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ABSTRACT. The purpose of this paper is to describe a relationship between the
Korteweg-de Vries (KdV) equation

u, - 6buu_ +u =
t X XXX 0

and another nonlinear partial differential equation of the form

z.z
+ 2 o3 xIxx

2t XXX z = H(t)z.

The second equation will be called the Associated Equation (AE) and the connection
between the two will be explained. By considering AE, explicit solutions to KdV
will be obtained. These solutions include the solitary wave and the cnoidal wave
solutions. In addition, similarity solutions in terms of Airy functions and
Painlevé transcendents are found. The approach here is different from the Inverse
Scattering Transform and the results are not in the form of solutions to specific
initial value problems, but rather in terms of solutions containing arbitrary
constants.
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1. INTRODUCTION
This paper will describe a relationship between the Korteweg-de Vries (KdV)

Equation

up - 6uux tu =0 (1.1)
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and another nunlincar partial differential equation. We shall indicate how this
connection arises and then use the result to generate solutions to KdV. The con-
nection between KdV and the Associated Equation (AE) permits us to obtain some
explicit solutions of (1.1). MWe remark at the outset that this method of solution
is different from the Inverse Scattering Transform developed by Gardner et al [11,
and we shall indicate the specific initial values satisfied by the solutions we
obtain.

Humerous articles, including surveys by Miura [2] and by Jeffrey and Kakutani

(3] recount the rich history and the enthusiasm generated by the KdV Equation.
These include bibliographies which document the discovery of soliton solutions, the
existence of an infinite number of associated polynomial conservation laws, and the
development of the Inverse Scattering Transform. The adaptation of this last method
of solution to other nonlinear evolution equations ensures that vigorous growth will
continue.

Our principal concern in this paper is the development of an associated partial
differential equation which can be solved explicitly to yield further solutions to
KdV. The method is an outgrowth of the Miura Transformation, which we use in a
slightly different way. This allows us to solve KdV, not in the context of a
specific initial value problem, but rather in a form which is more akin to a complete
integral, as there are two arbitrary constants present. We first indicate how the
associated equation arises and then proceed to use it to solve KdV in some cases.
Some remarks on the asymptotic behavior of the solutions we have obtained will be
included, especially those in terms of the Airy functions and the Painleve
transcendents. Some of these solutions remain bounded as x approaches infinity,
some even approach zero, while some of the others are unbounded.

2. THE DERIVATION OF THE ASSOCIATED EQUATION (AE)
In 1968, Miura [3] published a result giving a connection between two nonlinear

partial differential equations. He discovered this in his research on the conserva-
tion laws associated with KdV, and we state his result as a

THEOREM: (Miura) If v(x,t) is a solution of the modified Korteweg-de Vries
Equation (MKdV)

-evdv +v. =0 (2.1)

v
t X XXX

then

u(x,t) = ve(x,t) + v (x,t) (2.2)

solves the KdV Equation

- buu_ + =
ut X uxxx 0
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The full impact of this result was realized in the invention of the Inverse
Scattering Transform by observing that (2.2) is, in fact, a Ricatti fquation for
v(x,t). The usual linearizing transformation

vix,t) :'E? (2.3)
gives
z
u(x,t) = 7% (2.4)

If one observes that KdV is Galilean invariant, then (2.4) can be considered as
the tire-independent SchrSdinger equation and, by exploiting this to its fullest,
Gardner et al [1] developed the Inverse Scattering Transform. This method exactly
linearizes KdV, but the explicit solution of an initial value problem is still far
from trivial requiring the solution of the Schrgdinger equation and the Gel'fand-Levi-
tan integral equation.

In seeking other relationships, the second author pursued a somewhat different
tack in using (2.4) from the Miura transformation directly in the KdV equation.

