iqu; LP(IRn)II and, by
cap(E;S), the capacity generated by the norm in the space S, i.e.,

cap(E;S) = inf{||u; S||P: ueC. ; u=1on E}

0
Later on that result was extended to other function spaces (see [5]-[8]). The
compact statement of these generalizations runs as follows. Let S be one of the spaces

Hx s hz, Wl R wQ, BQ, bQ (see Section 2). Then the best constant in

P PP P P P
00
[us L3 || < allus s[[, uecg, a=p, 1.2)
is equivalent to the best constant in the "isoperimetric" inequality
p/q
(u(E)) < B cap(E;S). (1.3)
The estimate A 2 B follows immediately from the definition of capacity. The in-

verse is a deeper fact, its proof being based on the inequality

fm cap(Q, ; $)ePt ae < c||u; s||P, (1.4)
0

where u € S,C is a constant independent of u and Qt = {x: Iu(x)] > t}. The validity
of inequalities of the type (l.4) was discovered in Maz'ja [5]. The inequality (1.4)
(and even a stronger one with capacity of the condenser Qt\QZt instead of cap(Qt, S))
was obtained in [5] for wpzwith 2 =1,2. 1In the case £ = 2, the "smooth truncation"
of the potential near its leyel surfaces was used in the proof. Joining this device
with Hedberg inequality [9], D.R. Adams [6] proved (1.4) for Riesz potential space hpl
with any integer 2. The same tools, together with the Lizorkin-UspenskiX trace theorem
for weighted Sobolev spaces (see [10],[11]), enabled Maz'ja to prove (1l.4) for S = WPQ
with p > 1, & > 0. As a consequence, (1.4) was obtained for the Bessel potential space
le with any fractional 2, but only with p > 2.

The last restriction was removed by Dahlberg [8], whose proof also rests on

"smooth truncation" and uses some subtle estimates of potentials with positive density.
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Recently, Hansson [12] gave a new proof of (1.4) for potential spaces avoiding "smooth
truncation". Hansson's proof is simpler and embraces a wide class of potentials with
general kernels. In Section 4 we show an even shorter proof of (1.4) based on the
same idea as in [12]. This proof is taken from the paper of Maz'ja [34].

One might ask if there exists a necessary and sufficient condition for (1.4) for-
mulated without capacity and arbitrary set E. From D.R. Adams [13] (see also [14]),

it follows that the answer is positive for S = hﬁ, pl<n, ¢ >p > 1. His condition is

H(B(x30)) < Cp°, s = qlasp = ), (1.5)
where B(x;p) is any ball with arbitrary center x € IRn and radius p. In other words,
it is sufficient to check (1.3) for balls only. According to [14], the condition (1.D5)
yields

u({x: Izlf(x)l > t}) < aCt_qllfllpq,

where IZ is the Riesz potential. This and Marcinkiewicz's interpolation theorem give
the continuity of the operator IQ: LP(I(n) -> Lq(l{n;u), or the estimate (1.2) with
S = hpz, 2 >0, q >p > 1, which is the same.

Thus, the estimate (1.5) (with q > p) for any ball implies (1.3) for any set. It
is an attempt to get a direct proof of the last implication that gave rise to the pre-
sent paper. Such a proof was found and its analysis led the authors to theorems of
the following type.

For any ball B(x;r), let

(B (x;T)) < ¢(cap<B<r>;hp£>) 1.6)

where B(r) = B(0O;r), ¢ is an increasing function subjected to additional conditionms,
and M is a measure in R™. Then there is a > 0 so that for any Borel set E € IRn,

H(E) € a ¥(a cap(E;hpz)). (1.7)

By this and similar facts, we show in the second part of the paper that inequali-
ties of the type (1.6) are necessary and sufficient for estimates of traces of Riesz
and Bessel potentials in Orlicz spaces. In particular, we obtain a new proof of the
aforementioned D.R. Adams theorem [13, 14]. Another corollary which may be of inter-
est, claims that the inequality

st || s alfus, 1|
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with q > p > 1 and lp = n holds if and only if, for any ball B(x;r) with r € (0,1/2),

(B(x;r)) < allog r|"Y/P.

We state now some other results relating the conditions for (1.2).
If S = Hﬁ and p2 < n, then (1.2) holds simultaneously with (1.5) where 0 < r < 1

(see Section 4).

In a simpler case, p& > n, the necessary and sufficient condition for (1.2) with

sup{u(B(x31)): x e R} < o
(see Section 4, Note 4.1).

According to a remark in D.R. Adams [9] (see Note 4.1 below), the condition (1.5)
is not sufficient for (1.2), when q = p, so one has to deal with the less explicit
condition (1.3) in this case, probably the most important for applications.

For p > q > 0, the necessary and sufficient condition was obtained in the paper
of V.G. Maz'ja [34]. 1Its formulation runs as follows.

