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ABSTRACT. The successive terms in a uniformly valid multitime expansion of the
solutions of constant coefficient differential equations containing a small parameter
€ may be obtained without resorting to secularity conditions if the time scales

ti = € it (i = 0,1,...) are used. Similar results have been achieved in some cases
for equations with variable coefficients by using nonlinear time scales generated
from the equations themselves. This paper extends the latter approach to the general
second order ordinary differential equation with slowly varying coefficients and

examines the restrictions imposed by the method.
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1. INTRODUCTION.

In multitime expansion techniques (also known as derivative-expansion methods),
several time scales are used to obtain uniformly valid asymptotic expansions of the
solutions of certain differential equations. Important a priori assumptions con-
cerning the nature of these time scales and the successive terms of the expansions
must be made in order to achieve acceptable results. Unfortunately, the justif-
ication for these assumptions is often based on intuitive insight and thus not readily
transferable to other problems. Simple, formal techniques for choosing the time
scales would be much more preferable. Results in this direction were given in [1]
and [2]. It was shown that the succeeding terms in a multitime approximation to the
solution of some problems could be obtained without recourse to secularity conditions.
This simplified approach was based on results achieved by Reiss [3] for a lightly
damped linear oscillator. The overall direction of this approach may be maintained
in dealing with a fairly general class of second order ordinary differential equationms.
The method is a logical extension of the techniques developed in [1], [2], and [3] and

is detailed in this article. Some of the results given here have been announced in
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abbreviated form in [4].
The general problem considered is .
LSV[y(e t;e) 1= a(et;e)y'"' + eb(et;e)y'+c(et;e)y=0, (' means EE) (1.1)
with
y(0;e) = y, and y'(03;¢) = 8. (1.2)

An approximation to the solution may be represented in the form

™M R

y = aJ yJ(T;tO,...,tN) + Rﬂ(t;s) (1.3)

J=0

The time scales ,...,t.. are linearly independent functions of t=et and €. If

fort1 N
suitable restrictions are made on the functions a,b, and c, then these time scales
may be determined from equation (1.1) using the same formal operations employed in
[2]. The assumptions made in [2] regarding the approximating equation and the form
of the zeroth order approximation are also made here. However, the general treat-
ment given here does not impose a requirement for a uniformly valid expansion in an
infinite domain, as was the case in [2]. 1Instead, generalized uniform asymptotic
expansions (as developed in [4]) in some domains D without turning points are
obtained. The time scales used in these approximations are given by first order
differential equations which can be integrated directly. Using the notation de-
veloped in [2], it follows that the time scales are determined by the following

equations:

T

ac (e/Z)KgK (t;e), K= 0,1,... (1.4)

The functions gK(T ;3 €) are determined recursively from

gk =0, K<0O (1.5)
a gzo =c (1.6)
= ' .
2agyp =2 (ag')+bgy 1.7
= - ' ' .
2 a gogK T a gig o +2 (ag K—l+bgK~l)’ K > 3, odd (1.8)
i+j=K

1< i, j<k-1

i+l .
= - - +
2 agygy (-1 "a 884 2 (ag'y b gy )
i+j=K
1<i,j<K-1 K 2 2, even. (1.9)

In equations (1.5)-(1.9), the prime denotes differentiation with respect to T = et.
In [2] the time scales determined by equations (1.4)-(1.5) could be expressed in
closed form. Here, this is not necessarily the case. However, quadrature can be
used to obtain numerical results from the expansions.

2. VALIDITY OF ASYMPTOTIC EXPANSIONS.

The proof of the validity of the expansions described in §1 may be established



GENERALIZED MULTITIME EXPANSIONS FOR EQUATIONS 153

by direct computations. The theorem given in [4] will be restated and proved here.
THEOREM. Let the functions a,b, and c be of constant sign and analytic in an interval
D such that a and c are never zero. If the time scales are determined from Equations
(1.4) and (1.5), then for N > 1, (1.3) is a (M+l)-term-(N+1)- time generalized
uniform asymptotic expansion of the solution of (1.1) and (1.2) in the interval D.

The error RM(t;e) satisfies the inequalities

IYeM[X | u, || + B/ if M is even

2
IRV (t5e)] >
|YM0lx|l U, Il +B/° if M is odd (2.1)

with all the terms bounded in D.
(The definitions of the quantities appearing in (2.1) are given in the proof that
follows.)

