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ABSTRACT. A study is made of the Post-Widder inversion operator to a class of gener-
alized functions in the sense of distributional convergence. Necessary and sufficient
conditions are proved for a given function to have the representation as the rth operate
of the Post-Widder inversion operator of generalized functions. Some representation
theorems are also proved. Certain results concerning the testing function space and

its dual are established. A fundamental theorem regarding the existence of the real
inversion operator (1.6) with r = 0 1is proved in section 4. A classical inversion
theory for the Post-Widder inversion operator with a few other theorems which are

fundamental to the representation theory is also developed in this paper.
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1. INTRODUCTION.

Schwartz ([1%}, pp 202-203), Zemanian ([21, pp 235-237; [31, pp 70-71), Cooper [4],
and Benedetto [5] have investigated the necessary and sufficient conditions for a
function to be the Laplace transform of a generalized function. They have used a
complex inversion formula of the Laplace transform. However, these authors except
Schwartz have studied the same or similar problems under different conditions.

Another type of representation theorem known as structural formula has been
treated by Gelfand and Shilov ([6J. pp 110-113), and Treves ([7], pp 273-274). Pandey
[8] has obtained one such structural formula for the Hirschman - Widder convolution
transform which was extended to generalized functions by Zemanian [9].

The Post-Widder inversion operator L, t[f] ({10, pp. 288) is defined by
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1 kk+l [
k,t = k:(t) ‘!)

f(x)

i e *tr(t) dt (1.2)

In the right hand side of (1.1) f does not appear and hence we denote by Lk,t[F]
the Post-Widder inversion operator corresponding to the determining function f of
the Laplace transform F.

Iterates of the Laplace transform are well-known and have been studied by Widder
[10], Boas and Widder [11], Pollard [12] and Akutowicz [13]. Unlike the iterate of
Laplace transform, we define an operate of the Post-Widder inversion operator as an

operation defined by

©

[F] = 5 by (£,v) 5 h (u,t) F(u) du dt (1.3)

Lev MLt
o) [0

so that, for any non-negative integer r, the rth operate o .he Post-Widder inversion

operator may be written as

r+l () _f r
L [F] = g by (0,0 L [F] du, (1.4)
where
r
L, [F] = L L L . .L. [F]
k,u k,ur k"r—l k, -2 k, 1 r # o
(1.5,a,b)
= F(u) r=o
and
_L okl kK
hk(u,t) = k!(t) Jc u . (1.6)

We next define, as in [141-[15], a real inversion operator in the sense of
Rooney [16] by

(8,9 [£+1, () C o i e :
LA Lo elFI] = am) i vaV[l+2x'1] r+l Léfztpgdx, (1.7)
where
r+l _(x) AN r
Lo LF] = é b e L R du, (1.8)
1 -ku
(x) _ = kk+l = k
hk (u,t) = k..(E) et u, (1.9)
and K
—k+v
_ 2kl k (1.10
Adk) T(v+l) )
and Q(a,B)r ] . .
N [x is a Jacobi function of the second kind ([17], p 170), defined by
(a,8) 2% PPV ) T (BvED) -8 _ [wl,a+vsl: -1
Qv [x] = (1+x) 2Fl[;+8+?v+2; 2(1-x) ] (1.11)

F(u+8+2v+2)(x-l?+v+1
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When r = 0, (1.7) reduces to the real inversion operator studied in [14-15]
apart from a factor A(k).
In spite of the above works, almost no attention has been given to the Post-Widder
inversion operator of generalized functions. The main purpose of this paper is to study
necessary and sufficient conditions for a given function to have the representation as
the rth operate of the Post-Widder inversion operator of certain class of generalized
functions. Section 2 deals with the testing function space i}a,b,n and its dual space
t}; b.n’ and the Post-Widder inversion operator of generalized functions. Using a

meéh;d similar to that of Zemanian [2], certain representation theorems are proved.
These results are related to these of Pandey [8] in the sense that every element in
t};,b,n is the linear combination of the finite order distributional derivative of
continuous functions. In Section 3, certain results concerning the testing function
space and its dual space are established. A fundamental theorem regarding the existence
of the real inversion operator (1.7) with r = 0 is proved in Section 4. Then a
classical inversion theory for the Post-Widder inversion operator with a few other
theorems which are fundamental to the representation theory is also developed in this

section. The final section is devoted to a few representation theorems for the Post-

Widder inversion operator of generalized functions.