Let {gj}+?=_m be any sequence of open sets, such that §j+l c gj. Let p, = u(gj),

]
Yj = cap(gj,S), where S = hpzor S = Hp% p > 1. The inequality (1.2) holds if and only

if
+o 1/
CRERTIND A L
Z SRR SR . S < const.
, ! 1/p
J== Yj

This provides the sufficient condition

.
* - q

f ( £ )p d
Pvay t <o,
o ¢®)

where ¢(t) = inf{cap(E;S): WuW(E) > t}.

In case pf > n, p > q, the necessary and sufficient condition for (1.2) can be

written in the simpler form
P
I ow@)? T 1<,
i
where {Qi} is a sequence of closed cubes with side 1, forming the coordinate grid in

r".

We note also that, in case q = 1 and p > 1, the inequality (1.2) with S = hpgor
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l L 1]
S = Hp is equivalent to inclusion IQU e P or JQ“ e 1P respectively [5] (here IQ and
JQ are the Riesz and Bessel potentials).

We now dwell on the case p = 1., For S = wz it is shown in [15] that (1.2) holds

1’
1, q 2 1. One has to add the condition p € (0,1)

simultaneously with (1.5), where p
in (1.5), if S = Wﬁ. For the case p = 1, see also [35]-[39],[7].

Using the fact that bﬁ and Bﬁ, p > 1, are the trace spaces of the corresponding

potential spaces, we obtain theorems on bg and Bi from the theorems on hi and Hﬁ

We note also that our technique enables one to obtain similar results for poten-
tials with general kernels k([x - y[) of some class. The papers [16] and [12] provide
a basis for such generalizations.

Concluding the introduction, we remark that integral inequalities for functions
in subdomains of R" are studied in [39] and [40] where other references can be found.
2. NOTATION AND PRELIMINARIES.

2.1. BASIC NOTATION:

Let R" be n-dimensional Euclidean space, B(x;r) = {y ¢ Rr": |y - x| < r},

B(r) = B(0;r). By u, V, we denote measures in IRn, i.e., non-negative, completely
additive set functions, defined on a Borel O-algebran'of the space H{n.

Let Lq(u) be the set of measurable functions defined on the measure space

(H(n,iy,p) such that |f|q is integrable, 0 < q < ©, We put
/q
s ol | =([reta) .

Integration is over the whole space Rr" if nothing else is indicated, the same relates
the notation of functional spaces. If p is n~dimensional Lebesgue measure we shall
use the notation LY instead of LY(u) and write ||f||q intead of ||f; Lq(u)ll. In
other cases, we shall denote the norm in the space S by l|f; S||.

00

As usual, CO is the space of infinitely differentiable functions in R™ with com-

pact support. Everywhere below a,b,c are positive constants, depending only on n,p,%
and so forth. Two values A and B will be called equivalent (A ~ B) if there exist

constants a and b such that aA < B < bA.

2
P
o and |]u; H‘P}H = ||(-a+ 1)“2u||p, where

Let 1 < p < ®, We introduce spaces h " and Hg’as completions of C0 with norms

L /2
us w21l = 110 2]
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M = @t lete o+ Y2 - w A+ whe A %

and F is the Fourier transform in IRR" (see [17]).
As is well known [17], any element of the space hﬁ (the space Hﬁ ) can be consid-

ered as a Riesz potential I,f (Bessel potential Jgf) with the density from L? and

2
2 2

f =b||I,f; H f = J,f; H
£l = ol ITges 21 s lel] = 119,85 url

That is why hﬁ and Hi are called the spaces of Riesz and Bessel potentials.

oo

For p 2 1 and integer 2 > 0 we denote by wﬁ and wﬁ the completions of C0 with re-
o a
i _ a 1 n _
spect to norms ||V2u||p and l|V2u||p + llul]p where V, = {37/0x seees 0% b, lal o=,
The spaces hﬁ and wﬁ as well as Hi and Wi coincide for p > 1.
2 o
If p 21 and £ is not an integer, then by wp we denote the completion of CO with

the norm

- 1/
(JIIAtu; L Py P, @.n

where Atu(x) = u(x + t) - u(x), [2] and {%} are the integer and the fractional parts
of 2.

If we substitute the norm (2.1) in this definition with the norm

—n— 1/p
[ fus bﬁll = (fllAtqup PR, 0 <<, (2.2)

then we obtain the definition of the space bi. In the case % = 1 the first difference
in (2.2) should be replaced by the second one. For £ > 1, we set

L 2-1
[us o211 = | 1w 627

As is known, the norms in spaces wi and bﬁ are equivalent for fractional 2.

We also introduce the spaces wﬁ and Bﬁ as completions of C§ with norms
| Ju; wﬁ]l + Ilullp and ||u; Dﬁl] + IIullp respectively.

We assume p > 1 everywhere below.

2.2. SOME NOTIONS OF POTENTIAL THEORY:

To each functional space S introduced in 2.1, we can assign a set function called
capacity. For any compact e © ]{n, we put

0

cap(e; 8) = inf{||u; s||P: ue Cys u21lon el.