PROOF. The terms of the expansion (1.3) and the inequality (2.1) can be
explicitly given because the time scales of (1.4) and (1.5) allow the steps detailed
in [1] and [2] to be taken with similar results. The zeroth order approximation

is given by

-(tl+t3+...+t ) 1

1 2(y-i (/g (0))e (Fo*t2t o)

yO(T;tO,...,tN) = e 2 2n

-i(t0+t2+...+t

+ %(Y+i(6/g0(0))e 2n) (2.2)

In general, the higher order terms of the expansion are of the form

E(t1+t3+"'+tﬂ) PJ(t ) i(t 4t +...+t, )
N'e 0

J -
y (r,to,...,tN) = ) ”n

éi(to+t2+...+t2n) (2.3)

+ PJ(tN)
where the polynominals PJ(tN) may be generated recursively from a formula of the

form
P (t)=C +ith B (o), - (2.4)
J+1° N J+1 J 9"do

The polynominals P are complex valued ¢3 is the usual complex conjugate) and

J J
involve only the last and slowest time scale, tN. The constants, CJ+1, are
determined by the initial values y>'1(0,0,...,0) and y“t”l(o,o,...,O) and it is
0

understood that

PJ =0, cJ =0 for J > O. (2.5)

The subscripts n and H in (2.2) and (2.3) are defined by

’ N/2 if N is even (2.6)

n= I(N—l)/Z if N is odd
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_ ’N -1 if N is even

H
]N if N is odd

(2.7)

The recurrence relationships for obtaining the polynominals will be given in the
appendix.
The error term satisfies the differential equation
M M
- . 2.8
LSV[R ] =1 (t;e) (2.8)
where the nonhomogeneous term rM =0 (eM+N+1). Direct substitution using (2.2) and

(2.3) enables us to express the initial conditions explicitly in terms of

RV(0) = 0
M YM = €M+l(ﬂ y) + eM+2(n §)+... for M even
% )y ={ © . 1 2 2 (2.9)
t Yg = €M+ (Ald) + € (Azy)+... for M odd

The quantities T and Ai’i=1’2’°"’ are constants independent of €. Under the

assumptions of the problem, a Green's function, G*, may be obtained for the problem

Llyl = y'' + eb(et;e) y' + c(et3e) y =0

a(etse) a(et;e) (2.10)

in terms of its principal solutions U1 and U, where

]
o

U (0) = 1, U} (0)

U2(0) =0, Ué(O) 1.

Expressing the solution of (2.8) and (2.9) formally in terms of G* and taking the
bounds yields the inequality (2.1) where

t=¢ct M
B =] €Y G*(t,0 ;e)r (o3e) doll,
0 a(ose)
- max -
[ [ = teD [ =1,
and | *| denotes absolute value.

END OF PROOF.

3. CHARACTERISTICS OF THE EXPANSIONS.

The expansions obtained in the general case retain the characteristics of the
earlier expansions of References [1] - [3]. The differential equation (1.1l) may
be satisfied to any degree of accuracy by merely increasing the number of time scales
used. However, the approximation to the initial condition can be improved only by
adding more terms to the expansion. Corollaries 2,3, and 4 of Reference [1]
establishing the orders of magnitude of RM for different values of N, M, y and
§ can be established for the general case. Thus, for certain choices of the initial
conditions, accuracy may be gained by choosing expansions such that M is either

even or odd. Also, there is an isolated case in chich the zeroth order approximation
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may be used to obtain any degree of accuracy by increasing the number of time scales.
The expansions become secular in character as turning points are approached.
This inadequacy of the expansions appears to be related to the assumed approximating
equation. The extension of the technique to significantly different approximating
equations has so far been unsuccessful. Such an extension may be necessary for
handling turning points and other complications.
4, NUMERICAL APPLICATION.
The results of earlier works were reproduced by applying the general formulas of
this paper. Then the expansions obtained were tested numerically against the exact
solutions. Very good agreement was obtained as can be seen form Figures 1 and 2.

The figures show plots of the difference |Ay|, defomed by
layl = |y exact - y approx. | (4.2)

plotted against time t. The computations were carried out with a PDP-10 computer.

Figure 1 evaluates the approximations of the solution to the problem
(I+et)y'"+2 ey'+y = O, (4.2)
with y(0) = 0, and y'(0) = 1. (4.3)

As reported in [2], the straightforward expansion is valid only in a small range of
t while the expansion obtained by our method is valid for t 2 0. This is in
evidence in the figure, where the straightforward expansion is labelled STF. The
curves labelled I, II, and IV represent errors for a l-term-2time expansion, a
l-term-3-time expansion, and a 3-term-3-time expansion, respectively. The expansions
evaluated in Figure 1 are given in the Appendix.

Figure 2 illustrates the numerical results for the problem

y'+e =0 (4.4)

with y(0) = 0, and y'(0) = 1.

