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ABSTRACT. This study extends the notion of regularity series from convergence

spaces to Cauchy spaces, and includes an investigation of related topics such as
that T2 and T3
certain types of quotient maps. These concepts are applied to obtain a new char-

modifications of a Cauchy space and their behavior relative to

acterization of Cauchy spaces which have T, completions.

3
KEY WORDS AND PHRASES. Cauchy space, R-Series, Regular Cauchy space, C3 Cauchy
space, cauchy retriction, Wyler modification.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE .64E10, 54D10, 54420.

0. INTRODUCTION.

In two earlier papers ([5] and [7]), the author and Gary Richardson intro-
duced the regularity series (or R-series) of a convergence space. Because the
ideas and results developed in these papers have been fruitful in later investiga-
tions, it seems appropriate to extend at least some of them to the realm of Cauchy
spaces. This is especially natural in view of the key role which regularity plays
in the theory of Cauchy space completions.

We shall make one significant deviation from the notation of [5] and [7]; a
convergence space will be denoted by "(X,q)" (where X is the underlying set and q
the convergence structure) rather than by "X". The usual notation for a Cauchy
space is "(X,€)", where € is the Cauchy structure. This will enable us to make an
easy transition from a convergence structure to the associated Cauchy structure
(or vice versa) on the same underlying set.

In Section 1, we define the R-series and W-series of an arbitrary Cauchy
space and show that their properties are analogous to those of the R-series for a
convergence space discussed in [7]. Section 2 considers certain Cauchy quotient
maps relative to which the R- and W-series are well behaved. The next section
considers the T2 and T3 modifications of a Cauchy space. In Section 4 we consider
admissible convergence structures (those which admit a Cauchy structure): the

interaction between admissibility and regularity is studied, and the symmetric
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series for an arbitrary convergence space is introduced. Section 5 introduces a
generalization of the Wyler completion [2] which is called the Wyler modification.
The concluding section extends a set function originally defined in [4] and makes
uses of the results of preceding sections to characterize Cauchy spaces having T3
completions.
1. THE CAUCHY R-SERIES.

Let X be a set, F(X) the set of all filters on X. The fixed ultrafilter
generated by x € X will be denoted by x. If F, 6 € F(X) and FNG # ¢ for all
F €F, G € 6, we shall write "F v G".

The term convergence space will mean a '"Limitierung" in the sense of Fischer
[1]. For any convergence space (X,q), "c1™ denotes the nth iteration of the
g-closure operator. We shall also introduge a weak g-closure operator defined as
follows: If A C X, then wclqA ={x €X :; + X for some y € A}. The nth iteration
of the weak closure operator is denoted "wclg". A convergence space (X,q) is
regular (respectively, weakly regular) if cqu + x (respectively, wcqu - x) when-
ever ¥ > x. A convergence space T2 (respectively, Tl) if each filter converges to
at most one point (respectively, each fixed ultrafilter converges to exactly one
point).

Starting with a set X, a subset of € of F(X) is called a Cauchy structure on

X if the following conditions are satisfied:

(cl) x € €, for all x € X
(c2) F €C€and F <6 implies 6 ¢ €
(c3) F, 6 €€ and Fv_E implies FNG € €.

If (X,€) is a Cauchy space, the induced convergence structure qp On X is
defined by : F » x if FNx € €. A Cauchy space is regular (respectively, weakly

regular) if F € € implies clq F ¢ € (respectively wcqu € €). A Cauchy space is
€
T, if Ny € € implies x = y. A T, Cauchy space is obviously weakly regular; a T2

rzgular Cauchy space (or convergenie space) is said to be T3. A Cauchy space (X,C)
is complete if each F € € is q-convergent: if every ultrafilter in F(X) belongs
to €, then € is said to be totally bounded.

A function f :(Xl,Cl) - (XZ’CZ) is Cauchy continuous if F € Cl implies
£f(F) ¢ Cz; a Cauchy continuous function will henceforth be called a map. The
Cauchy structures on a set X are partially ordered by the relation Cl = C2 iff the
identity function idX :(X,Cz) -> (X,Cl) is a map.

It is well known that, for any Cauchy space (X,€) there is a finest regular
Cauchy structure r€ on X which is coarser than €; r€ is called the regular modifi-
cation of C. Similarly, there is a finest weakly regular Cauchy structure wC
coarser than € which is called the weakly regular modification of €. Starting
with a Cauchy space (X,L) we shall construct two series of Cauchy structures which
terminate, respectively, in the regular and weakly regular modifications of €.