Thus, we choose
315

u(x,t) = 7

and substitute this into the KdV equation.
Computing the required derivatives of (2.4), followed by substitution into
(1.1) yields

Zxxt _ t%xx - 10 Zxxi?xx +12 sz§x2 + Z (5)
z z z z z
ZXZ (4) Z)Z(ZXXX Z)3(ZXX
-3 5 + 6 3 - 6 7 = 0. (2.5)
z z z
i
where the superscript (i) indicates JiT' After some algebraic rearrangement, we
may write (2.5) as ox
1 ZyxZxxx Zxzxx2 (5)
7 [}th -9 7 +9 22 +z
(4) 2 3
z z z 2 2z
.3 X + 6 X gxx - X xxj
z z
-z z.z
-5 l:zt vz, -3 —"TX—"] = 0. (2.6)
z
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The first bracketed term in (2.6) is simply the second partial derivative with

respect to x of the second term, so we may write

z.2 z z 2
1 Et+zux-3~iiﬂ —~15[}t+zmx-3~iﬁﬂ= 0. (2.7)
z z 2 z
XX z
We now denote this bracketed term by R; that is,
Zy?xx
zp vz 3 Bt R (2.8)

This last equation first appeared in the analysis by Gardner et al [1] in
describing the Galilean invariance of the KdV equation by setting

2
=X =u+a (2.9)

Returning to equation (2.7) in the form simplified with the use of (2.8), we have

1 XX -
E'Rxx - R=0 (2.10)

We observe that (2.10) can be written as

[zR{] - [}XR] =0 (2.11)
X X

which permits integration with respect to x. This yields an arbitrary function
of t only, G(t).

zRX - ZXR = G(t) (2.12)

Dividing by z2 and integrating with respect to x, results in the solution for R in
terms of z

[ep]
[ad

R=2z Lj —fﬁl dx (2.13)

The resulting equation for z is then given by

3z.z X
XXX _ G(t)
Ze Y200 " - = L 22 dx (2.14)

o

which we refer to as the Associated Equation (AE). From the above discussion, we
have that if z(x,t) satisfies (2.14) then

z
u(x,t) = —éﬁ

satisfies KdV and 7
X

v(xt) = -

satisfies MKdV.
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Finally, we observe the: (2.14) was obtained by Gardner et al [1] where the right-
hand side took the forr bSelow with C,D arbitrary functions of t

2

X dx
R=Cz+DzL dx (2.15)
Z

[}

It is at this point where we diverge from the development of Gardner et al [1] by
attempting to solve AE in its own right as opposed to pursuing the method of the

Inverse Scattering Transform.

3. EXPLICIT SOLUTIONS OF THE ASSOCIATED EQUATION (AE)

While AE appears at first, to be even more formidable than the original KdV
equation, we remark that the homogeneity of the x and t derivatives permits a re-
duction of order in some cases. Specifically, we consider those cases for which
G(t) = 0 and discuss either traveling wave solutions or similarity solutions. In
these situations, direct integration yjelds explicit solutions for both KdV and MKdV.
We distinguish two cases for explicit solution. These depend upon the form of the
right-hand side in (2.1¢).

First Case: If we consider (2.8) with R = 0, then AE becomes

zy Yzt 3 —5255 =0 (3.1)

Suppose now that we inquire about traveling wave solutions to (3.1); that is,

consider

2(x,t) = f(x - a’t) (3.2)

Substitution of (3.2) into (3.1) results in the ordinary differential equation

- azf' + f"' -3 ff . 0 (3.3)

where ' indicates differentiation with respect to the argument, x - azt.
If we divide by (3.3) by f3, we may integrate once. Multiplication by f'f
permits an additional integration, which results in the first-order equation
2.2 2

DR A (3.4)

3

(f

where A and B are arbitrary constants of integration. Specific choices for A and B
give rise to explicit sclutions for AE, KdV, and MKdV. We enumerate some of the
possibilities below.