2. TESTING FUNCTION SPACE

Let 1 denote an open internal on the real line. Let Cm(I) denote the
vector space of all complex valued functions defined on I having continuous
derivatives of all orders < m where m 1is a non-negative integer. Clearly

(1) = ﬂ " (D).
m20
The elements of C (I) are called infinitely smooth functions on I. A testing
function on I is a C  function on I having a compact support on I. The
collection of all testing functions which is denoted by D(I), forms a vector space.
We assign to D(I) the customary topologies that make the dual space D'(I) the
Schwartz space of distributions.
For any two real numbers a and b with o <a <b < «, n and k, non-negative

integers such that n < k, and u, a real variable, we define

2
(/ée)—znexp (-2% + a)u , 0 <u<w®

ka,b, (u) = , (2.1)
(/ie)_znexp (+2—‘1:+1)ub ,—®<uc<0
and
au
e, o<uc<ow®
ka,b,o(u) = (2.2)
bu
e ,—oo<u<o
Clearly, ka b n(u), n=0,1,2,... are Cm functions in - © < u < <, and have the
sV

property
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o= ka,b,n(u) /kc,d,m(u) <1 (2.3)

provided a < c<d<b and m < n.

We define r} to be the space of ¢” functions in - ® < u < ® for which
a,b,n
n _n
= 2.4
a8 =sup |k (Wul D ¢ (u) | (2.4)
=<y <®
is bounded for all u in - » < u < » and tends to zero as n tends to infinity.

Then it is clear that T}a,b, is a linear space wunder the usual definition of
addition and multiplication by a complex number, the zero element being the identically
zero function. The topology in C}h,b,n is generated by the collection of

semi norms {Yn}n:o' Since Yo is a norm, the collection is separating, and thereby

1
making it countably multi normed space. We denote by T}a b.n the dual space of
’ s

T;a,b,n'
The sequence {¢v} < t}a,b,n converges to ¢ in t}a,b,n if for every n,
Yn(¢v-¢) >0 as v > .

In view of (2.4), the sequence

{k, o’ DY ¢ () (2.5)

represents a Cauchy sequence on - @ < u < . Then, by lemma 3.2.1 in [3], i}a b.n is
’ ’
complete and therefore a Fréchet space.

For a <c¢c <d £ b, the inequality

n n
Ik, (u D s = [k (Wu' D o] (2.6)

a,b,n 9d9n

implies

m Ya,b n

':; <
c,d,n

We denote f}

(¢) < Yo d n(d;) from which by lemma 1.6.3 in [3], it follows that

Ja,b,n’

and the spaces of testing functions
a,b,n,u’ i’é,b,n,t ‘ja,b,n,u,t P g

defined over the Euclidean spaces of the variables u,t, and (u,t) respectively.

1 1
Similarly, t‘a,b,n,u’ aja,b,n,t and a,b,n,u,t

functions defined over these Euclidean spaces respectively.

will denote the spaces of generalized

- . k : . !
Let Qt = {t :ac< t < b with o € a <b <} and 1ot F € T}.a,b,n' Then the

Post-Widder inversion operator of generalized functions is defined as an application

of F to the kerrel function

ku
1 kk+tl ~ Tt k
h (u,t) = =, (= .
K < ) e U S bon for every t 1in 2, by the
following equation
L eFF) = SF@w, (o) > (2.7)
feed 1 1
If F(u) 1is a locally integrable function such that S ififiB%iy du is finite,
0 a,b,n

then F(u) generates a regular generalized function, and we write

x - Tu
L 071 = L@ e © ot Fw au . (2.8)

[o]
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3. CERTAIN RESULTS IN TESTING FUNCTION SPACES AND THEIR DUAL SPACES.

We shall prove certain results concerning the testing function spaces Eja b.n
A}

and their dual spaces Aj-a bon’
’ ’

LEMMA 3.1. Let Ot = {t; a<%<b with 0 £ a < b < »} and let

1 k.k+1 k k
hk(u,t) k.(—) exp (- T u) u .