Every collection A of subsets of X generates a unique Cauchy structure in a

manner which we shall now describe. First, we say that a finite set of filters
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{Fl,...,Fn} is linked if they can be arranged (by renumbering, if necessary) in
such a way that Fl v 72, FZ \Y F3""’Fn—1 v Fn. Starting with an arbitrary col-
lection A of subsets of X, define A' = AU{X :x € X}, and %et CA = {6 € F(X) :
there are linked filters Fl""’yn in A' such that 6 > ig Fi}.

PROPOSITION 1.1. 1In the terminology of the preceding paragraph, CA is the
finest Cauchy structure on X which contains all members of the collection A.

We shall refer to CA as the Cauchy structure generated by A.

The R-Series {rBC} for (X,€) is constructed as follows:

rOC =C

rIC is the Cauchy structure on X generated by {012 F:F €€, n €N}
c

ecee

rBC is the Cauchy structure on X generated by {012 F:F €€, n €N}
B-1

if B is a non-limit ordinal where 48-1 is the convergence structure compatible
with rB—l .
rBC =lJ{raC :a < B} if B is a limit ordinal.
The W-series {wBC} is obtained by repeating the preceding construction using
the weak closure operator in place of the closure operator.

Let QRC (respectively, QWC) be the least ordinal number Y such that
r C =
Y

+1C (respectively, WYC = €). The next result resembles Proposition

ry wY+1
2.1, 7 ; all parts of this proposition are either obvious or straightforward,
and we omit the proof.

PROPOSITION 1.2. Let (X,€) be an arbitrary Cauchy space; let B, Yy be ordinal
numbers with B < Y.
(1) r€ = rYC = rBC
(2) wC = WYC =w,€ =¢C
(3) rYC < wYC
(4) .t r€ iff y=2.€
(5) wYC wC iff YEJLWC
PROPOSITION 1.3. If (X,€) is a complete Cauchy space, then (X,rBC) and

IA

A3

1]

(X,WBC) are complete for all ordinal numbers B.
Proof. Let & € rlc; then there are Fl,...,Fn in € and m € N such that
n
cl F, ..., clm F are linked and & = N 1™ F.. Since (X,€) is complete, there
¢ e i=1 ¢

are x, i=1, ..., n, such that Fi n ii € €. Thus &6 N ;i € rIC for i =1, ..., n,
and it follows that rlc is complete. This reasoning extends by transfinite
induction to all ordinal numbers B. []

PROPOSITION 1.4. Let f: (X,€) > (Y,D) be a map. In the following diagrams,
in which all vertical arows are f and all horizontal arrows are the respective

identity functions, each arrow is a map.
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(x,e) -~ (x,rlc) > (x,rsc) > ... (X,re)
¥ + ¥ +
(Y,D) (Y,rID) > . (Y,rBD) > . (Y,rp)
(x,¢) - (x,wlc) > (x,ch) - (X,we)
¥ ¥ v ¥
(Y,p) (Y,wd) > ... > (Y,wBD) > ... > (Y,wp)

¥
¥

¥

¥

PROOF. From the original assumption, it follows that f(clz F) > clz f(F)
€ (o

for all F € F(X). It follows easily that f :(X,rlc) > (Y,rID) is a map. This
reasoning can be extended by induction to the remaining vertical arrows in the
first diagram. Similar reasoning can be applied to the second diagram. D
2. QUOTIENT MAPS

A Cauchy quotient map f :(XI,CI) - (XZ’CZ) is an onto map such that C2 is the
finest Cauchy structure on X2 relative to which f is continuous. In other words,
f is a Cauchy quotient map iff {f(F) : F ¢ Cl} generates CZ.

If £ :(Xl,Cl) -+ (XZ,CZ) is a map and there is a map g :(X2,C2) - (Xl,Cl) such
that fog = id then f is called Cauchy retraction and (X2,C2) is a Cauchy

Xy

retract of (Xl,Cl). It is easy to see that a Cauchy retraction is a Cauchy

quotient map, and that g is a Cauchy embedding of (XZ’CZ) into (Xl’cl)° Thus a
Cauchy retract is both a quotient space and a subspace of the domain space.
If f: (X C ) > (X2,C ) is an onto map with the property that & € C implies
(G) € Cl, then f is called a Cauchy initial map; in this case C is called the
If £ (xl,c ) > (X,,€,)

initial Cauchy structure on X determlned by f and (X

1 2)
is an initial Cauchy map, let xy (y) be chosen arbltrarlly for each y € X2, and

define g : (X,,€,) > (X,,C.) by g(y) = . Clearly g is a map, and feg = id, . Thus
2’72 1’71 y X2

each Cauchy initial map is a Cauchy retraction.