If E is any subset of ]Rn, then inner and outer capacities of E are defined by
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cap(E; S) = sup{cap(e; S): e c E, e is a compact set},
Tap(E; S) = inf{cap(G; S): G o E, G is an open set }.
We formulate now some known properties of the capacity cap(+; S) (see, for exam
ple, [18], [19]).
1) 1If the set e ¢ R" is compact, then for any € > 0 there exists an open set
G ¢ R™ such that G > e and cap(e; S) < cap(e';s) + € for any compact subset e’ of G.
2) If the set e ¢ IR™ is compact, then cap(e;S) = cap(e;S).

3) If Ef c E,6 < n{n, then cag(El;S) < cap(Ez;S), cap(El;S) < cap(EZ;S).

1 2
[ee]
4) Let {Ek}k=1 be a sequence of sets in ]Rn such that E =(ig Ek' Then
0
cap(E;S) < :E: cap(Ek;S).
k=1

It is known (see [18], [19]) that any analytic (in particular, any Borel) subset
E of K" is measurable with respect to the capacity cap(+;S) (i.e. Tap(E;S) = cap(E;S)

The following set function, also called capacity, is useful for different appli-
cations

. P © . n .
Cap(e;S) = 1nf{||u;S|| : ueC.,,0<u<lin R, u=1 in a neighborhood of e}.

0

(Sometimes the condition O < u < 1 is omitted in this definition). According to [20],

[21] (for integer %) and to [22] (for all 2 > 0),

Cap(e;Hﬁ) ~ cap(e;Hg). (2.3)
The relations of the type (2.3) hold for S = hz, Bi, b;.

Along with capacities cap(*;S) and Cap(*;S) the following capacity
Ck,p(E) = inf{l[f[lg: f e Li and fk(y - x)f(y)dy = 1 for all x ¢ E}, where k is a pos-
itive decreasing continuous function on (0, +®) is introduced in [19] (the function k
is called a kernel).
We present now some connections between capacities.
PROPOSITION 2.1.
(i) I1f S = Hs or S = hﬁ and k is a Bessel or Riesz Kernel, then
cap(E;S) ~ Ck,p(E)'
(ii) If diamE < 1 and p% < n, then

cap(E;Hﬁ) ~ cap(E;hi) (2.4)
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(see [23]). Relations analogous to (2.4) also hold for other pairs of spaces Bi, bi
and wl, wz.
P P

(iii) If 2 < p < =, then

2 2
cap(E;H ~ E;B
p( p) cap( p)
(see [24]). Moreover, for 2 - &/n < p < 2 the equalities cap(E:Hi) = 0 and cap(E;B§)=O

hold simultaneously [25]. For any p € (1, +°), 2 > 0,
2 2
E;H < E;B
cap( p) c cap( p)’

where c is a constant, depending only on n,p,% ([24], [25]).
(iv) If Ec R™, 2>0, 1< p <, then

JL+l/p(Rn+l

CaP(E;Bﬁ(]Rn)) ~ cap(E:Hp

)) ~ cap(E;Bﬁ*“"(m““))

(see [24]).

By U2 p and VE B we denote the nonlinear Riesz and Bessel potentials ((%,p)-poten-
’ ’

tials) of a measure [ i.e.

AT p'-1 b _ p'-1
Uk,p I£<IZ M) . Vz’p JQ(JQ H) .
The following rough maximum principle holds for the potentials UZ p and VE p*
b b
PROPOSITION 2.2. Let P" be one of the potentials UE » oF VE o+ Then there exists
’ ’

a constant M, depending only on n such that
Pu(x) <M sup{Pu(x): X € supp M}.

This statement is proved in [18], [23].

The following known assertion contains the basic properties of the so-called
(,p)-capacitary measure.

PROPOSITION 2.3. (see [18], [19]) Let E be a subset of rR". 1f EEE(E;hﬁ) < 4o
then there exists a unique measure uE with the properties:

DIty gl B = ),

HE
2) UQ p(x) 21 for (&,p) - q.e. on E.

(A property which holds except on a set E with cap(E;hﬁ) = 0 is said to hold (&,p)-

q.e. on E),.

3) supp up < E,
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4) p_(E) = EEE(E'hz)
E ’ p ’

HE
5) L)Q’p(x) <1 for all x € supp UE

The measure Mg is called the capacitary measure of the set E.
U

We will also use the notation UQEp for the capacitary potential of E.
b
This proposition still holds after the replacement of h§ by Hg and UE p by VE "
3 3
2 2

We note also that, according to [18], the capacities cap(K;S) with S = hp or Hp

can be defined as cap(K;S) = sup{u(K): supp M<K and Pu(x) < 1 on supp M}.