Case (1-a): If we choose A2 = B2 =0 in (3.4), we obtain the solution to AE

o

z(x,t) = f(x - azt) = x exp[ig (x - azt{] (3.5)
V2

where Xo is a constant cf integration.
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Using (2.3) and (2.4), we obtain the corresponding constant solutions for KdV and
MKdV.
Case (1-b): If we choose A2 = 0 and B # 0, we obtain the AE solution as

0

2(x,t) = f(x - alt) = 2B sin[?i—g (x - x_ - azt)] . (3.6)
/2
The appropriate MKdV solution is

vix,t) = & cot[ié-(x - x_ - azf) (3.7)
V2 2 0

while the KdV solution again reduces to a constant.
Case (1-c): Suppose we now choose the integration constants in (3.4) as A2 0
and 82 = 0. The solution to AE has the form

z(x,t) = f(x - a2t) =2 sec[:EA (x - x_ - azt{] (3.8)
VZA Z 0

Accordingly, the respective MKdV and KdV solutions become

vix,t) = 2A tan aA (x - x_ - a2t) (3.9)
V2 v 0
and
22 o aA 2 a2p?
u(x,t) = a“A° sec [:;:—(x - X, - a t?} - - (3.10)
2

Case (1-d): The choice of A and B such that AB # 0 yields the solution to AE in
terms of the Jacobi elliptic function. For simplification, we denote

AL

2

2
2 a
a ==t

4A 2A

(3.11)

and

2 _ % AY - %

g- = - — (3.12)
ap° 2n2
The solution to AE is now
2 1 X - x0 - azt ﬁz
z(x,t) = f(x - a°t) = Ll B e (3.13)
a
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The MKEV solution is, therefore,

R azt 82 X - x0 - azt B2
) cnj—-—g ;?' dn|—- - 8 — ;?
V()x,t) =2 —_— - ._X -");“- -a-z-t—-";z_ - (3.14)
S0 B

The sol:.tion to KdV is now the "cnoidal wave" as first discovered by Kortcueg and

de Vries [5]

2

2 X - x_ - a‘t
u()~at) = - “']" + —B—4 1 -2 an[w (; o
8 a

2
%] (3.15)

Qa

Case (1-e): This is the last case we consider for traveling wave solutions to AE
with R = 0. If we assume that the right-hand side of (3.4) is a perfect square,
then we have

(£)2 =k (£ - 6%)2 (3.16)

We may further simplify the algebra by choosing K = 1 (or, equivalently, o = % s
A=1,B =2]). The solution to AE now has the form

2
z(x,t) = f(x - azt) =2 tanh| & (x - x_ - azt{J . (3.17)
a __2 0
The MKdV solution is, therefore,

vix,t) = % sechz[j% (x - Xo - azt{] ctnh_;% (x - Xo - a2t):] . (3.18)

Finally, we obtain the KdV solution here
u(x,t) = - EE s h2 2 (x - x, - a2t) (3.19)

X, 5 sec > 0 . .

We remark that equation (3.19) is the famous "one-soliton solution" obtained
by Korteweg and de Vries [5]. We further observe that we have but one arbitrary
constant x_ in (3.19) due to the specific choices of A and B following (3.16). How-
ever, the solution in (3.15), the "cnoidal wave", reflects the integration process
with three arbitrary constants, Xps @ and B. Of course, A and B are used to define
a and p. In the previous solutions, the choice of A or B as zero leads to two or
fewer irtegration constants. The presence of these constants in the solution makes
our results analogous to complete integral solutions.
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Second Case: e now consider the solution of AE with R =-K%}l z where K(t) is (as
yet) undetermined. This arises from the choice of G(t) in (2.13) still zero, how-
ever we pernit the arbitrary constant (function of t) K(t) to enter upon integration
of the right-hand side of (2.14). The choice of K(t) will be made shortly.

