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ABSTRACT. This paper develops a formula of inversion for an integral transform

similar to that associated with the names of Kontorovich and Lebedev. The kernel
1
H()
u
interval a < r < » , where a > 0 , and the parameter k 1is complex. This kind of

involves the Hankel function (kr) , in which r varies over a truncated infinite
transform is useful in the investigation of functions that satisfy the Helmholtz equa-

tion and the condition of radiation.
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1. INTRODUCTION.
In a previous paper, Naylor et al [l], the author investigated the property of
an integral transform that can be used in connection with boundary problems for the

Helmholtz equation

rzw + rw_ + k2r2w +w, =0 (1.1)
rr r od
where (r,$) are polar coordinates and r 2 a > O . The basic transform in question
is that defined by the equation
roo
Fw = | HD (kg (04 (1.2)
L, U r

where Hil)(kr) denotes a Hankel function, the notation being that of Watson [2].

The application of the above transform can prove somewhat difficult in that the for-
mal inverse of (1.2) is an eigenfunction expansion that is usually divergent. A

valid formula of inversion can be constructed by introducing a suitable convergence
factor into the series. In the original investigation it was assumed that the constant
k was real and positive, however in some applications this constant is taken to be
complex. The introduction of complex values of k 1into the transform brings into
query the validity of inversion formulas initially established only for positive valucs
of k . This paper considers the modification necessary to the inversion formula for

the transform defined by (1.2) when the constant k 1is complex.
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It is found that the inverse of (1.2) is still an eigenfunction expansion re-
quiring 2 summability factor. Since the appearance of such factors in the series ren-
ders their application cumbersome, the author, Naylor [3], has proposed alternative

transforms such as that defined by the equation
00

Fo(w) = | Y (kn)f(r)dE (1.3)
2 Ja u r
The inversion formula for this transform involves both a series and an integral each

of which is convergent in the classical sense. It should be noted that alternative
transforms like (1.3) that are available when k 1is positive can no longer be employed
when k 1is complex unless a severe restriction is placed on the asymptotic behaviour
of the function f(r) to be expanded. The essential assumption retained in this
paper is that r_lf(r) e L(a,») . If we write k = k1 + ik2 where kl’ k2 are posi-
tive, then Hil)(kr) is O[r-&exp(—kzr)] as r > » , so that the transform defined
by (1.2) will exist for functions belonging to the stated class. However Ju(kr),
Yu(kr) and all linear combinations of these functions except Hil)(kr) itself are
O[r-éexp(kzr)] as r » » , so that (1.3) and similar transforms, apart from F(u) ,
will not in general exist for the class of functions considered in this paper.

The inversion formula for (1.2) constructed in this paper for complex values of
k appears as equation (3.17). In order to establish this formula it is first neces-
sary to obtain a preliminary integral theorem which is proved in the following section
of the paper, the proof of the main theorem being given in section 3.

2. THE INTEGRAL THEOREM.

THEOREM 1. Suppose that f(r) 1is continuous for r 2 a > 0 and that
r—lf(r) ¢ L(a,») . Let the transform F(u) be defined by equation (1.2) where
k = k, + ik, where k, >0, k, > 0 . Then if r > a ,

1 2 1 2 ; 2
f(r) = % lim ud (kr)F(we™ du (2.1)

u
c>0
where L denotes the imaginary axis of the complex u plane and the parameter c
tends to zero through positive values.

To establish the above result a procedure similar to that followed in Naylor [3]
is adopted. The expression (1.2) for F(u) 1is inserted into the integral present on
the right hand side of equation (2.1) and the order of integration is reversed. This
procedure leads to the equation

(

u

f cu2 [ do 1) cu2
LJ uJu(kr)F(u)e du = J f(D)IT uJu(kr)H (kp)e du (2.2)

a
In order to justify the inversion of the order of integration it is sufficient to veri-

fy that the repeated integral on the right hand side of (2.2) is absolutely convergent.
This may be carried out with the aid of the following inequalities, which are estab-

lished in section 4 of this paper,
. ™
lJis(kr)l < Io(kzr)exp(ilsl sB) (2.3)

where argk = B 1is chosen in the interval (O, g) , and
)