The following relations are also of use (see [19]). If p2 <n and 0 < p < 1, then

cap(B(o);Hﬁ) ~ PR, (2.5)

If p2 < n and 0 < p < ®, then
cap(B(p);hi) = ¢ pVPE, (2.6)

If p = n and 0 < p =1, then
cap(B(p);H§> ~ (log 2/0)17P, 2.7)

If p2 > n, then cap({x};Hé) > 0 (so only the empty set has zero capacity).
For arbitrary set E c R"” and arbitrary non-decreasing function ¢ on [0, +®) we
define the Hausdorff ¢ measure:

H(E;9) = lim dinf > o(r,),

e0 (B} %
where {Bi} is any covering of E by open balls Bi with radii £, < e, If ¢(t) = ts, then
s is called the dimension of the Hausdorff measure. By the s-dimensional Hausdorff
measure of E, we call the value HS(E) = vsH(E;tS), v being the s-dimensional Lebesgue
measure of the s-dimensional unit ball. For s = n the Hausdorff measure HS coincides
with n-dimensional Lebesgue measure m .

The next two propositions contain different, but in a certain sense exact neces-
sary and sufficient conditions for positivity of capacity. These conditions are for-
mulated in terms of the Hausdorff measure.

PROPOSITION 2.4. ([18], [26]). Let S = hﬁ (1 <p<n/k)ors-= Hi (1<p<a/e)

and h be a non-negative non-decreasing function on [0, +») such that h(0) = 0 and

p'-1
J (.ELEL_ de oo, (2.8)
0 tn—p!l t
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Then cap(E;S) > 0 for any Borel set E c I{n with a positive Hausdorff h-measure.
PROPOSITION 2.5. ([26], [19]). Let E be a Borel set in R".
1) If n > pf and Hn-pQ(E) < o, then cap (E;S) = 0, where S = hﬁ or S = Hﬁ.
2) If n = pl and H(E;h) < o with h(r) = |log rll-p, then cap(E;Hﬁ) = 0.
2.3. ORLICZ SPACES.
Let function M be defined on ]R1 by the formula

ul

M(u) = J p(t)de,
0

where p is a positive function of Iki continuous from the right, non-decreasing and
such that p(0) = 0, p(t) >+~ as t - +», Let then q be right inverse to p(t), i.e.
q(s) = supit:p(t) € s}. The function
N(u) = flu, q(t)dt
0
is called complementary to M(u).
We denote by LM(u) the set of measurable functions defined on (Hln;ly;u), for
which [|f; LM(u)II = sup{!fgdu: IN(g)du < 1} < 4o, If M(t) = |[£]|%/q (g > 1), then
NG = [£(%/q" and

A
HEsLanll = a9 &% ] (2.9)
We also note (see [27]) that L (M) - norm of the characteristic function of a set E is
‘M
[ Ixgsly ] = u@N T Q/um), (2.10)

where N_l(u) is the inverse function to N(v).

Finally, it is worth noting that according to [27] the spaces LMl(u) and lMZ(u)
consist of the same functions if and only if there exists positive constants Kl’KZ and
u, such that for u 2 Uy

Ml(klu) < Mz(u) < Ml(kZu)'

3. THE CARTAN TYPE THEOREMS FOR (%,p)-POTENTIALS AND ESTIMATES FOR (2,p)-CAPACITIES.
In this section we prove the equivalence of inequalities (1.6) and (1.7). This
will be obtained as a consequence of the Theorem 3.1, which provides an estimate of
thickness of the set, where the (X,p)-potential exceeds a given value. Such estimates
were obtained first for harmonic functions by Cartan [28] (see also [29]). For linear

Riesz potentials, they are given in Landhoff ([30], Chap. III, Section 4).
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The same scheme is used in the nonlinear case, but its performance needs some re-
cently obtained non-trivial estimates for (£,p)-potentials, which are obvious for lin-
ear potentials. Such estimates are collected in the following

PROPOSITION 3.1. 1. If 2 - &/n < p < n/%, then
1

u(B(x;0)) ) d_o
o

= . (3.1)

U“ NOE ( (
0

2. Ifl<p<2-1?./namdUu (X)SKforallxean,then

n-g
o . n-p%
Uz (x) < aKYf (u—(%}i’—z)—)-) do , (3.2)
sP 0 pn-p P

where Y = ((2 - p)n - 2)/(n - pl).

3. If p=2- 2/n and U (x) K for all x € Rn, then

0o -pl P
u H(B(x;1)) p-1 __ P
U (x) < bf log(ak —_—) dr
Lp 0 [ rn—p!l H(B(x;r)) r ° (3.3

(From the condition U (x) < K for all x € R"™ it follows that H(B(x3r)) <
e_1 akP~ -1 rn—pJL‘)
4, I1If p = n/l, then

vy (0 < af (u(B(x;r)))P 1 ePr L (3.4)