Suppose, therefore, we consider similarity solutions for AE of the form

2(x,t) = f(xt™Y3) . (3.20)

The motivation comes from the balance of x and t derivatives present in AE. Using
(3.20), then we obtain the following

) 1/3 fl Xt_1/3t_l N fllit_l _ 3f i t___ = K(tt) f (3‘21)
where o4 with
{ at
£ = xt™H3 (3.22)

Equation (3.21) can now be written in the form

ili = l<_(_§_) +1/3 _f‘_é (3.23)

Now, by choosing K(t) = i% , we have

£ ! o1l ' (3.24)
f3 6 f2

which can be integrated to obtain

£ = Ler v af? (3.25)

where A is an arbitrary constant. By rescaling & as
n= (-6)Y3% = x(6t)1?3 (3.26)

we obtain

f = nf + AFS (3.27)

where - = é% . Two cases now arise depending on the choice of the constant A.
Case (2-a): The easier case to consider in (3.27) is that for which A = 0. We
obtain Airy's equation

f = nf (3.28)
Hence, we have the solution to AE as

z(x,t) = C1 Ai(n) + CzBi(n) (3.29)
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For sirplicity, we choose C2 = 0 and observe that the possible choice C1 = 0 yields
analocous results, while C1C2 $ 0 provides a third result. Thus, we obtain the MKdV

solution
-1/3,."
_ -(6t) Ai (n)
v(x,t) ST . (3.30)
The KdV solution is
= =X
u(x,t) = £t (3.31)

where the Airy equation was used to simplify the result. Similar formulas arise for
MKdV with Bi(n) but the KdV solution is still the same.
Case (2-b): If we consider (3.27) with A = 2, we obtain the canonical form for the
second Painlevé transcendent (with y = 0).
f=26 4 of (3.32)
We denote the solution to (3.32) as P(n) so that the solution to AE, in this case, is
z(x,t) = P(n) (3.33)

The appropriate MKdV solution has the form

-1/3,"'
%‘ﬂ—u‘ﬁ (3.34)

v(x,t)

while the KdV solution is

u(x,t) = (6t)72/%%(n) - & (3.35)

The solutions that have been obtained in (3.34) and (3.35) in terms of the
Painlevé transcendents have recently received considerable attention. Articles by
Rosales [6], Miles [7] and [8], and by Ablowitz et al [9 - 11] have indicated ad-
ditional relationships between KdV and these transcendents. We remark that our
solutions do not arise in asymptotic formulas and are fundamentally different as
they involve quotients and derivatives of the Painlevé functions.

This concludes our first set of solutions to KdV and MKdV. We now turn to
AE itself with the intention of improving the utility of the equation.

4. A PROPERTY OF THE ASSOCIATED EQUATION (AE)

The treatment of KdV as a problem solvable via the methods available in inverse
scattering problems was a significant step in the analysis of some nonlinear PDE's.
The related problem from the inverse scattering setting is given in Ablowitz and
Sequr [12] by the pair of equations

2

z,.+ (A +u)z=0

XX

2 )z =0 (4.1)

zy - (a(r) + ux) z - (4x N
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These equations in (4.1) also determine a B;ck1und Transformation from KdV to AE.
See Wahlquist and Estabrook [13] for further details. The property which we exploit
here is a symmetry condition that

W= (4.2)

N |

leaves AE invariant. Thus, we can potentially increase the utility of AE twofold by
using reciprocals of the AE solutions we have found in Section 3. Not all of these,
however, generate new solutions for KdV and MKdV.

In the consideration of traveling wave solutions to AE in the first case above,
we had found the solution in (1-e) as

z(x,t) = % tanh[:% (x - Xo - azti}

We now have the reciprocal

w(x,t) = ET%T?T = % ctnh[:% (x - Xo - azti] (4.3)

as a solution to AE, which yields

v(x,t) = - % cschz[?% (x - Xy - azti] tanh[:% (x - Xo © azt{} (4.4)

as the MKdV solution.
2
u(x,t) = %7 cschz[:% (x - Xo - azti] (4.5)

is the resulting KdV solution.