2 1
s (k)| = Tk (k Ddexplysm) (2.4)
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It follows from these bounds, which hold on the imaginary axis where u = is and s

is real, that the repeated integral in question does not exceed the quantity

2 ® 2 S
=1 (k,r) Lo exp[s(r-8) - cs°] sds Ja 0 lf(o)IKo(kzo)dp
This expression is finite since Ko(kzp) = 0[0_%exp(-kzo)] as p > » , This estab-
lishes the truth of (2.2).
Next it will be demonstrated that
A 2
lL u[Ju(kr)Hil)(ko) - Ju(ko)Hil)(kr)]ecu du = 0 (2.5)

This result is true because the integrand is an odd function of u , a result which is
easily verified with the aid of the identity

160 = —L (1 0 - e (0] (2.6)
u 1 s1inum -u u

from which it follows that
¢D)

u

(1)(kr) S —

J (kr)H —
u u 1s81in um

(kp)-J (kp)H [J (kr)J (kp)-J (kp)J (kr)] (2.7)
u u -u u -u

This expression is an even function of u , since it is evident that the cross product
of Bessel functions on the right hand side of (2.7) is an odd function of u , so that

(2.5) follows. Hence

u u

2 2
L uJu(kr)H(l)(kD)ecu du = L uJu(ko)H(l)(kr)ecu du (2.8)

If the domain of the p-integration occurring in the integral on the right hand side of
(2.2) is separated into the parts p 2r and o £ r , and the relation (2.8) applied

to transform the contribution from the second such part we find that

r cu2 r f (1) cu2
lL uJ (kr)F(u)e = du =J o f(p)do JL uJ (kp)H "’ (kr)e  du
u a u u
e _ f 2
+ J I 1f(o)dp L, uJu(kr)Hil)(kP)ecu du (2.9)
r

The Bessel functions present in (2.9) are now eliminated in favour of the function

g(u,r,p) defined by the equation

g(u,r,p) = uJ (kr)H(l)(kp) - —.L-(r/o)u (2.10)
u u im
This leads to the equation
f cu2 1 [T a1 f u cu2
JL uJu(kr)F(u)e du = p “f(p)de JL (p/r) e du
a
1 (7 -1 f u cu2
+—= 1 6 f(o)doJL (r/p) e " du+ I, +1 (2.11)
im . 1 2
where
[t -1 f cu2
I =J P f(p)dplL g(u,0,r)e = du (2.12)
a
® -1 f cu2
12 = o f(p)do LJ g(u,r,p)e du (2.13)
T

The two L-integrals present on the right hand side of (2.11) are equal to one another,

as is evident upon changing the variable of integration from u to -u . The cor-
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responding repeated integrals may therefore be combined to yield the equation

2 o 2
f ul (kr)F(we®™ du = .Lf 0" e (o) do L (/)% du + I, + 1
u im 1 2
L a
- g -
=L r Ye® du ol 1f(p)do + I +1 (2.14)
T A 1 2

after a further change in the order of integration, which is again possible since

u = is on the path L so that the modulus of the integrand is

O_l|f(o)|e_cs which is integrable for any ¢ > 0 . The integral now present on the

right hand side of (2.14) reduces when ¢ =0 to 2inf(r) by the Mellin inversion

theorem, Titchmarsh [4, p. 46], and it is uniformly convergent for ¢ = 0O . Hence,
on letting c - 0 1in (2.14), we find the equation
2
lim L wl (ko)F(we™ du = 2£(r) + lim (I, + L) (2.15)
c>0 u c>0

It will now be verified that the quantities I1 and I2 each tend to zero as

¢ >0 . To do this the contour integrals appearing in the formulas (2.12), (2.13)

will be transformed by means of Cauchy's theorem, in which the path L is deformed
onto the path W , depicted in figure 1. This path consists of the rays argu = #a
where %—< a < %—. In order to carry out this procedure it is first necessary to de-—
termine the behaviour of the function g(u,r,p) when u 1is large and this can be
found from equation (2.10) after substituting the known asymptotic forms for the Bessel
functions. The behaviour of the J-type Bessel function is obtained from the equation