0 r
The estimate (3.1) is obtained in papers [26], [18]; the estimates (3.2) and
(3.3) are provedin [16]; (3.4) is found in [13].
We now turn to working out the upper estimates for (&,p)-potentials in the com-
plement of some set.
LEMMA 3.1. Let 1 <p < n/f, U be a finite measure in Rn, and h be a non-decreas-
ing function on [0,+®), such that h(0) = 0, n(r) = h(ro) = u(Rn) for r > r. In case

p € (1,2 - 2/n] suppose additionally that Uu (x) K < += for all x € 1Rn and
e-l aKp—l l_n—pl

h(r) < , where a is a constant from the inequality (3.3).
n, U Mo g® g < ne pM = M
Let D be a set $\x e R : P (x)> cw[hj}, where P U!L,p’ if pL < n; P %,p°

if pf = n; and
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oo p'—]_
[ <n(r) ) dr , if 2 -4/n <p <n/fL;

o

O\r
n-2
n-pf
K' Jm h(f)z dr , if 1 <p<2-2/n;
o\ P r
Wih] = _
Jw h(r) 1o aKp_l EE:EE. )p ' EE if =2 - 2/n ;
o rn_pz g h(r) T > P 3
{ee] '_ _
J G L ST Y] I
0 r

-1
where y = ((2 - p)n - 2)(n - pR) .
Then the set D can be covered by a sequence of balls with radii T < T, satisfying
the inequality

2 h(ry < c u(®"Y. (3.5)
K K

PROOF. Consider the case 2 - &/n < p < n/f%. Let x € D. Suppose that

H(B(x3;r)) < h(r) for all r > 0. Then, using (3.1), we obtain

00 . P'_l 00 p'_l
e[ Oy () 2
°P 0 TP r o\ 7P r

which contradicts the fact that x € D. Consequently, for any x € D there exists a num-
ber r = r(x) ¢ (O,ro) such that h(r) < p(B(x;r)) < u(E{n). Applying a well known
covering theorem (see [30], p. 246) we select a covering {B(XK;rK)}, K=1,2,..., of D
of multiplicity ¢ = c(n) from the union of balls {B(x;r(x))}xeD .

Clearly,
n n
EK h(rK) < EK u(B(xK;rK)) < u(R) EK x(B(xK;rK)) <c u(R) .

Thus, the lemma is proved for the case 2 - &/n < p < n/%. For the remaining val-
ues of p, the proof is the same. Only one should use estimates (3.2)-(3.4) instead of
(3.1).

In the following theorem, we denote by ¢ a non-negative increasing function on
[0,+°), such that the function t¢(t‘l) decreases and tends tc zero as t > +*, Let then

for all u > G
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I Pt de < adu) (3.6)
u

where
1
- -1
wo(v1))P
n- 2
YO = e )™, i 1 <p <2 -/,

if 2 - %/n < p < n/4,

bl

I a2 D LA T

n/%.

In the case p = 2 - 2/n, we suppose additionally that

o p'_l
f PE) (g0 W &<, (3.7)
u Y (u) y(t)

THEOREM 3.1. Let p € (1,n/%], U be a finite measure in R" and m be a positive

number. Let then K = sup{UE p(x): x e R} < 4o, if 1 <p <2 - &/n and mp—l> u(IRn),
’
if p = n/&.

Then the set G

{x € Rr": UE p(x) > m} can be covered by a sequence of balls
’

{B(xK;rK)} such that

:E: ¢(cap(B(rK);S)) < a (1>(bml_p wWmr™), (3.8)
K

where S = hf)‘ for &p < n and S = Hf" for 2p = n.
PROOF. Let X denote a constant from (2.6), if n > pf and X = min{t: cap(B(r);Hé

< t|log rll_P, r < e_l}, if n = p. We set in Lemma 3.1 h(r) = M if r > L and

M@(Xrn_pz)/¢(Xron—p2), if p2 <n, r < T
h(r) =

MO(X|log rll-p)/Q(Xllog roll_p), if pl=n, r < r.
The number r will be chosen later to satisfy m > aW[h]. (W[h] was defined in Lemma
3.1).

1. Let 2 - &/n < p < n/f. Clearly,

r, p'-1 n-pl
. - ' _ =
w[nJ=J (?—(f)g) d—:+np lp-1 1-»
0 7P n - pl °
We shall now prove that the integral at the right hand side is dominated by
, n-pi
bMP -1 rol"p . This is equivalent tc the following inequality:

r p'-1 n-pf

_ _ o n-pf -
(@ (xr PYyy L p' { oxr ) dr ., 1-p
o o rn-p£ o
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Setting here x—lrpl—n = t and X-lropl-n =t , we obtain

® -1,.p'-1 dt -1,,p'-1

f (o™ )P TS < b e oce TP T,

to
which holds by (3.6). Thus nepl

'— —
W[h] < P 1 rol P
-pL -1,p-1

and the inequality aW[h] < m is valid provided ron = (acm ) M.

We introduce the set D = {x ¢ R": UE p(x) > aW[h]}, which is open by lower semi-
’
continuity of the (&,p)-potential. Since m > aW[h], then G c D. Let {B(xK;rK)} be
the sequence of balls constructed for the set D in Lemma 2.1 with the function h cho-

sen here. The inequality (3.5) can be rewritten as
:E: ¢ (xr n—pl) < aq)(bml“P M.
e K

Thus, we can cover G by the balls {B(x K)}, for which (3.8) holds.

KT
2., If 1 <p <2 - 2/n then the proof does not differ from the previous one.