Curve I gives the errors for a l-term-2-time approximation; II gives the errors for
a l-term-4-time approximation while IV gives the results for a 3-term-4-time
approximation. The approximations are given in the Appendix. Since equation (4.4)
can be viewed as having a turning point at infinity, the expansions are not uniformly
valid for all t > 0. But, they approximate the solutions very well for t 2 %—ln % s
as can be seen from the figure. This is a great improvement over the straightforward
expansion which is good in only a small interval. (The errors for the straightforward
expansion fall out of the t range in Figure 2.)

The order of magnitude estimates on which the theorem of §2 relied do not yield
sufficient information for assessing numerical accuracy in cases like Equation (4.4).
An assessment may be obtained by working directly with the error terms and the
expansions, but it is tedious to get fine estimates in this manner. More realistic
estimates of the interval in which the expansions yield numerically useful results
may be obtained quickly by analysing the approximating equation. Since this equation
has constant coefficients, the estimate may be based on the interval where the criterion

for transforming (4.4) to an equation with constant coefficients is most closely



156 L.E. LEVINE AND W.C. OBI

satisfied.

The expansions described in this paper are easily obtained, since the formulas
have already been derived. They offer an effective means for obtaining numerical
results; this would still be the case even if the time scales cannot be given in
closed form. One of the most attractive features of the expansions is their ability

to yield very high accuracy with a few terms.

5. APPENDIX

The term ﬁJ under the integral sign of (2.4) is determined by the polynominals

PJ of the preceding terms of the expansion. The following symbols are required in

order to write the expressions for P and PJ in a more compact form:

J
MON) = 2 aggg . AN = agigy..os A(vu) = 2agvgu/2v+u_N (5.1)
The first polynominal is
Po (T =3 [y - 1( 8/g(0)) 1.
The second polynominal is given by
MO,MP (£ = - (1/2)1A°(1,M /27 (0,N) 1 & (0,N)
+E(6/85(0)1 (0,141) + 1A (0,M1) v e (5.2)
if N is odd
or
A(0,N) Py = =(i/2) (DDA (1,8) /2" (0,N) A (0,N) (5.3)

+[-(l/2)(Y)%(O,N+l)+(i/2(6/g0(0))A(O,N+1]tN,
if N is even.

In equations (5.2) and (5.3), the superscript 0 in Ao(v,u) indicates that the
function A(v,u) is evaluated at 1t1=0. With P0 and P1 known, PJ can be
generated from the formulas )

A0,mf ) = 1/2 A(N,N) P S0 (0,N42541) x

n
LR (26t

M+1-N~
s=

P r+1-(254+1)1

n
+i{z [X(N,2r)P"
r=1

+ A(0,N+2r)P

J+1-2r J+1-2r] (5.4)

if N is odd
and

n-1 n
A(O,N)ﬁJ =1/2, (N,M)P'! - I h(s,N)P! 2 A(0,N+2r)P
s=0

J +1-N J+1—(25+l)+ =1 J+1-2r
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n-1

n
. 1
+i{ » A(N,Zr)P~J+1=2r+ L A(0,N+2s+1)P

=1 =0 J+1-(2s+1) } (5.5)

if N 1is even.
In equations (5.4) and (5.5), the prime (') denotes differentiation with respect to
tN' The function h(v,u) is given by
A(L,w) -(ag; +bgu? if v=20
h(v,u) =
A(2 v +1,u) if v>0

The time scales generated from (4.2) are

ty = 2/e) (V141 - 1), t, = (3/4) an(1+t)

and
t, = (3e/16)[1/VTrt -11, ¢, =(3¢2/64)[1-1/ (14+1) 1.

The expansions tested in Figure 1 are as follows:

y = yO + 0(e) = Etl sin to + 0(e)
y = 3%+ 0(H = e sin(ete,) + 0(sD)
y = yO + eyl + 52y2+0(e4)
_zt1 . 1/2.-t1 .
=e 51n(t0+t2) + e[tz 2(1+1) Je 51n(t0+t2)

2 -t
+e [(t2/8(1+t))e lcos(t0+tl)
+(3/32 + £5/2(1+6))e Csin(t jre,) HO(eY)
The straightforward expansion for the solution of equations (4.2) and (4.3) is
y = sint = €/4 (3tsint + tzcost) + 0(52).

The time scales generated from Equation (4.4) are

t, = 2/¢ r1-a%/27 t) = -T/q,
€2 = ¢/100e™/2 - 11, and t, = e gure™11.
The expansions evalueated in Figure 2 are:
y = yO +0(e) = el sint + 0(e)
y = y0 + 0(82)= E(tl+t3)sin(t0+t2) + 0(€2)
y = y0 + € y1 + ¢ 2y2 + 0(54)
_ o(ebe ) sinegre,)+el-25/326,8/208 1D cos (e e )
+ ef-1/32 +79/128t3eT-8(25/128)2t32eT]

x é(t1+t3)sin<c0+t2) +0 (Y
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