2
/)Y X -2 )
W T TuED [1 - gy 007 (2:16)

which applies whenever u 1is large compared with x and bounded away from the nega-
tive integers. The behaviour of the Hankel functions can be found by inserting (2.16)
into the formula (2.6) which leads to the equation

RCO P [r(u)gz/x)“ | Tium (x/Z)U-J
u 1

m il(u+1)sinun

1+ O(u-l)J (2.17)

It also follows from (2.6) and (2.16) that the function g(u,r,r) defined by (2.10)
possesses the asymptotic formula

-2 2 -1
K- od @/, Cro/w) e

s
glu,rsp) = '[ 4ium iT(WT (u+ Dsinur

(2.18)

H1 + o0 h

The asymptotic behaviour of the I'-functions appearing in these formulas can be ob-

tained from Stirling's formula
I'(u) = (2w/u)£exp(u logu - u)[1l + O(U_l)] (2.19)

which applies as u > = in |argu|] € v - § , and which when substituted into (2.18)
leads to the equation

- 2 2

K22 - 0% (e/0)" | (Koro/4) exp(=2u log u + 2u = jur) -1

- + —— 1+0(u )
4ium 2im sin um

g(u,r,0) = -

(2.20)
This equation applies for sufficiently large values of u bounded away from the

integers and it holds uniformly in any bounded domain of values of o . 1If we set
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u = Re16 in the second term of (2.20) we find the formula

K2 - 0?) @/, 0{(k2rp/4)u

R
- - R —_
4ium sin um exp{~2Rcos § log (e)

g(u,r,p) = -[

+ 2R(6 +7) sin e}}l[l + O(u_l)} (2.21)

With the aid of this expression it is possible to justify the proposed deformation of
the path of integration. Since the Bessel functions are entire functions of the com-
plex variable u the same is true of the function g(u,r,p) . When R 1is large the
dominant term present in the exponential in (2.21) is the logarithmic one, except in
the vicinity of the imaginary axis where 6 is close or equal to %; . However the
modulus of the summability factor is exp(ch cos 260) and cos 26 1is negative in the
region traversed. This factor tends to zero sufficiently rapidly as R =+ ® to permit

the path L to be deformed onto W and this leads to the equation
2 2
L g(u,r,0)e du = L g(u,r,o)eCu du

Now it follows from (2.21) that the function g(u,r,») 1is absolutely integrable on
W for values of p such that p > r so that, on taking the limit of each side of

the preceding equation as ¢ > 0 ,

cu2 [
lim LJ glu,r,p)e du = LJ g(u,r,p)du (2.22)
c>0

The integral appearing on the right hand side of this equation may be evaluated by
closing the contour on the right hand side of W by means of a sequence of circular

arcs of radii |u| =n + L where n - » , and applying Cauchy's theorem. Since

2 ’
-1 . . . . . ..
g = 0[u (r/p)u] the contribution from the circular arc is zero in the limit as

n > » provided that p > r . For such values of p it follows that

2
lim LJ g(u,r,o)eCu du =0 (2.23)
c>0

This result will first be applied to prove that the limiting value of Il as

¢ >0 1is zero. On interchanging r,p in (2.23) we find that

2
lim LJ g(u,p,r)eCu du =0
c>0

<

whenever p < r . Since the convergence is uniform for a < p £ r - ¢ it follows

that
fr-e dp cu2
lim J f(p) — LJ g(u,p,r)e du =0
c»0 ‘a e
To complete the verification that 1lim I1 =0 it remains, in view of the preceding

result and the definition (2.12), to prove that
r dp cu2
lim J f(D)TT' g(u,p,r)e du = 0 (2.24)
c>0 ‘r-¢
Since € 1is arbitrarily small it is sufficient to verify that the L-integral in
(2.24) is bounded uniformly for all relevant values of p and c . This is carried

out by deforming L onto W which is then decomposed into a distant part w1 , on

which the estimate (2.21) applies, together with the remaining (bounded) part w2

This leads to a consideration of the integral
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( cu2
J g(u,p,r)e  du
W