3. Now let p = n/%. Suppose that r < 1l/e. Here we have
T, ,
(b (r))P

W[h] = J . (3.9)

r

{oe]
— -— '_ -—
lebrdrr+Mp 1[ obr dr
r

0 o

The second integral can be estimated as follows

® brd 1y * 1 -b
I e PT &L o I a oy f e_br dr < (1 +b ~e )Ilog r|.
r r r. T 1 ©

We claim that the first integral at the right hand side of (3.9) is majorized by

'—
aMP lllog rol or equivalently

l—p' s p'-1
1- 1- d
(¢(X|log rol p)) J (¢(x[log r| p)) 7; < a|log r0|.
0
L 1
Setting here Xl—p |1og r| = t and y1-P |log rol =t we rewrite the last estimate as
0o P'_ p'—l
1-p 1-p
ft GE Py e <ae (o1 T)
o

which holds by (3.6). Therefore, there exists a constant ¢ € (1,+°), such that

'—
W[h] < oM 1 log r
&8 T,

So the inequality aW[h] < m is satisfied, if we put

—l)p—lM.

log r =p (cm
|1og r_|

The rest of the proof goes as before for cases p ¢ (L,n/2), p # 2 - &/n.
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4. We now handle the case p = 2 - &/n. To apply Lemma 3.1, one must suppose

1

h(r) < e aKP-lrn_pl for all r 2 0. Since h(r) < M, the last holds if

ron—pQ z e a—lKl—pM.

We have

I, n-pf p'-1
- h(r) p-1lr dr
Wlh] fo <rn_p9' log (aK ) )) -

ol n-p p-1
+ f ngpg log (aK"‘l F——M—)> d—r‘ . (3.10)
o\ T

The substitutions t = akP 1M 12 PY ang t, = aKp—lelron_Pl transform the second inte-

gral into
(oo}

'—
cKJ (log t/t)P 1 % .
t:0

-1

L.
The last value is dominated by bK(to log to)P l.

We now derive the same estimate for the first item in (3.10). It is equal to

r _ n-pl n-pl p'-1
f ? _MoGxr ) i P’L) log(aKp_l ———————r ¢(xr0 ) ) dr
o \ o0, P Mo (™ P i
and therefore, it does not exceed Ol + 02, where
'-1,T n-pl p'-1
-1 - - P =1l(%0 -
o) = c(log(@k? i ") I ) T
0\ R0 "N
A}
-1
r _ pi-n n-p&
o Mo (xx™ pQ) o ¢(Xro ) dr
g, = ¢ n-pl n-pl log pi-n n-pl T
0 \r qb(xro ) r o (xr )
. . . . -1 p'-1 . -1_p&-n
The inequality (3.6) implies that 01 < cK(to log to) . Setting u =X r ,
u = x_lr pi-n and using the condition (3.7), we get
o o "y
* Y(u ) p- (]
p'-1 p'-1 ¥ (uw) o du -1 p'-1
o, = &< .
By cM u, . w(uo) log ) . cK(to log to)
o

‘_ -1 - -
Thus, W[h] < cK(log to/to)p 1 where t, = akP lM lron pe > e, Let O denote the
— '_
inverse to the function t - cK(t 1 log t)p l(t > e). Then the inequality aW[h] < m

2P _ kP (mym.

is satisfied, provided r,
It remains now to repeat the same argument as in the first part of the proof.
Thus, the proof of the theorem is complete.
NOTE 3.1. It follows from the proof of Theorem 3.1 that in case pf = n, the radii

of balls, covering the set G, can be chosen less than e—l.

COROLLARY 3.1. Let 1 < p € n/% and ¢ be the function defined before Theorem 3.1.
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Let then E ¢ R™ be a Borel set, such that cap(E;S) > 0, where S = hﬁ, if pf < n and

S = Hi, if pL = n. Then there exists a covering of E by balls B(xK;rK) such that

D 0(cap(B(x,);8)) < CH(C cap(E;S)) (3.11)
K

with constant C depending on n,p,{ and the function $. In case pf = n, one can choose
r, <e .

PROOF. We limit consideration to the case pf < n. If pl = n, the arguments are
the same. We denote by u the (&,p)-capacitary measure of E and put

n in .
G_ = : - .
. {xe R UQ’p(x) > 1 €}, € > 0. Since

Uz,p(x) > 1 (2,p)-q.e. on E,

0.

then E = GE u Eo’ where cap(Eo;hg)
By Theorem 3.1 there exists a covering of G€ by balls B(xj;rj), such that (3.8)
holds with m = 1 - € and u(IRn) = cap(E;hé).
Since the function Y(t)/t is summable on [1,+~), then the function h defined as
h(r) = ¢(cap(B(r);h§)) satisfies the condition (2.8). Hence by Proposition 2.4 it fol-
lows that EO has a zero Hausdorff h-measure. Therefore, one can cover Eo by balls

B(yi;pi) so that the inequality

2 slcar®oiny) <
holds.