PROPOSITION 2.1. The image of a complete Cauchy space.under a Cauchy quotient
map is complete.

PROOF. Let f : (X,€) -~ (Y,D) be a Cauchy quotient map, and (X,C) a complete
Cauchy space. Let 6 € D ; then there are F ey Fn € € such that f(Fl), ey

f(Fn) are linked filters and G > ﬂ f(F ). Since (X,€) is complete, there is
i=1
X € Xi such that Fi n X, € €Cfori=1, ..., n. Then &N f(xi) €D fori=1,...,n

and it follows that (Y,D) is complete. D
PROPOSITION 2.2. Let f :(Xl,Cl) > (XZ’CZ) be a Cauchy retraction map. If
(X1’C1) is regular, weakly regular, or T2, then (XZ’CZ) has the same property.

For any ordinal number B, f : ( ) > (X ) and f :(Xl,wBCI) > (XZ,WBCZ)

X176 2°%e%
are Cauchy retraction maps.

PROOF. The first assertion follows from the fact that (XZ’CZ) is Cauchy-
homeomorphic to a subspace of (XI’CI)' The second is obtained by applying

Proposition 1.4 to both f and the associated map g :(XZ,CZ) > (Xl,Cl). E
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PROPOSITION 2.3. 1If f :(Xl,Cl) > (X2,C2) is a Cauchy initial map, then
f: (Xl,rBCI) > (Xz,rBCZ) and f :(Xl,wBCl) -> (XZ’WBCZ) are Cauchy initial maps for
all ordinal numbers R.

PROOF. First note that a Cauchy initial map is a proper map (see [7]) between
the associated convergence spaces (which we denote by (Xl’ql) and (XZ’qZ)); this

implies that f(clz A) = clz f(A) for alln € N and A C X
1 2
6=c1" 6, N ...n cly
a2 a2 N
are linked. It follows that f

1 Assume that
Gn € r1C2, where 61, cees Gn € C2 and 012 6
1

12 v 1™ 6
q, n

A 2 2
f (Gi) for i=1, ..., n and

m

m
cl
( q

G.) =cl
1 q
-1 m -1 2 ! -1 m -1
f (Gl), ooy cl f (6 ) are also linked. Thus f (6) = cl £f 7(6,) N...N
q n 9 1
f_l(Gn) € rICI. This establishes the result for B = 1. The argument extends
1
easily by induction to an arbitrary ordinal number B. D

3. THE T2 AND T3 MODIFICATIONS.
Let (X,C) be a weakly regular Cauchy space, and define the equivalence relation
x~yiff xNy €€ Let [x] ={yNX:xNyé€EcC} and let X~ = {[x] :x € X}. Let

Y : X > X* be the canonical map defined by ¥(x) = [x], and let € be the quotient

c1®
q

c1®
q

Cauchy structure on X” induced by ¥ : (X,€) -+ (X*,€").
LEMMA 3.1. If A ¢ X, where (X,€) is a weakly regular Cauchy space, then
wl, 4= v uay.
PROOF. Y ¢ wclqc Ae 3 x € Asuch that x >y« 3 x € A such that y € [x] €y(A) =
y e v wan. (]
PROPOSITION 3.2. Let (X,f) be a weakly regular Cauchy space. Then
Y (X,€) > (X*,€7) is a Cauchy initial map, and (X",€") is T,.
PROOF. If F € €, then by Lemma 3.1, wcqu’= w_lw(F). Since filters of the form

Y(F), F € €, generate €~ and wcquF € €, it follows that Y is a Cauchy initial map.
To show that (X",€") is T,, suppose aNbe€e”, where a = [x] and b = [y]. Then
v Y@ nb) = [x] n [y] € €. This means [x] N [y] # @, which implies [x] = [y] =
a = b. D

Next, let (X,€) be an arbitrary Cauchy space. Define (Xh,Ch) = (X7, w€)") and
(XT,CT) = (X7,(r€)”"). By Propositions 2.3 and 3.2, it follows that the former Cauchy
space is T2 and the latter is T3; we shall call these the T2 and T3 modifications,

respectively, of (X,€). Consider the following diagram (HT):

id id n
®0 = @u) —° &0 L)
| Ve | Ve L
idXh idrch

X,6) — (XHrg) = (), (16)0),
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where 0 :(XT,CT) - ((Xh)r’ (rCh)T) is defined by 9([x]T) = wrch(wwc(x)).