. 1
+ . . .
Since u = Re_lu on Wl it is seen that the contribution to the above integral of

the leading term in the expression (2.21) for g has a modulus that does not exceed

the quantity o

2 2 ¢
- ! - R
- ) J R 1(o/r) €o% o 4R
R

1

Since opo/r < exp[(p/r) - 1] for p £ r the above expression is less than

kz(r2 - 02) r’
4R

R

! 1

_ _1:k2(r+o)

- 4nR1cosa

2k2r2
- szl cos q

e

exp[-(1 -%)R cos a]dR

[}
exp[-(1 r)R1 cos a]

The contribution of the finite part w2 is clearly bounded uniformly for ¢ 2 0 ,
as is that from the remaining term in (2.21) so that (2.24) follows.
To prove that lim 12 = 0 we again deform L onto W and then select £, in
accordance with (4.5) andw r greater than 3 and large enough to ensure that
Jr [£()| %? Iw |g(u,r,0)du| < ¢ (2.25)

o
This choice is possible since o lf(o) e L(a,~») whilst, as the following argument

shows, the W-integral exists. If we appeal to the formulas (2.16) and the bound

(4.3) we find, after using Stirling's formula, that, for p 2 r, and u on W,
1) kT

21 .
u Kt cosa| T TR sin ]

uJ (kr)H
u

(kp) = O[exp{-Rcosa log

Since r is chosen to satisfy (4.5), the above expression is integrable along W .
The remaining term appearing in the definition of g 1is also absolutely integrable
along W since p 2 r > r so that the same is true of g itself. Arguments
identical with those already used in the treatment of I1 show that the contribu-
tions of the remaining intervals (r, r+e¢) and (r+e, ro) vanish in the limit

as ¢ >0 .

3. THE EXPANSION THEOREM.

To obtain the explicit eigenfunction expansion the formula (2.1) will be combined

with the following identity:

(1) 2
uJ (ka)H "’ (kr)F(u)e™ du
1 1im 4( u u
K c>0 ‘L H(l)(ka)
u (1) cu
uJ (ka)H (kr)F(u)e
= =17 lim u u (1) (3.1)
0 u. (3/3wWH (ka)

in which the summation in the series on the right hand side of this equation extends

1)

over all of those zeros u of the function Hu
half plane Re(u) > 0 .

(ka) that are positioned in the
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Before proceeding to establish the above formula it is first necessary to show
u_ of sufficiently large magnitude are confined to the sectors
% and %} -8 < argu < %; , where & 1is a small positive angle.

that the zeros

I.- § < <
5 argun

The zeros of the Hankel function regarded as a function of its order are discussed in
Cochran [5], Keller et al [6], and Magnus & Kotin [7]. It can be shown by a classical
type argument, based on the differential equation satisfied by the Hankel function,
similar to that followed in Naylor [8], where the zeros of the function Ku(x) for

. .. . . 1
fixed positive x are discussed, that the zeros u =t + is of Hu (ka) , where
k = k1 + ik2 , satisfy the relation st 2 azklk2 . Since attention in this paper is

confined to positive values of k1 and k2 it follows that st > 0 and that the

zeros in question are located in the first and third quadrants of the complex u-plane.
iur (1 .

ety Hi )(ka) it

also follows that to each zero u in the first quadrant there corresponds a zero

There are no real and no purely imaginary zeros. Since Hfi)(ka) =

U in the third quadrant of the complex u-plane. Only the zeros of the first quad-
rant are pertinent to the expansion formula developed in this paper.

To establish the location of the large zeros in the stated sectors it is necessary
to estimate their values by means of equation (2.17) in which the I'-functions are
themselves estimated by means of Stirling's formula (2.19). We find, after some re-

duction, that, for Im(u) > O ,

Hil)(ka) = -2eiiﬂ(2/wu)£sinh[u log (2u/kae) + %iﬂ][l + O(u_l)] (3.2)
If we set u = Rei'e , k= peiB where R >0, p >0, and 0 < B < % we find that
Hil)(ka) = —2e£iﬂ(2/nu)&sinh(¢ + iy)[1l + O(R-l)] (3.3)

where
¢ = Rcosp log(2R/pae) - R(p - g)sing (3.4)

m

4

(3.5)