The union of balls B(xj;rj) and B(yi;pi) gives the required covering.

COROLLARY 3.2. Let p ¢ (1,n/2], 3 = hé, if p2 < n and 3 = Hﬁ, if p2 = n. Let ¢
be the function defined before Theorem 3.1. If measure Y is such that for any ball
B(x;p)

u(B(x30)) < 9(a cap(B(p);S)), (3.12)
then for any Borel set E with finite capacity cap(E;S) the inequality holds
U(E) < C®(C cap(E;3)).
Here C is a constant, depending on n,p,% and on function 9.
PROOF. Let E c B{n and cap(E;S) < «, Then according to the Corollary 3.1, E can

be covered by balls B(xK;rK), satisfying (3.11). Using the additivity of the measure

u, as well as condition (3.12), we obtain
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uE < u(UBGsr)) < 2 uBsr))
K K

A

2 oa cap(B(x,);8)) < CO(C cap(E;9))
K

which completes the proof of the corollary.

NOTE 3.2. According to (2.4), cap(E;Hﬁ) ~ cap(E;hi) if diamE < 1. So under the
additional condition diamE < 1, we can take S = Hﬁ also if p2 < n in Corollary 3.2.

To show this we verify that the measure R™ > A~ ul(A) = U(A n E) satisfies the
condition (3.12).

Suppose diamE < 1 and let the inequality

H(B(x;1)) < ¢(cap(B(r);H§)) (3.13)

hold for all r ¢ (0,1). For r < 1, we have

ul(B(x;r)) H(B(x3Tr) n E) < H(B(x;1))

IA

¢<cap<B(r);H§>) < ¢(a cap(B(r);hﬁ).

If r 21 then for any y € E
By (B(x31)) < W(B(y31)).

Hence, using (3.13) and the monotony of capacity, we obtain
2 L
u (B(x31)) =< ¢(cap(B(l);Hp)) < 9(a cap(B(r);hp))-

So the measure My satisfies the condition (3.12).
4. APPLICATIONS TO EMBEDDING THEOREMS.
In this section we present embedding theorems of potential spaces into some spaces
of functions summable with respect to arbitrary measure in rR".
We use the following known fact mentioned in Section 1.
PROPOSITION 4.1. Let 0 < £ <n and 1 < p < n/%. Then for any function u € CZ
the inequality (1.4) holds with S = Hi, if p < n and S = hi, if p2 < n.

PROOF. We limit consideration to the space H_, since the arguments are the same

2
P
for the space hi. It is sufficient to take u= J f, £ 20, f ¢ P, Let Ut be the ca-

2 b

pacitary measure of the set Qt' The left hand side of (1l.4) does not exceed the value
© 2 © 2
Jfdu P dt = | fdx | J,u tP7° de,
0 3 t 0 27t

which is dominated by
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{oo]
. p-2
THl Hf 2 g ael] -
0
Therefore, the theorem follows if the inequality
© -2 p' p'-1 2, p-1
t J,u,_ dt dx < A cap(Q ;H )t dt (4.1)
0 2t P 0 t’p

is proved. We note at first that by the maximum principle

-1

f I Ggup)P T ax < u cap(Qt;H:;). (4.2)

Consider then the cases p 2 2 and p < 2 separately. Let p 2 2. We rewrite the

left hand side of (4.1) as
p'-1

p' Ju Ju eP7° de 7 dt ax.
0 27T T 2t

By the HOlder inequality, this value has the upper bound

tad _ ' ! © 'V _
P'(“ P l(JRUT)p dt dx)Q P (“ (Jlur)p 1 r Jkuttp 2 4 dt dx)
0 0 T

which does not exceed

' o ' _ 2-p' fad _ P
p'MP 1([ [Igm, | |P, P71 dt) (J cap(Qt;HQ’)tP ldt)
0 P 0 ?

by (4.2). So the inequality (4.1) is proved for p = 2.

p'-1
-1

Now let p < 2. The left hand side of (4.1) is equal to
i t -1
- - P
p' Jout? 2dt Jou P zdr dx
0 2T 9 L7t

and so, according to the Minkowski inequality, is not less than

{ee} t . p-l _ P""l _
P'f (J (J(JQUT)p 1 Jlutdx) P sz) P 24e.
0 0

Using (4.2), we obtain the following majorant for this value
t p'-1
p'Mf°° cap(Q ;HQ) [ P sz ) tP zdt.
0 P Vo

Thus, (4.1) is proved for p < 2.