PROPOSITION 3.3. The diagram (HT) is commutative. All identity functions are
maps, and all other functions are Cauchy initial maps. Furthermore, 6 is a Cauchy
homeomorphism.

PROOF. All parts of this proposition are clear except, perhaps, the following:
(a) er : (X,r€) ~» (Xh,rCh) is a Cauchy initial map; (b) 6 is a Cauchy homeomorphism.

Stétement (a) is a consequence of Proposition 2.3. To prove (b), let a = b in
XT’ where a = wrc(x), b= wrc(y). Then x N ; € r€ since wrC is a Caucf{ initial map;
thus 6(a) = 6(b), and 6 is well defined. Next, let 6(a) = wrch(wwc(wrc (8)) in (Xh)T’

where 6(a) = wrch(wwc(y)), 0(b) = wrC (wwc(y)). Since both maps involved in the latter
h

equations are Cauchy initial maps, ; n ; € r€,and it follows that a = wrc(x) =
wrc(y) = b; thus 6 is one-to-one. If A € CT’ then one can show by a direct agrument

that 6(A) = wrc (wwc(w;lc(A))); the latter filter is in Lp(rCh)T since all maps
h

involved are Cauchy initial maps. A similar argument shows that 6-1 is a map, and
the proof of (b) is complete. D

Let f : (X,€) > (Y,D) be a Cauchy map, and define fh :(Xh,Ch) > (Yh,Dh) by
£ ([x]) = [f(X)].h and f_: (XT,CT? - SYT,D.).by fT(EX]T) = [£] . 1f [x], = [yl
in Xh’ then x Ny € wC€, and so f(x N y) = f(x) N £(y) € wD by Proposition 1.4; thus
[f(x)]h = [f(y)]h, and f; is well-defined. A similar argument shows that £, is
well-defined.

PROPOSITION 3.4. If f: (X,) - (Y,D) and g: (Y,D) > (Z,E) are maps, then fh’
- fT’ and gr (defined in the preceding paragraph) are maps, (gf)h = ghfh’ and
(8), = £ g -

PROOF. To prove that f, is a map, let A GCh; then w;é(ﬁ) € w€, and so

fh(A) Z-wwD (f(w;é (A))) ¢ D:, which establishes the desired result. A similar
argument shows that fT is a map. Finally, note that (gh° fh)[x]h = gh([f(x)]h) =
[gf(x)]h = (g° f)h[x]; a similar argument establishes that g ° fT = (gf) - 1

PROPOSITION 3.5. If f: (X,€) (Y,D) is a Cauchy retraction (respectively, a
Cauchy initial map) the fh and fT are Cauchy retractions (respectively, Cauchy
initial maps).

PROOF. If f is a Cauchy retraction map, then there is a map g: (Y,D) » (X,€)
such that fog = idY. Then fh: (Xh,Ch) > (Yh,Dh) and - :(Yh,D) - (Xh,Ch) are both
maps, and (f °g)h = fho gy, = (idY)h = ith, which implies that fh is a Cauchy
retraction map. A similar argument establishes that fT is a Cauchy retraction map.

Next, assume that f is a Cauchy initial map.

idX wa
KO = X))
be be be
id y h
Y wD

(D) — (@)~ (Y,D).
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Let A ¢ Dh. By commutativity of the preceding diagram, f_l(w;é (A)) =
-1 -1
wwc (fh (A)). Since f:(X,w€) > (Y,wD) and wwD are Cauchy initial maps,

£71 (w;é(ﬁ)) € w€, and so fgl(A) = wwcw;é (fgl(A)) € Ch. A similar argument shows
that fT is a Cauchy initial map. D
4. ADMISSIBLE CONVERGENCE STRUCTURES.

A convergence space (X,q) is Cauchy-admissible if there is a Cauchy structure
€ on X such that q = ¢ - "Cauchy-admissible' will be shortened to admissible.
Admissible convergence structures have been characterized by H. Keller [3]. We
denote by Fq(x) the set of all filters on X which q-converge to x.

PROPOSITION 4.1. The following statements about a convergence space (X,q) are
equivalent.