Y = Rsin€ log(2R/pae) + R(® - B)cos 6 +

n

. 16 . .
The large zeros occur at the points un = Rne1 determined by the equations ¢ = 0 ,

Y = nm . On solving these equations we find the approximate solution

_T (r - 28)
b T2 73 log (2R /pa) (3.6)
where "
1
1 = (n -+
Rn og(ZRn/pae) (n 4)n
and n 1is a large positive integer. It is seen from (3.6) that Gn > %» as n and

hence Rn tend to infinity, so that the zeros of sufficiently large modulus are lo-
cated inside some sector % - 8§28 < % where & 1is a small positive angle.
The existence of the integral appearing in (3.1) can be inferred from the follow-

ing asymptotic formulas which hold on the positive imaginary axis, where u = is and

s >0,
Jis(X) = (2ﬂs)_%exp[-islog (2s/xe) + % s - % in][1 + 0(5_1)]
HE;)(X) = (2/ns;£exp[-islog (2s/xe) + % sm - % in][l + O(s-l)]
F(is) = O[exp|% sml]
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The above formulas follow from (2.16), (2.17) after utilizing (2.19), whilst the ex-—
pression for F(is) 1is established in section 4 of this paper where it appears as
equation (4.9). The formula giving the behaviour of the Hankel function when s is
large and negative is obtained by making use of the identity Hfii(x) = e_SﬂHEi)(x)
The corresponding formula for Jis(x) for s large and negative is given by the
equation

J-is(x) = (Zﬁs)-%exp[islog (2s/xe) + %ﬂs + % ir][l + O(S_I)]

which applies for s » +« .

On combining these expressions it is found that the integrand occurring in (3.1)
is O[S%exp(—cs2 - |ms] + sB)] as |s| » » so that the integral is convergent pro-
vided that ¢ > 0 .

To prove (3.1) the path of integration L 1is first deformed onto the path wo
illustrated in figure 2. This path consists of (i) the segment of the line Re(u) =1
intercepted between the rays argu = *o and (ii) the parts of these rays that lie to
the right of this line. The quantity A 1is chosen large enough to ensure that all of
the zeros u, lie to the left of Wo , and the angle % 1is defined as in 32 to lie in
the interval (%, %)

To justify the proposed deformation the paths L and wo are connected by a
sequence of curves Cn which recede to infinity and which avoid the zeros u - Since
these zeros lie on the curve for which ¥ = nm we may choose the curve Cn to be

= =2

. . ™ ™ . . .
that whose polar equation in the sector E-— § €< 9 £+ 1s given by the equation
Yy = (n + %)ﬂ and which is continued beyond this sector by means of a circular arc of

suitable radius P to meet the ray argu = o . The part of Cn located in the sec-
il . . .
tor —§~§ 6 < -a may also be taken to be an arc of a circle of radius S To esti-

mate the behaviour of the Hankel functions on the paths Cn we replace a by r in

(3.2) which, in view of the definitions of ¢ and V¥ , leads to the equations
Hil)(kr) = -2e£1ﬂ(2/ﬂu)£sinh[¢ + iy + ulog (a/r)][1 + O(u-l)]

On the parts of Cn lying inside the sector where ¢ = (n + %)n the above equation
reduces to

Hil)(kr) = -Ziei

iTr(2/nu)£cosmrcosh[¢ + ulog (a/r)]1[1 + O(U-l)]
so that
Hil)(ka) = —Zieiiﬂ(2/nu)£cosrwrcosh¢[l + O(U-l)]

and therefore

D]
Hu (kr) N cosh[¢ + ulog (a/r)]
Hil)(ka) cosh ¢

. cosh[$ + Rcos 6 log(a/r)]
cosh ¢

< cosh[Rcos 6 log(a/r)] + tanhd)sinh[Rcosiilog(%)]
< exp[Rcos 6 log(r/a)l (3.7)

The behaviour of the Hankel function outside the sector %-- § 0 £ =~ 1s obtained

2
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from (2.17) and (2.19). This leads to the equation
-ium - 2ulog(2u/ker) -1
J[l + 0(u )\‘