THEOREM 4.1. (cf. [5]). The exact constant A in the inequality

Il [ul®s Ly || < aljuss ], (4.3)

where S = hi, if p < n and S = Hﬁ, if pf < n, is equivalent to the value

-1
B = sup { Eﬁ%%gziféégigll : Ec I{n, cap(E;S) > 0} . (4.4)
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PROOF. From the definition of the norm in LH(U) and the equality (2.10), we ob-

tain

I |u|P;LM(u)|| sup{p[:(q v du P71 gr: fN(v) du < 1}

T

< pr sup{ f xTvdu: fN(v)duﬂ}rp_ldr
0

pfoll XT;LM(u)IITp-ldT = pfu(QT)N'l(llu(QT))Tp—ldT

(Here X, is the characteristic function of the set QT = {x: |u(®)| 2 1}). This and
(4.4) lead to the estimate

[||u!p;LM(u)|| < pBJ cap(QT;S)Tp_l dt < ch||u;Sl|p,
0

where ¢ is a constant from (1.4). Thus A < cpB.
We now derive the opposite estimate. Let K denote an arbitrary compact in R and
0

u be any function from C0 such that u 2 1 on K. Putting u into (4.3) and using the

definition of the (&,p)-capacity, we obtain

HEON T @/uK) < A cap(K;S).

The passage from compacts to any Borel sets can be performed in a standard way. So
B < A. The proof of the theorem is complete.

THEOREM 4.2. Let M be a convex function satisfying the conditions formulated in
2.3, and N be a complementary function to M. Let then ¢ be the inverse function to
t > tN-l(l/t), subjected to condition (3.6), and in addition to condition (3.7), if
P=2- 2/n. Then (a) the exact constant A in the inequality (4.3) with S = hi,
2p < n, is equivalent to
¢, = sup{p™®™ uBGN T W/uBG0): x ¢ R p > 0}

(B) the exact constant A in (4.3) with S = Hﬁ is equivalent to

¢, = suplo™®™ (BN T (W/u(BG30))): x « B 0 < o < 13,

if p2 < n and to

¢, = supl|log o[ H(BGEIN T(U/N(BE3)): x « R 0 <o <1/2),

if p2 = n.
The proof follows immediately from Theorem 4.1 and the equivalence B ~ Cj’

j =1,2,3 obtained in Corollary 3.2 and Note 3.2.
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NOTE 4.1. The constant A in (4.3) with S = Hi, pL > n, is equivalent to

C, = sup(u(BCG 1IN T (L/uBG:31): x € RM,
Indeed, let {n(J)} be a partition of unity subordinate to a covering of r" by
unit balls {B(J)} with finite multiplicity. From the definition of the norm in LM(u)

and Sobolev's Theorem on embedding Hg into Lw(]Rn) we obtain

I ulPsnyn I s e 2 1 TP Ps ol
J
. 0
< e §§: 13Dy aol] - Db P
j 2
<y ¢ 2 a5l P,

J

2 .
The last sum does not exceed c||u;l-lp|lp (see [31]), hence A < The opposite

<, C4.
estimate follows from (4.3) by substituting the function n € CO(B(x;Z)), n=1on
B(x;1).

Now D.R. Adam's theorem, mentioned in our Introduction, follows from (a) of Theo-
rem 4.2 with M(t) = t%/P, q > p.

NOTE 4.2. (see [32]). 1If q = p, then the condition (1.5) is not sufficient for
(1.2) to hold. Let q = p, n > pf. We choose a Borel set E with a finite and positive
(n - pl)-dimensional Hausdorff measure. We can take E to be closed and bounded (since
any Borel set of positive Hausdorff measure contains a bounded subset with the same
property). According to Frostman's theorem (see [33], Theorem 1, Chapter II) there

exists a measure [ with support in E, such that

n-pl (4.5)

u(B(x3p)) < cp
where c is a constant, independent of x and p. By Proposition 2.3, cap(E;Hﬁ) = 0. On
the other hand, from (1.2) it follows that H(E) < A cap(E;Hi) and hence p(E) = 0.
This contradiction shows that (1.2) fails although (4.5) holds.

Setting M(t) = tq/p

in Theorem 4.2, we obtain the following new result for the
case %p = n.

COROLLARY 4.1. 1If 2p = n, then the exact constant A in

usnfao || < af s |

is equivalent to
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Cs = sup{|log Olp_llu(B(X;D))]p/q: x e BR"; 0 <p < 1/2}.
The following statement, obtained in [13] by another method and relating to the
case pL = n and measures of positive dimension, follows easily from Theorem 4.2.
'—
COROLLARY 4.2. Let pf = n and M(t) = exp(t® 1) - 1. The inequality (4.3) holds

if and only if for some B > 0:

sup{p—Bu(B(x;p)): xe R 0<p <1} <w,
PROOF. Since N’ (t) = (log £)P™1 (1 + 0(1)) as t > = then 071 (r) = N L(1/t) =
(log t)l_p(l + 0(1)). Hence, log ®(t) = —tp'_l(l + o(1)). Obviously, ¢ satisfies the
condition (3.6). It remains now to use cap(B(p);Hg) ~ |log pll_p with p € (0;1/2) and
to apply Theorem 4.1. The proof is complete.

NOTE 4.3. Since Bﬁ(IRn) is the space of traces on R™ of functions from

H§+l/p(IRn

2,0
changed to BP(IR ).

+1
) ([17]) then Theorem 4.2 and Corollary 4.1 still hold if space Hﬁ(IRn) is
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