(1) (X,q) is admissible.

(2) 1f Fq(x) n Fq(}’) # @, then Fq(x) = Fq(y).

3) ¢V =1{F ¢ FX :F q-converges} is a Cauchy structure on X.

(4) F » x iff there are linked filters Fl > x

X € {xl, vees xn} and F z_Fl n...n Fn.

R Fn > X such that
Given an arbitrary convergence structure q on X, define aq as follows:

F > x in (X,aq) if there are linked filters Fl > X ey Fn - X, in (X,q) such that

s
X € {Xl’ cees xn} and F > 'Hl Fi. It is obvious tiat oq is the finest admissible
convergence structure on choarser than q; we shall call aq the admissible modifica-
tion of q. We omit the straightforward proof of the next proposition.

PROPOSITION 4.2. If f: (X,q) » (Y,p) is continuous, then f : (X,aq) > (Y,op)
is continuous.

It is clear that "admissible convergence space'" and '"complete Cauchy space' are
the same mathematical notion, formulated in slightly different ways. An R-series
for convergence spaces is developed in [5] and [7], and in this section we consider
the relationship between this notion and the R-series for Cauchy spaces developed in
Section 1 of this paper. We begin this investigation by studying the relationship
between 'admissibility" and '"regularity'.

Starting with a convergence space (X,q), the R-series {raq} of (X,q) is a
family of convergence structures defined on the set X as follows: Tod = 95 F->x
relative to r.q iff there exist n € N and 6 > x relative to q such that F Z_cl: G,
for ordinal a > 0, F > x relative to r.d iff there exist n € N, 6 > x relative to q,
and B < a such that F > cerqnG.

LEMMA 4.3. For any convergence space (X,q) and A ¢ X, clqA E_clan c cliqu.

PROOF. The first inclusion is obvious. Let x € clan; then there is F > x
in (X,0q) such that A € F. Also, there are linked filters Fl > x

n

(X,q) such that ¥ > N F, and x = x
"=l K

such that FQ v A, where A is the filter of all oversets of A. Thus Xy € clqA.

y eeey F_ > x_ in
1 n n
for some k < n. Clearly, there is £, 1 < & < n,

Because the filters {F,} are linked, it follows that ;2 > cln x, . Thus ig > x
i - g k k

. . . . _ 2

in (X,rzq), which implies X € Clrzq{xl}' Thus X, =X € CIrqu' D
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PROPOSITION 4.4. 1If (X,q) is regular, then Qq is regular.

PROOF. Let F > x in (X,aq). Let Fl’ ...y F_ be as in the preceding proof.
n , D n 2n
Then cluqf'.i CIQq (iglfi) Z.Clq (nzlfi) = izlcqui, where Lemma 4.3 is used for
the second inequality. Since q is regular, cqui -+ x, in (X,q), and so claqf > x

i

in (¥,0q). D

A convergence space is defined in [5] to be symmetrie it it is regular and
F > x wherever ¥ » y and § > X.

PROPOSITION 4.5. (X,q) is symmetric iff it is admissible and regular.

PROOF. A regular, admissible space is obviously symmetric. Conversely,
let F > 'lei’ where Fi > x; in (X,q) for i =1, ..., n, and the {Fi} are linked.
Because zhe {%} are linked and q is regular, ;i > x, fgr i,j € {1, ..., n}. Since
q is symmetric, Fi > xj for i,j € {1, ..., n}. Thus iEIFi - xj for j =1, ..., n,
and so q is admissible. D

For a convergence space (X,q), let rq denote the regular modification of q
(i.e., the terminal element of the R-series of (X,q)). It is clear from the preced-
ing propositions that orq is the finest symmetric convergence structure on X
coarser than q (i.e., the symmetric modification of q); in accordance with the nota-
tion of [5], we introduce the notation 0q = arq. A symmetric series {OBq} for a

convergence space (X,q) can be constructed as follows:

99 = 4
0,4 = arq
OBq = O(OB—lq)’ if B is a non-limit ordinal

OB(Q) = inf{OY(q) :y < B}, if B is a limit ordinal.

If (X,q) is an admissible convergence space, then we can identify q with the
complete Cauchy structure c? = {F € F(X) : F q-converges}. A comparison of the
respective definitions leads to the following result.

PROPOSITION 4.6. If (X,q) is an admissible convergence space, then OBq = rBCq
for all ordinal numbers 8. In particular, o0q = qu.