2 sinum

B (o) = LW (2/kr)u[1 - e
u im
Since |sinurm|~ % exp|mR sin 8| whenever [Imu| is large it follows that, on Cn s

u
Hil)(kr) = Eéﬁl (é%) [1+ O(exp{—ZRcoselog|§§%[ + Rsin®(w+26 - 2B) - |nRsinB|})]

The O-term in this formula tends to zero as R » » for all values of 6 in the rele-
. -7 . . .
vant intervals > £ 6s-a and a = 6 = - 6 , the dominant term in the exponential

being the logarithmic one. Therefore

1
Hi KOS N

W—)— f\,(r) (3.8)
for large u 1in the sectors %; < argu £ -0 and a £ argu < % - 8 . This formula
also applies in the larger interval %; < argu £ % - § provided that u 1is bounded
away from the large zeros of sinum . We can ensure this by choosing Re(u) = n + %
whenever u is in the sector -8 S argu £ § so that |sinum| = cosh|nRsin6| therein.

With this restriction we see that (3.8) holds for large u throughout the sector
- m

—z-éarguga-g
On combining (2.16) and (4.8) with (3.7) or (3.8), as the case may be, we find
that
w3 (i) Ger)F o) L 0 2e )" etSTr (6) (er fiyr )"
1 (ka) U O[F(U)F(u+l)sinun [ D J (3.9)

—_ - < < —
fOl’z (S=9_2, and

uJu(ka)H%%kr)F(u) au [ un(k2a2r1/4r)u‘ [eiSﬂF(t)(kazlkzrrl)u]
= 0[ (= 0
H(lyika) [(r) 1+0 T(u)T{utl)sinum | T'(u)
u (3.10)
for %; <6 = % - 8§ . The quantity r, appearing in the above formulas is chosen

in accordance with the inequality (4.5). Since the function TI(t) 1is unbounded as
t>0, i.e. as 6 - :% the formulas (3.9), (3.10) cannot be applied inthis vicinity

where however we may use the simpler estimate

(3.11)

(1)}
uJu(ka)Hu(kr)F(u) {(kr/Z)u ian

e
Hil)(ka) Tu+1)

This bound, which follows from (2.16), (3.7) and (4.9) applies as u - = in the strip
0 < Re(u) £ A . In justifying the deformation of L onto wo , i1t is necessary to
carry out the deformation in two stages, in which the path L 1is first moved onto the
line Re(u) = XA . The bound on the right hand side of (3.11) is 0(e®") as s > +
and 0(1) as s > -~ but the presence of the summability factor, which has modulus
of O[exp(-csz)] in the region traversed, ensures that the integrand in (3.1) tends
to zero as s > *» , provided that ¢ > 0 . The bounds (3.9) and (3.10) may then be

used in justifying the deformation of the path from the line Re(u) = ' onto wo .
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The behaviour of the T'-functions in these bounds is given by Stirling's formula which
shows that

4

[T exp[R cos 6 log (R/e) - RO sinO][1 + O(R—l)] (3.12)

r(t)

(27 /R)

(2W/t)%exp[t log (t/e)1[1 + O(t—l)] (3.13)

An inspection of the above expressions reveals that the presence of the summability
factor, which O[exp(chcos 26)] where cos26 < 0 in the region traversed, ensures
that the integrand in (3.1) tends to zero sufficiently rapidly as the path Cn recedes
to infinity to permit the contour L to be deformed onto wO as described.

On evaluating the residues at the poles of the integrand we find the equation

1) 2 1) 2
uJ (ka)H ’ (kr)F(we " 4qu uJ (ka)H" ’ (kr)F(u)e™ du
J u u - J u u
L H(l)(ka) W H(l)(ka)
u o u

(1) cu?
uJ (ka)H (kr)F(u)e
4 = (3.14)

+ 2im z
(a/au)Hil)(ka)

in which the summation extends over all of the zeros Uy that are positioned in the
half plane Re(u) > 0 .