[t is unfortunate that the potential for new MKdV and KdV solutions is not fully
realized when we treat traveling wave solutions. While we sometimes obtain new solu-
tions to AE, the only additional KdV solution arises in case (1-e). The others
repeat previous solutions.

In the case of similarity solutions, however, we do obtain different solutions
by use of the symmetry property of AE. Recall from equation (3.29) that one solution
of AE was

2(x,t) = C1Ai(n) (4.6)

We have another solution to AE as
-1
w(x,t) =[:F1Ai(n{] (4.7)
The corresponding MKdV solution is

v(x,t) = (6t)" /3 A;—ig% (4.8)
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vhile we obtain the KdV solution in this case

, 2
ulxat) = &+ 2 (6t)72/3 -A%;Eg{l (4.9)

The analogous solution involving Bi (n) and the linear combination of Ai (n) and
Bi (n) also hold.

We may also utilize w(x,t) to include the Painlevé solutions, too, by way of
the solution to AE in (3.33). This yields
-1
wix,t) =[jP(n):] (4.10)
as the AE solution. This implies that the solution to MKdV is

vix,t) = (6t)71/3 ‘Tﬂ(':% (4.11)
The final KdV solution is
uGot) = 2 - 2 (6672 pP(n)
' (4.12)
-2/3| P 4.12
+ 2 (6t) [_P—(%)—]

We now have completed our set of explicit solutions to KdV and MKdV via the

associated equation.

5. DISCUSSION OF RESULTS

It was noted from the start that our method here was fundamentally different
from the Inverse Scattering Transform. It is not necessary to determine the scatter-
ing data nor the solution of the Gel'fand - Levitan integral equation. The

implementation of an initial condition

u(x,0) = f(x) (5.1)

may be introduced by means of the transformation in (2.4) with t = 0; that is,

zxx(x,O)

U(X,O) = f(X) = —Z(W (5.2)

This direct scattering problem needs to be solved for z(x,0) which is then used as
the initial condition for AE.

In the explicit solutions we obtained above, we did not approach the problem as
a specific initial value problem, but rather we derived the traveling wave solutions
and similarity solutions as a result of direct integration of the ordinary differen-
tial equation which arose from AE. The appropriate initial values for the traveling
wave solutions may be read a posteriori from the solutions in the first case by
setting t = 0. The appropriate initial values which correspond to the similarity
solutions may be interpreted as those arising when t is replaced by t + k. For
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exainple, the KdV similarity solution (3.31) becomes

u(x,t) = - EF)t(TU (5.3)

with the corresponding initial value

"

u(x,0) (5.4)

X

6k
This same approach allows the assignment of initial values to the other similarity
solutions in the second case.

A few remarks concerning the assignment of specific initial values are in order.
First, for the solution of KdV and MKdV via AE, we are still faced with the formid-
able task of solving (5.2) first and then using this in the solution of AE. Second,
the solution of (5.2) will include two arbitrary constants arising from boundary
conditions on x. Perhaps this may be utilized in solution of some initial-boundary
value problems for KdV. Some investigations of KdV on finite intervals have been
considered by Bubnov [14]. The advantage here, of course, is that we need not rely
on asymptotic values of x, but rather we might prescribe values for finite x.

Finally, we consider the behavior of the solutions which we have obtained. The
traveling wave solutions have already received extensive treatments in Gardner et al
[1], Miura [2], and Korteweg and de Vries [5]. It was, of course, the discovery of
the solitary waves which initially stirred the interest in KdV. The similarity
solutions, most notably the Painlevé functions, have been discussed in many recent
articles, Rosales [6], Miles [7-8], Ablowitz and Segur [9], Ablowitz et al [10-11].
We observe that the asymptotic behavior of our solutions (as t - =) can be considered
most reasonably in terms of the size of |x| versus t, with the distinction of bounded
solutions pertaining to that part of the domain for which |x| 5_(t1/3).