Then, for every n = k and for every t in e hk(u’t)ei}a.b,n°

PROCF. The Leibnitz rule of differentiation yields

n n o0t Lo kkHL o koK
Du hk(u,t) u Du k:(t) P T
k k
_ k \nt+k-p+l - —u -1
Lo Ca (P GO R
where
C (P _ n. k(k-1)(k-2). . . . (k-pt+l) n-p
o,k P e i “2(-1) <
k

Then, if u > o, b > £ and n > k, we see that

n n
lka’b’n(u) u’ D hk(u,t)s

_ ~2n nbu k + + _(k _
<2 ( =+t 2 ‘C ( )I(k n+k-p l ( a)u
p=
nbu k
< -2n( +1) (2“ + 1)2n+l e-(t -a)u

n n
20l (Tu +1) - log(Gu + 1)](E?P-+ 1)e-(% -a)u,

where we have used the following inequality

n

-n
p£0|cn,k(P)| <1, n < k.

2
Clearly, the right hand side is bounded for all u = o, every t in Qt and all
2 k, and tends to zero as n -+ ». Proceeding similarly, it can be shown that the
lemma holds for u < o. This completes the proof of the lemma.

COROLLARY 3.1. hk(u,t)e T; for every t in & .

a,b,n,t t

PROOF. It can be easily verified by induction that

n D: h (u,t) = (-l)n(1+uDu)(2+uDu)(3+uDu). .+ . (a*uD Dh (u,t).
Then
lka’b’n(u)tn DZ b (u,6)] = !ka,b,n(u)(n+uDu)n by (u,0) |
n P
< pzo la (n)||ka’b’n(u)(uDu) By (u,0) |
(u
n a b,n
= pg |a (n) '(u) Hka b,p(u)(UDu)phk(U,t)|.

s
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h =
where ap(n), P 0,1,2,3, . n are the coefficients of the polynomial (n+uDu)n,

and are given by

=0 n-p
ap(n) = Cp n s p < n.

. n-p n n -2(n-
Since n < 2 (n-p) for p <n and 2N(n—p)N e 2(n-p) is bounded by unity for

positive n and N, We see that

k (u)
-(N-n) -(N~-n)
| a (n) _a,b,n ] <% 2 (n-p) p <n
P ka,b,p(u) P
=1 p = n.

Therefore, choosing N = 2n we find that

n _n n
kg p,a(® D By ()] < [k, () (D) b (u,0) | +
-n =1y P
+
2 o Colleq p,p@ (D)7 My (u,e)].

Now in view of lemma 1 in [21], and lemma 3.1, it is clear that each term on
the right hand side is bounded for all u in = @ <u <, all n =2 k and every t
in Qt’ and tends to zero as n - ». This proves the corollary.

COROLLARY 3.2. For any fixed non-negative integer m, (tDt)m hk(u,t) € '3; b.n for
’ ’
each t in Qt'

PROOF. Since hk(u,t) is a Cco function with respect to t and u,

n _n m m n _n
ka,b,n(u)u Du(tDt) hk(u,t) = ka,b,n(u)(tDt) u Dy hk(u,t)

Then,

k
m n n ku, n+k-p+l - -1
ka,b,n(“> (tD)" u Dh, (u,t) = (tDt)m Eu)n ptl o ¥

e
R

Cn,k(p) (
[¢]
_k
k yoqrk-ptl | t

k -1
io Cn’k(p)dn,k9p(q) (Eu) '

u

1
N~ 3

q=o p

d 1)
Since l—ﬂl&ig———| is bounded, we see, as in lemma 3.1, that

| x, b’n(u)unDz (0 )™ by (u,t) |

’

- 0y _ I, _(ku _
A" e Zn[(t +1) log (¢4 +l)](%u +1)q+l e (t a)u

m
<ec I
q=
from which the corollary follows.
LEMMA 3.2. Let ¢ (u) }-a,b,n and let k, , (u) be defined as in (2.1) and (2.2).
o ¢ (u) Dbelongs to .}a,b,n' if {@v}

4 m(u)‘bv(u)} converges to zero

o

Then for a <c <d<b and m<n, k
c,d,

converges to zero in j , the sequence {kc

a,b,n s

function in _}a b.n’
’ ’

PROOF. We write

(U)un_PDS-Pkc (u)

(u)

k
hY a)b)n

p(U) uP DE ¢v(u, ,d,m

k ( " D"k (u) _
a’b’n u C’d)m e ¢V(U) -PEO ka,bs

a,b,p
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For every p, the quantity inside the second brace is bounded, and the quantity inside

the first brace always converges to zero function.

