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ABSTRACT. In this paper we investigate topologies with ultrafilters having bases of
open sets. It is shown that these topologies are completely regular. All results are
obtained by using Richardson's compactification of convergence spaces. We also prove

a non-existance of a dense convergence space compactification with lifting property.
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1. FPRELIMINARIES
A convergence space (Limesraum [1]) is a set X along with a map T from X to
the power set P(F(X)) of the set F(X) of filters on X, such that for each x € X

the following conditions are satisfied:

(CcI) z € 1z
(CII) FeEtx, G>F = GE€1x
(CIII) F,GEw@ = FAGE X .

Filters in TtTx are said to be convergent or converging to x . We call a convergence
space compact if ultrafilters are convergent. A convergence space is a pretopology if
each Tx contains a smallest filter. This filter will be denoted Bx . We shall write
(X,t) for the convergence space, or simply X if no confusion is possible.

Let (X,t) and (Y,0) be convergence spaces. Amap f : X » Y 1is continuous if
F € tx implies f(F) € of(x).

Throughout the paper we assume all spaces to be Hausdorff, i.e. if Tx N 1y # 0
then x=y . The category of (Hausdorff) convergence spaces with continuous maps as
morphisms is denoted HCON . Similarly the full subcategory of compact spaces is denoted
by HCCON .

A subset A of X 1is called open if x € 4 implies that A € F for all F € 1x.
A pretopology is a topology if each Bx has a base of open sets. The class of open sets

determines a topology called the topological modification of X .
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The closure cl[B] of a set B < X is the set of points &x € X such that some
F € Tx satisfies F N B % 0 for each F € F. The closure cl : P(X) » P(X) 1is in
general not idempotent. A pretopology with an idempotent closure is always a topology.
If f:X->Y is continuous we will have f(cl[B]) < cl[f(B)] . For a filter F on
X the sets cl[F], F € F, constitute a base for a filter on X, denoted cl[F].
The reader is referred to [1] for more properties of convergence spaces.

In this paper we intend to examine a subclass by using the famous Richardson
compactification for convergence spaces. For notational convention and easier under-
standing of proofs the construction of the compactification is given in the following.

Let (X,T) be a convergence space and write NX for the class of non-convergent

ultrafilters on X. For A < X define
A¥* = AU {U€ NX : AEU} .

We have in particular X* = X U NX . If F is a filter on X we write F* for the
filter on X* generated by sets F* where F € F. Now define T* : X* -» P(F(X*))

through
™z = { GEFX*) : IFE€ET,G>F}, x€X
U= {GEFXH : G>Ur]}, UEN, .

Then (X*,T*) will become a Hausdorff compact convergence space including X as a
(dense) subspace. For properties of the Richardson compactification see [2-4].
REMARK. It is not difficult to see that (X*,71*) is isomorphic to the Kowalsky

completion of the Cauchy space (X,C) where

cC = UxGX ™ U NX .

Cauchy space terminology is found in [5].
2., STRONG COMPLETE REGULARITY

Note that even if X 1is a topology X* need not always be one. We do, however,

have the following.

THEOREM 2.1. (1) X is a pretopology iff X* is a pretopology.

(2) X is a topology iff X* is a topology and non-convergent ultrafilters have bases of
open sets.

PROOF. (1) If X 1is a pretopology then Bx* is the smallest filter in T*x .
Since U*, U € NX , 1s the smallest filter in T*U we have that X* 1is a pretopology.
If X* 1is a pretopology then for x € X every T*xr has a smallest filter G(x). Now
some F € Tx satisfies G(x) > F* and it is not difficult to see that indeed F = Bx'
(2) Let X be a topology with non-convergent ultrafilters having bases of open sets.
First note that if A4 ‘is open then also A4* 1is open. In fact, for y € A* we have
either y € 4 or y € NX with A4 € y . Choose any G € T*y . For y € A we have
G > By* . Since 4 € By we get A* € By* and so A* € G. For y € NX with 4 € y
we have G > y* . We get A* € y* and therefore A* € G.

The sets B* where B € Bx is open will be a base for Bx* . Further each
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ue NX has a base of open sets. Hence also U* has a base of open sets. This shows
that X* 1is a topology.

Now assume that X* 1is a topology. Choose V € Bx . Then we have V* € Bx* and
consequently there is an open set ( € Bx* and a set W€ Bx such that W¥ < C < V*.
If z € W then 2z € C and therefore ( € Bz* , which gives a set W; € Bz with
h%* c C. It follows that w; cV and so V€ Bz . Similarly it can be proved that
each U € NX has a base of open sets a

DEFINITION 2.2. A topology X 1is said to be strong completely regular, SCR for
short, if X* 1is a topology, i.e. if non-convergent ultrafilters always have bases
of open sets.

REMARK 2.3 Closed subspaces of SCR spaces are SCR. Products of SCR spaces need,
however, not be SCR.

PROPOSITION 2.4 Strong complete regularity implies complete regularity.

PROOF. A SCR space X 1is a subspace of the compact topology X* o
The converse of Proposition 2.4 is not true. In fact, the real line R with usual
topology is not SCR. This is obvious since ultrafilters U on R contain either the
set @ of rational numbers or its complement R-¢ . Thus U cannot have a base of
open sets. However, we have the following.

PROPOSITION 2.5. If X is completely regular and U = cl[U] for all non-
convergent ultrafilters U on X, then X 1is strong completely regular.

PROOF. The assumptions together with Corollary 2 p. 1291 in [6] imply that X%¥
is isomorphic to the Stone-Cech compactification of X. Hence X* 1is a topology .

COROLLARY 2.6. The following conditions are equivalent:

(a) X is strong completely regular
(b) X is completely regular and U = c1[U] for non-convergent ultrafilters U
(c) X* is isomorphic to the Stone-Cech compactification of X.

PROOF. (a)=(c): Obvious by Theorem 2.1. (c)=(b): See [6]. (b)=(a): Prop. 2.5 a

QUESTION 2.7. Can strong complete regularity be used when investigating connect-
edness concepts ? E.g. when are totally disconnected spaces strong completely regular ?

We conclude with using results from above to illustrate the problem of existance
of compactification reflectors for Hausdorff convergence spaces.

THEOREM 2.8. There is no reflector R : HCON - HCCON such that each X € |HCON|
has a HCCON-reflection (fk,RX) satisfying cl[fk(X)] = RX .

PROOF. [7] Let A be a subset of a compact space X . Suppose there is a refl-
ector £ : HCON - HCCON such that the HCCON-reflection (fh,ﬁﬂ) of A satisfies
cl[fh(A)] = RA . Firstly there exists a continuous function <d*¥ : RA -» X such

that id*()fh =1d : A » X. Secondly it follows that

idk(RA) = id*(ellf,()))
C1Zd* (£, (4)) ]

cl[4] .

n

But A is a subset of <Zd*¥(RA) , which is closed. Hence <cl[4] < td*(RA) , and
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consequently cl[A] 1is closed. This implies that the closure is idempotent. We can
conclude that X 1is a topology and further, by Theorem 2.1, that any pretopology is
a completely regular topology. Thus we have a contradiction a

COROLLARY 2.9. (1) There are compact pretopologies which are not topologies.
(2) There are compact pretopologies the topological modification of which is not
Hausdorff.

PROOF. (2) 1If the topological modification of a compact pretopology is Hausdorff,
then by Corollary 3 p. 202 in [8] this compact pretopology is a topology

QUESTION 2.10. 1Is HCCON reflective in HCON ?
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