The final step necessary to establish the validity of (3.1) is to prove that
2
wl (k) () F(w) eV du wl (ka) Y (k) F(w)du
. u u u u
lim { = J ) =0 (3.15)
W %) Hu (ka)

c>0 H(l)(ka)
u

o
With this aim in view, it will first be proved that the integral on the right hand
side of (3.15) is absolutely convergent. This will imply, since |exp(cu2)l <1 on
wo , that the integral on the left hand side of (3.15) is uniformly convergent for
¢ 2 0 so that the value of the limit as ¢ > 0 may be obtained by setting c¢ = 0
in the integrand. The integral on the right hand side of (3.15) can then easily be
shown to be equal to zero by closing the contour on the right hand side of wo and
applying Cauchy's theorem.

To verify these results we first note that the asymptotic form of the integrand
in (3.15) is given immediately by equation (3.10) after substituting the expressions
1

(3.12) and (3.13) for the I'-functions. Since |sinun]|~ 5 exp|Rsin6| as u > =

along any ray u = Re16 for which 6 z 0 we find that

uJ (ka)HG%kr)F(u)
u u

H(l)
u

= O{exp[-Rcos 6 log (r/a)]} + O{exp[-2R cos 6 log (R/e)
(ka)

+ Rcos 6 log |k232r1/4r| + Rsin6(n+20-2¢) - n|Rsin6]|]}

+ O{exp[R cos 6 log Ikazcos 6/k2rr + R(6 +%— B)sin 6 ]}

L
(3.16)
The behaviour of the integrand on W is obtained by setting 6 = %a in the above
expression. Since r > a the first term on the right hand side of the preceding ex-
pression is absolutely integrable on wo . The same conclusion applies to the second

term, the dominant term therein being that involving R1logR . With regard to the
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third O-term in (3.16) we note that, since |8] < % , >0 and r > a , the argument

of the exponential function in this term cannot exceed the quantity

2 .
- Rcos Slog|k2rr1/(ka )| + "Rsin®

A

- Rcos 6 log | kzrllkal + 7R sin 6

A

- Rlcosa |10g|k2rl/ka| - msinal,- o £ 6 S a ,

since log(r/a) > 0 . The expression in parenthesis is positive, since the quantity
) is chosen in accordance with the relation (4.5), so that the third O-term in (3.16)
is integrable on wo .

It remains to prove that the integral present on the right hand side of (3.15)
is equal to zero, and this may be carried out by closing the contour in the sector
-a £ 6 £ o by means of a suitable sequence of curves C; which avoid the zeros of
sinum and which recede to infinity as n > » . We may take C; to be the curve
which comprises the part of the straight line Re(u) =n + % intercepted inside the
sector [argu| < & and which is connected to Wo by means of circular arcs of suit-
able radius. The formulas (3.8), (3.10) can be applied to estimate the magnitude of
the integrand on C; since |sinurm| = cosh(sm) 2 %—explswl in the vicinity of the
zeros whilst [sinurm| o % exp|sm| elsewhere on Cé we see that (3.16) is applicable
so that the integral along these curves tends to zero as n - « . Hence the contour
may be closed in the manner described whereupon it is seen that the integral is equal
to zero since the integrand is analytic in the domain to the right of wo . This
proves (3.15) and on taking the limit of each side of (3.14) as ¢ > 0 we obtain the
equation (3.1) to be proved.

It is now possible to state the main theorem:

THEOREM 2. Let the function f(r) be defined as in Theorem 1, then, if r > a ,

) 2
uJ (ka)H (kr)F(u)e™
u “ (3.17)

f(r) = -im lim D)
>0 u (3/3u)H "7 (ka)
n u
in which the summation extends over all of those zeros vy of Hil)(ka) , regarded
as a function of the order u , that are positioned in the first quadrant of the com-
plex u-plane.