1
Al
LEMMA 3.3. If ¢ st} by and F ¢ 1}'a'b,n’ then F(“)/ka,b,n(“)f ?} a,b,n’
It is a direct consequence of lemma 3.2.
THEOREM 3.1. Let F «¢ ?}é b.n and let szt = {t; a < % < bwith o < a < b < =},

Then the Post-Widder inversion operator

Lk,t[F] = < F(u), hk’(u,t) > (3.1)
is a Coo function, and belongs to hjg,b,n for every t in Qt’ and for every non-
negative integer m

D' L [F] = < F(u), il (u,t) > . (3.2)
t k,t a,m k

t
PROOF. By the hypothesis, (3.1) has sense. For some fixed t in Qt’ consider
[F] -1, _[F]

L
k, t+At k,t 3 B
At - < F(u),at hk(u,t) > = < F(u) wt(u) >, (3.3)

where

hk(u,t+At)"hk(u,t)

- )
b () e 3¢ M (wt) At # o '
‘ (3.4)
= o At = o.
We shall first show that, as At - o, wt(u) converges to zero in '35 b.n' By

arguments similar to those given in ([2], pp. 112), it readily follows that wt(u)

converges uniformly to zero over every finite u interval as At > o. A similar

argument shows that w(m)t(U) converges uniformly to zero over every finite u
interval as At > o.
n _n . .
To prove the above assertion we show that ka b n(u) u Du pt(u) is bounded
’ ’

for all u in =-» < u < ®» and for At in any finite interval in Qt and tends to

zero as n - «. Indeed, rewriting (3.4) as

t+At
T i
wt(u) = it ) Dy hk(u,y) dy D, hk(u,t)
1 t+At y 2
= 5 dy § Dz hk(u,z) dz
t t
we see that
n _n sup | n . n 2 |
kg, p,n @ w7 Dy v s o] p ey K p,n W U Dy Dy My (ua2)

which, in view of the fact that for any non-negative integer N

i K n(“) un+N

n
a,b, D, By (u, )]
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is bounded for each t in Qt and for all u in =-» < u < =, establishes the assertion
as At > o.

Then since F ¢ 2. b.n’ the right hand side of (3.3) is zero and we get
’ ’

Dy L, ([F) = < Fw,

Upon repeated application of this arguments, it is clear that Lk t[F] is Coc function
’
and that (3.2) holds.
Now we shall show that Lk,t[FJ € ;

9
3—t hk(u,t) > .

For this, set

a,b,n,t’
N _ m _m
t(u) ka,b,n(u) t Dt hk(u,t)
m _m
. . £
For each fixed t in Qt, t Dt hk(u,t) belongs to ija,b,n,u and hence for such
fixed t, At(u) belongs to i}a b.ou by lemma 3.2. Since hk(u,t) —3;,b nu.t?
for each non-negative integer r, A (u) satisfies the following inequality
' 2. r (I’)
+ <
| @D A @ | =N,

where the constant Nmr is independent of t and wu. It now follows from lemma 3.3
and from the bounded property of generalised function that there exist a constant C

and a fixed r such that

——— m m
| ka’b,m(l) " D Ly ¢ LF) | a’b’m(l) | { Fw), t D hk(u,t)>|
< < F(u)/ka b m(u)’ ka,b m(u) D" h (u,t) 7 |
s ’ ’ ’ t
2. r (r
s c s | andh" o Pw | <en .

This completes the proof.
COROLLARY 3.3. For any non-negative integer r, the rth operate of the Post-Widder
inversion operator defined by (1.3) and (1.4) is a regular generalised function.

PROOF. By theorem 3.1, the Post-Widder inversion operator
Lk,t[F] = £ F(u), hk(U,t) Ve

is in :;a b,n,t° Since by ([ 21, pp. 104-105), there is one-to-one correspondence

between the testing functions in '; and the regular generalised functions that

a,b,n
are generated by them and can therefore be identified. '} ,b.n —-T}a b,n° Hence
[F] ET} ,b,n as a regular generalised function. Then the first operate of the

Post-W1dder inversion operator

—_ a
Lyt Ly, [F] 4 Ly, o[F D> By (as0) >
A}
has sense and belongs to t;a,b,n,t’ and hence belongs to t;é,b,n as a regulir genera-
lised function. Repeated application of the above arguments suggests that L [F]

k,t

i ’

belongs to t}a b.n 25 2 regular generalised function.
’

4 CLASSICAL INVERSION THEORY. In this section we give a classical inversion theorem for
the Post-Widder inversion operator. Few other theorems which are fundamental to the
representation theory are also proved. First of all these, we establish a fundamental
theorem regarding the existence of the real inversion operator (1.7) with r = o.