Starting with an arbitrary convergence space (X,q), we define the Tz—modifica—
tion (Xh,qh) = (Xh,(Caq)h) and the T3—m0dificati0n (XT,(Caq)T). The latter notion
was previously discussed in [7]; the former is apparently new. Given a continuous
function f : (X,q) > (Y,p), let fh: (Xh,qh) > (Yh,ph) and fT :(XT,qT) i (YT,pT)
be defined as in the paragraph preceding Proposition 3.4. The next proposition is
clear.

PROPOSITION 4.7. If f: (X,q) > (Y,p) is a continuous function, then
fT :(XT,qT) > (YT,pT) and fh :(Xh,qh) - (Yh,ph) are also continuous.
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5. THE WYLER MODIFICATION AND COMPLETION.

Let (X,€) be a Cauchy space. If F,6 are filters in € such that F N 6 € C,
then F and & are defined to be €-equivalent. Let X* = KF>:F € €} be the set of
all €-equivalence classes, and let j : X > X* be the canonical function j(x) =<x>.
Let C* be the Cauchy structure on X* generated by {j(F) N <F>:F € ¢}. We shall
call (X*,C*) the Wyler modification of (X,C).

PROPOSITION 5.1. (a) For any Cauchy space (X,€), (X*,C*) is a complete
Cauchy space, j : (X,€) » (X*,C*) is a map, and j(X) is dense in X*.

(b) If (X,€) is weakly regular, then (X*,C*) is TZ'

PROOF. All parts of (a) follow directly from the definition of €*. To prove
(b), assume A ? ANDb€ECxk, Ac¢€ C? implies there are filters Fl’ e Fn in € such
that J(F)) N<Fp , ..., 3(F ) N<F_ > are linked, A > N {JFHN <F>:i=1, ...,n}
and a, b € {<Fi> :i=1, ..., n}. It follows that j—lj(Fl), cees j—lj(Fn) are
linked in X. But j_lj(Fi) = wcqui for i = 1, ..., n; since (X,f) is weakly regular,
it follows that‘ifii> = ... = <Fni> = a = b, and hence (X*,C*) is TZ' D

For a weakly regular Cauchy space (X,C), let ¥ : (X,£) + (X",€") be the quotient
map defined at the beginning of Section 3. Define j” : (X",€") - (X*,C*) by
3°([x]) =<x >. Note that [x] = [y] ®x Ny € € o< x> = <y>; thus j* is one-to-
one. Also, F € € implies j (W(F)) = j(F). A comparison of the definitions of €”
and C* leads immediately to the following result.

PROPOSITION 5.2. For a weakly regular Cauchy space (X,C), the following

diagram is commutative, and j~ is a dense Cauchy embedding.

j
(X,8) — (X*,C%)
vy
x~,e")

3

For a weakly regular Cauchy space (X,C), the quotient space (X ,C”) is the
T2 modification (Xh,Ch) of (X,€) defined in Section 3. Thus we obtain:

COROLLARY 5.3. If (X,f) is a weakly regular Cauchy space, then ((X*,C*),j™)
is a T2 completion of (Xh,Ch).

In case (X,€) is Ty> (X,€) coincides with (Xh,Ch) and j” with j; in this case
((X*,C%), j) is called the Wyler completion of (X,€). The Wyler completion is the
finest in standard form (See [2], [6]). Any T2 completion ((X1’C1)’ h) of (X,C)
such that any map f from (X,{) to a complete space (Y,D) can be lifted to map

f1 :(XI,CI) + (Y¥,D) such that f, * h = f is then equivalent to the Wyler completion.

We next examine the extension properties of the Wyler modification. If
f:(X,£) > (Y,D) is a map, define f* : (X*,C*) > (Y*,D*) by f*(<F>€) = <f(F)>D .
If <f>€ = ‘<Git, then F N 6 € € implies £(F) N £(6) € D; thus <f(F)>D = <f(G)Z>D,
and so f* is well defined. Also, one easily verifies that if f : (X,C) - (Y,D) and