In the case for which |x| < (t1/3), we remark that the quotients in the
similarity solutions approach constants, so that the multiplicative factor t™" forces
the solutions to zero. For example, in (3.30) as t » « , we obtain

Lim r K
toe L (6t) /3 Aﬁ%l =0 (5.5)
Ix] < (£¥3)
since Ai(0) = 372/3/1(2/3) & .35502 and A1 (0) = -(3)"Y3/r(1/3) & - .25881 as

given by Abramowitz and Stegun [15]. Notice that the quotient of the Airy functions
approaches a constant as t + « and the t'l/3 drives the solution to zero. Similar
results hold for the solutions in (3.34), (4.8), and (4.11). With an additive term
of x(6t)'1 or a multiplicative factor of t'2/3, we still obtain solutions which
approach zero eventually. In the case where |x| = (t1/3), the only difference is
that the quotients of the Airy functions, or the quotients of the Painlevé functions,

remain essentially constant with the t™" forcing the solutions to zero.
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. . . 1/3
We obtain unbounded solutions in those situations for which |x| > (t / ). For

large values of the arguments n = x(6t)’1/3, the quotients of the Airy functions grow
at the rate of n1/2. When we consider |[x| > (t1/3), this yields an algebraic pattern
of growth on the order of xl/z(t)_l/6 for the Airy functions which is them tempered
by t'1/3 multiplier in the MKdV solution. This results in a solution which just es-
capes when |x| is only slightly larger then t1/3. Of course, as |x| increases with
respect to the relative size of t /3, we expect the greater rate of algebraic growth.
This result is valid for the KdV and MKdV solutions involving the Airy Function. The
results for the Painleve solutions require further analysis. Preliminary numerical
results, however, indicate that these solutions are also unbounded.
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APPENDIX I

m@@ sin

Q|
w
B

® |

1]

o]

[N

tanh

oo
2al

ctnh

~oj
~olo
™

x,t) is the WOHCﬁﬂos to AE with R = 0.
= X - act.

TABLE

v(x,t) is the solution to MKdV.

v(x,t) u(x,t)
ia _al
7 2
2
4 cot 2 2 -2
V2 /2 2
2,2
aA tan aA £ wm>m mmnm ahe | _ mJ%l
V2 /2 /2
2 2
3 B8 [ B
cn || = [dn |2 | = 4 - m
DI LR D Ny S W T I
8 4 2 4 ﬁ.m 2
2 a B a a
sn |= | mM
B
a
— 2 A
a 21 a a a 21 a
S sech®| £ ¢! ctnh lmHQ -2 secht| £ |
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u(x,t) is the solution of KdV.

Reference

(3.5)

(3.6) (3.7)

(3.8) (3.9) (3.10)

(3.13) (3.14) (3.15)

(3.17) (3.18) (3.19)

(4.3) (4.4) (4.5)
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TABLE 11

z(x,t) is the solution to AE with R = K(t)

t
x(6t)"1/3,
z(x,t v(x,t)
i (n) -(6t)7H3 A ln)
Bi(n) “(6t)7/3 B8
1 -1/3 Aj"
Ai(n (6t) Mdeww
1 -1/3 Bi
HE (6t) m“M”W
P(n) - (613 )
1 173 P (.
5 - Amﬁv \ W JJV

X
bt

+

v(x,t) is the solution to MKdV; uf(

2(6t

X,t) is

X -2/3
Bt 2(6t)

Ait ()
mma‘gn

_2
v 2(6t)-2/3 [Bi(n)]
6t |8 N V.L

2(6t)72/3 p2(n)

o
de

1273 ﬁw ._ 2(6t)-2/3p2 )

the solution to KdV;

Reference

(3.29) (3.30) (3.31)

(3.29) (3.30) (3.31)

(4.7) (4.8) (4.9)

(4.7) (4.8) (4.9)

(3.33) (3.34) (3.35)

(4.10) (4.11) (4.12)