We begin this section by defining a class of functions M(o,~) which is wider
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than those in L(o,») for which Widder ([10], pp. 280-283, 317-320) has given inversion
and representation theories for the Laplace transform through the Post-Widder inversion
operator (1.1).

DEFINITION 4.1. A function F 1is said to belong to the class of functions M(o,») if

the following conditions are satisfied
(i) tkl F(t) € L(o,r) for every finite r > o and every kl 03
(ii) t-kZF(t) ¢ L(R,») for every finite R > r and every k2 in o<k2< 1;

(iii) F(t) is bounded for all t in r <t < R.
Clearly, the class of functions L(o,») is a subclass of M(o,=).
THEOREM 4.1. If F(t) € M(o,») then for every kl,kz < k, a positive integer, where
kl >0 and o < k2 < 1, the Post-Widder inversion operator (1l.1) exists for each
t > o. If, in addition, (1) B > o, v > o (2) k-2v-kl—3 > o hold, then for all

m2> k, the real inversion operator defiged by (1.7) with r = 0 exists for each t > 0 and

n,t ’ o
where
= S KoVl Tkxy B+vtan
Hn(x) = V2n (l+y)3+v+2n+l dy -
and o
j Hn(x) dx >0 as n - . (4.3)
o)

PROOF. For some fixed t > o, assume that r > t(l-kl/k) and R 2 t(1+k2/k). Then clearly,

o k
1 kktl p -X2y k
I k!(t) So e t u F(u) du I
k+1 S k . ;
< (¥ kT ck(1-) (g _Lykekg ‘g Gk F) | du
ky k
k+1 k] k .
+ ¢ (17k2) l—lfT— k(A (1+k—2)k+k2 .gu k2 | F(u) | du
+ (R-1) u.b. | F(u) | (4.4)
r <u <R
But for kl,k2 < k, the expressions
k+1 k) k+1 Kk k
- k 'k(l'ﬁ) kl k-i: _ k -k(l+_) 2 k+k
D(k,ky) T k715" and D(k,k,) o kO (1+5) 7 2(4.5)

are bounded and tend to zero as k - «.

Thus, Lk,t[F] exists for each t > o. Then we say that F(t) has Post-Widder
inversion operator or that it is the Post-Widder inversion operator transformable
function

A simple change of variable and the use of (4.4) yield

@ (o0, R+2n)
N . - - - -1
| pé’BtV) Lli’z[F] | = | AGk) é) y Heery VT q Dacesy) L, (F] ay |
1 (o, B+2n)
<My oGk TR a0 VL | g Uivas T as

(o]
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-(1-k,) ¢ —k-k, | (028¥20) 1
+ M, D,k e 7y 50‘ AG) sVK2|q " Ti+2s7MI| ds
(o,f+2n) _

v—k-l| Q [1+2s ~1| ds,
Vv

+ 4, j; A(K) s
where Ml and M2 are the values of the integrals in (4.4) and M3, the value of the

last term in (4.4) and D(k,kl), D(k,kz) are given by (4.5).

In view of (4.5), it is sufficient to show that
- (o, B+2n)
j A(k) sv-k+Ai ! Qv fl+25_1] | ds, i = 1,2,3 (4.6)
exists, where Ai : kl’ -k2, -1 according as i = 1,2,3 respectively.
If (1)-(2) together with n 2 k are satisfied, (4.6) exists provided kl > 0
and o < k2 < 1. Indeed, we observe that if (1) holds, the Euler's representation of

hypergeometric function ([17], p 114) yields
w1, v+l

o < 2¥1 |pt2wt2nt2:|"V < 1 for allvz=zo 4.7
which with (1.11) implies that
(0, f+2n)
Q, [l+2v-l] 2 o0 for all v 2o . (4.8)

Hence, using this with (4.7) we see that if (1)-(2) hold, the integral (4.6) exists
for each t > o and for all n 2= k.
Now to complete the theorem it remains to obtain (4.2) and (4.3). Using (1.9)

we get
ky
t

Ot~ g

- k
ot e F(u) du

© (0 B+2n)
P(B,V) [Li;z[F]] A(k) é % Q {1+2x 1] dx i.(k)k+l

© kk+1 Kk (c,B8,+2n) X
J F(yo) dy 55— AMy (5) x'Q, [1+2x-1) e Y 4x. (4.9)