g : (Y,D) > (Z,B) are maps, then (g £)* = g* « f* : (X*,C*) > (Z%,B%}.
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PROPOSITION 5.4. If (X,€) and (Y,D) are Cauchy spaces and f : (X,€) - (Y,D)
is a map, Cauchy quotient map, Cauchy retraction, or Cauchy initial map, then
f* : (X*,€*) > (Y*,D*) has the same property.
PROOF. Consider the commutative diagram
£
(X,8) — (Y,D)
x by
£x
(X*,€%) — (Y*,D*).
If jX(F) ﬂ<}.’>c is a generating element for C€*, then f*(jX(F) n <<?3>C) =
ij(F) ﬂ*if(F)D3>is in D*, and so f* is a map. If f is a Cauchy quotient map and
<Gib € Y*, then 6 € D implies there are Fl, cees Fn € € such that f(Fl), veey f(Fn)
are linked and & > f]{f(Fi) :i=1, ..., n}. Then f*G:Fi>c) = <G>D for i =1, ...,n,

and f* is onto D*. Also, if A

jY(G) n <é'>D is a generating filter in D*, where
6 ¢ D, and Fl, ey Fn are as described above, then A > f*(ﬂ{jX(Fi) ﬂ‘<Fi>c :
i=1, ..., n}); from this it follows that f* is a Cauchy quotient map.

Next assume that f : (X,€) -~ (Y,D) is a Cauchy retraction; then there is a map
g : (Y,D) > (X,€) such that fog = idY’ By the remarks preceding the proposition,
(fog)*x = (idY)* = idY* : (Y*,D*) > (Y*,D*) and it follows that f* : (X*,C*) > (Y* Dx)
is a retraction map.

Finally, assume that f : (X,€) - (Y,D) is a Cauchy initial map, and let
A= jY(G) n <63>D be a generating element of D*, where & € D. By a direct argument,

MGy®) n<bid 25,87 @ n< 7@ >, ¢ ex, and so £

one can show that (f*)—
is also a Cauchy initial map. E

PROPOSITION 5.5. If (X,€) is a weakly regular Cauchy space, then ((X*,C*),j")
is the Wyler completion of (Xh,Ch).

PROOF. Let f :(Xh,Ch) + (Y,D) be a map, where (Y,D) is complete and TZ’ and
let ¥ : (X,€) > (Xh,Ch) be the canonical quotient map.

f
(X,€) — (X*,C%)

v 1% | Eewx
(€7 (1,2)

By Corollary 5.3, ((X*,€*),j") is a T2 completion of (Xh,Ch), and by Proposition 5.4,
the map f °{ has a continuous extension (f o Y)* : (X*,C*) > (Y*,D*) = (Y,D). Since
the above diagram is commutative, the completion ((X*,€*),j”) has the lifting pro-
perty which characterizes the Wyler competition of (Xh,Ch). D
The next proposition follows from Propositions 1.4, 2.2, 2.3, and 5.4.
PROPOSITION 5.6. Let f : (X,€) - (Y,D) be a map. Then f* :(X*,wBC*) > (Y*,WBD*)
and f* :(X*,rBC*) - (Y*,r8

tion or Cauchy initial map, then both of the maps labeled f* have the same property.

D*) are maps for all ordinals B. If f is a Cauchy retrac-
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Let f: (X,€) > (Y,D) be a map, and consider the diagram (D#*):

jX
(X,€) = (X%,€%) — (X£,€8) — (X%,€%)
£ | £x | (£, ] ™)
jY

(1,0) = (Y%,D%) — (Yf,D%) — (Y%,D%)

where the unlabeled horizontal arrows are the canonical quotient maps. The next
proposition is an immediate consequence of Proposition 3.5 and 5.4.

PROPOSITION 5.7. 1In diagram (D*), if f is a map (respectively, Cauchy retrac-
tion, Cauchy initial map) then each vertical arrow in the diagram is a map (re-
spectively, Cauchy retraction, Cauchy initial map).

6. T, COMPLETIONS.

3

In [6], a Cauchy space which has a T, completion is defined to be a CS Cauchy

space. In this section a characterizatioi of C3 spaces is given which makes use
of the R-series along with a set function I defined originally in [4]. The main
theorem (Theorem 6.4) is due to G. D. Richardson.

Throughout this section, (X,f) is assumed to be a T3 Cauchy space. The Wyler
completion of (X,C) will be denoted by ((X*,C*),j). Let p be the convergence
structure on X* compatible with €*, and let P, denote the convergence structure on
X* compatible with TP (see Section 4). As usual, N denotes the set of natural
numbers; also recall that A denotes the filter consisting of all oversets of A.

We next construct a family of set functions Zg which, for each n € N and each
ordinal number &, map subsets of X into subsets of X*. If F is a filter on X, then

ZS(F) is defined to be the filter on X* generated by {ES(F) :F € F}. For any subset
A of X and n € N, we define:

Zé(A) { <F> € X* : there is 6 € <F> such that j (&) v j(A)}

{<F> €X* : there is & € <F > such that j(6) V ES_I(A)}.