The expansion appearing in the formula (3.17) follows on subtracting (3.1) from

(2.1) which leads to the formula

2
ufJ (kr)H(l)(ka) -J (ka)H(l)(kr)]F(u)eCu du
u u u u

£(r) = % lim f
L

0 1D (ka)
u
2
uJ (ka)H(l)(kr)F(u)eCu
= im lim = = m (3.18)
c>0 u (a/au)Hu (ka)

It is easily verified that the integrand present in the integral on the right hand
of the preceding equation is an odd function of u , so that the value of the integral

taken along the entire imaginary axis is zero. To see this property we appeal to the
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identity Hfi)(kr) = elunﬁil)(kr) which in conjunction with the definition of F(u)

shows that F(-u) = e"""F(u) so that the quotient F(u)/Hil)(ka) is an even function
of u . Since it has already been proved, (2.7), that the cross product of Bessel
functions appearing in (3.18) is an even function of u , it follows that the integrand
in question reduces to an odd function of u . Hence the integral term present in
(3.18) is actually equal to zero, so that this formula reduces to the expansion stated
in the theorem.

4, 1In this section the various bounds needed in the paper are developed. A suitable

bound on the Hankel function can be obtained from the formula, Magnus et al [9, p. 81]

ﬂHil)(Z) = -2i e-%iuTT j eiZCOShw cosh uy dy
0

If we set z = kr = (kli-ikz)r and u =t + is it is found, since |coshuy| = coshty ,

that I
leﬁl)(kr)[ < 2e£sTr J e_erCOShw cosh ty dy (4.1)
0

The integral appearing on the right hand side of this inequality is equal to the Bes-

sel function Kt(kzr) so that,

is

wa G| £ 26Tk (i,0) (4.2)

The formula (2.4) follows from this result by setting u =1is , t = 0 . If we use
the inequalities 2coshy z expy and coshty £ expty in the integral in (4.1) and
then introduce the variable v = expy, we find, if t > 0 , that

rv)vt-ldv

|nHL(ll)(kr)| < 2e18T «(0 exp(-%k2

so that
|ﬂHi1)(kr)| < 2e£snF(t)(2/k2r)t (4.3)

With the aid of this result we may now proceed to deduce a bound on the transform
F(u) . A bound adequate for the present purpose can be obtained by decomposing the

domain of integration into the parts (a,rl), (rl,w) so that

r 00
F(u) = f 1u‘u”<kr)f<r)§§ +f Hfll)(kr)f(r)d—: (4.4)

a r

where !
v, > rlk/i,|THE (4.5)

When u 1is large the integral over the bounded interval (a,rl) can be estimated by
inserting the asymptotic expression (2.17) with x replaced by kr therein. This

leads to the estimate

r r -ium r
1 (1) dr _ T(u) ("1 -u dr _ e 1 U dr
L Hy TR EOT = L Ger/2) "E (3 m[ (ke/ e (%

- e'i““(krl/z)”

A bound on the (rl,GO integral in (4.4) can be deduced from (4.3) which yields the

(4.6)

inequality
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J 1D G e (09 5 2 2o J (eyr/2) ™ (o) | S5
Tl 1

- O[eis“r(t)(kzrl/z)’tl (4.7)

On combining (4.6) and (4.7) it is found that
e M (kr /)"

_ -u 1 tsm -t
F(u) = 0[(ka/2) T(] + OLW:I + 0[e F(t)(kzrl/Z) ] (4.8)

This bound breaks down on the imaginary axis, since t = 0 there. However an alter-
native bound valid in the vicinity of this axis can be obtained by applying the result
(4.2). If we confine attention to some strip 0 £ t £ A , say, and recall that
Kt(er) is an increasing function of t but a decreasing function of r , we see
from (4.2) that,

ism bsm

IA

[mH, (ke) | = 2e Kx(kzr) < 2e Kk(kza)

and therefore that
F(is) = 0[e®"] (4.9)

for 0 2 Re(u) £ A
It remains to establish the inequality (2.3), which can be deduced from the

formula, Magnus et al [9, p. 79], .

Vi F(u+%)Ju(kr) = 2(kr/2)" F cos(kr cos v) (sin )% dy
0

On setting u = is and taking the modulus of each side we find the equation
™

/rlr(is + %)Jis(kr)l < 2¢75" E cosh(k,r cos ¥)dy = we—SBIo(kzt)

by Magnus et al [9]. The formula (2.3) follows from this on setting |F(%4~is)| =
(nsechsn)i e exp(-l%—Sﬂl).
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