T8

If o is an ordinal number, A ¢ X, and n € N, we define:

ZI(A) = { <F>¢€X*: there is B < a, k € N, and
¢ €<F> such that z‘g(e) v i(A))
ZS(A) = {<F>¢€X*:there is B < a, k € N, and

6 ¢ <F> such that £5(6) v 2™ 1A},
g a

PROPOSITION 6.1. For all n € N and A < X, ZB(A) = cl:j(A)
PROOF. Assume that the equality holds for n. If <F> ¢ Z (A), then there
is & € <F> such that j(&) v En(A) exists. Using the inductior assumption and the

n+l

fact that J(G) p—converges t0‘<F >, it follows that <F > ¢ cl j(A). Conversely,

if <F> € cl ](A), then there is a filter ¢ p-converging to <F> such that cl JGQ: Q.
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By construction of €*, & > j(€) for some 6 € <€>, and by the induction assumption,

j@G) v Z:(A) exists. Thus<F> ¢ Zg+1(A). For n = 1, the preceding argument can

be applied if we define zg(A) - clgj @ =im. []

PROPOSITION 6.2. For all ordinal numbers a, for all n € N, and for all sub-
sets A of X, z (A) = c1: j(A).

PROOF. Con31der all pairs P of the form (a,n), where o is an ordinal number
and n € N; let P be ordered as follows: (B,m) < (a,n) if B < a or B = a and m < n.
Since P is obviously well-ordered, the proof will proceed by induction.

Assume that the above equality holds for (B,m) < (a,n); in view of the pre-
ceding proposition, we may assume 0 > 1. If n > 1, then the induction assumption
states that 22-1(A) = clg;lj(A) and zlg(A) = cll; j(A) for all 8 < o and k € N; using
these equalities, the argument used in Proposition 6.1 can be repeated to establish
the desired result in this case.

Finally, assume n =1 and let <F> € ¢ (A) Then there is 6 € <F>, k € N, and
B < a such that Z (G) \Y J(A) Since Zk(G) p,-converges to <F>, it follows that
<F> ¢ clp ja). Conversely, if <F> E cl J(A), then some ultrafilter ¢ on X*
containing J(A) p,-converges to <F> By the definition of p and p =r,p (see
Section 4), there is 6 € <F>, B < a and k € N such that ¢ > cl J(G) Employing
the induction hypothesis, we have Z (G) v J(A), and hence <F > ¢ gé(A). This com-
pletes the proof. D

Now let (X,€) be a T3 Cauchy space, and consider the following two properties:

(P)) IfF, 6 €€ and, for each ordinal a and n € N, L' (F) v I (€), then

FneecC
(PZ) For each ordinal o, n € N, and F € C, j-I(ZZ(F)) €cC.
PROPOSITION 6.3. If (X,€) is a T3

then for each ordinal number a, raC* is T2’ and hence compatible with P, = I P-

1

Cauchy space which satisfies condition (Pl)’

PROOF. The fact that Py is T2 is an immediate consequence of Proposition 6.2
and property (Pl). Since a T2 convergence structure is admissible and hence
symmetric, {pa} coincides with the symmetric series {Oap}’ which in turn coincides
with the Cauchy R-series {raC*} by Proposition 4.6. D
THEOREM 6.4. The following statements about a T3 Cauchy space (X,€) are
equivalent:
(1) (x,€) is a C3
(2) (X,€) satisfies conditions (Pl) and (PZ)'
(3) ((X*,r€*),j) is a T3
PROOF. The equivalence of (1) and (3) are well known (see [2] or [6]). If

Cauchy space.
completion of (X,C).

(X,€) satisfies the two conditions, then the set D = {® € F(X*): there is ordinal
o, n € N, and F € € such that ¢ Z_Z;(F)} is easily seen to be a complete T3 Cauchy
structure on X*; using Propositions 6.2 and 6.3, it follows easily that D = rC*.
Condition (PZ) guarantees that j : (X,€) > (X*,r€*) is a Cauchy embedding. Thus
(2) = (3). Conversely, if (3) is assumed, then (Pl) follows from Proposition 6.2
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and the fact that rC* is TZ’ while (P2) follows because the j : (X,€) > (X*,rC*)

is a Cauchy embedding. D
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