Evaluating by a known result ([18J, p. 212) the inner integral

k+1
k
—11—>A(k)

(o, B8+2n) _
yk x" Q, [1+2x 7] e kxy dx

o“-—3

|'B+\)+2n+]“ ]
T (1) A(k) E[g+v2n+l” )
2T (k-1)T (B+v+2n+D (ky) B+2v+2n-k+2

provided © + 2v+2n+ 2 >0 and B + v is not an integer, where E[ ] is a MacRobert

function [{19]. Then (4.2) follows when the right hand side of (4.10) with the integral

(4.10)

representation of E function ([19], p. 348), is placed on (4.10) and (4.3) follows
easily from (4.2).
To complete the proof, we must justify the change in the order of integration per-

formed in (4.9). For this, we show that the following iterated integrals exist.

k+1 r +2 _ B

%T" § ‘F(yt)‘ dy A(k) S (o # rn) Ly o 7kky gy, (4.11)
* o

k+l © (o0,8+2n) _q —kxy

c— 3 v PGy | dy A j x'q  [l¥2x Tle T dx, (4.12)
. R

k+1 R @ (0,8+2n) 1 _kxy

E—,— § v [Fyo) | dy AR (x"q, [¥= le dx. (4.13)
. T

~
[¢]
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Using the relation e ? < z_M for every positive M, we see that(as in the proof
of (4.6)) if (1)-(2) together with n > k are satisfied and if k-M > o, (4.11) exists.
Similarly, (4.12) exists if we choose M such that M >k and o < M-k <1 and
(4.13) exists if M = k.

LEMMA 4.1. If F(t) eM(o,») and if k,-k, > o with k1 >0 and o < k

I

1, then the

1 2 2
function
€2
G(x) = 5 !F(xt) - F(t)] dt, ¢1s¢y real and o < < < Cyo (4.14)
€1
satisfies the following order properties
O(x_k1~1} X > o0
G(x) = 0(1) r <x <R
o(xkl) X > ©

PROOF: For every finite r and R such that o < r < R, we set
L Y
tx,) = { |F(D)] de and c(R,y) = g |F(t)| dt
X

Then, for all positive k, and k, such that k, > o and o <k, <1

1 2 ;1 2

t(x,r) < x K1 § ¢kl |F(t)| at

X

and
ky y ~-ko

c(R,y) <y 5 t 2|F(t)| dt.

R

Since

6 = § [Fxt) - F(o)| ae

[e]

(14x 1) §IF@] ac,

it is sufficient to replace the last integral by the following limits

1lim

o BT + () + (R,x ]

and

lim -1
He Ll + cm) + c®yx)]

from which the first and third properties follow provided kl-kz > 0.

The second property is obvious from (4.14).
LEMMA 4.2. If G(x) = O(Xkl) as x - » for every kl > o and if the condition (1) of
theorem 4.1 with v -k; > o holds, then for all n 2 k and for some n > o
lim ( H (x) G(x) dx = o,
n> ) n
1+n

where Hn(x) and G(x) are given by (4.2) and (4.14) respectively.

1 k
PROOF. Let y(y) = Ty and g(y) = log _i-YF—y— - _ix

N 2
1f hx ™ x + (x +

4nx

1
k)ﬂ] , it can readily verified that

g'(hx) = o and g"(hx) <o
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If the condition (1) of Theorem 4.1 1is satisfied, we may apply theorem 2b ([10], pp.
278) to the function Hn(x) to get

k
h - _ﬂ}S hx Lﬁ
X e =T
LRGN s e v | ol e (4.15)
X X
Therefore, . L
C .k k-v-1 e o [vho |
§ H GO 6t dx s GO § x = , 600 dx.
1+n 1+n x (-g" (hyg))
If n > k, we observe that the function
_kxy
k/n h n ¥
X X
1+h
X
is strictly decreasing for x > 1. Indeed,
hxI hx
R P I A S = 1 (1 - rh )}
dx | “1#m_ € = T+n. ¢ x h (I+h ) ~ n nx x
X X X X

where the expression inside the first brace is always zero and that in the second brace
is negative for all x > 1,
Since

[ (hy) |
———7 >0 as x>,
(-g"(h ))?

given as € > o there exists a X such that for all x 2 x > 1

[v(hy) |
*——“—;— < €.
(-g"(h ))7?

Therefore, writing X for 1+n, we have, if v -k, > o,
1,

k n 2
® 1 x m hy _ X0 hy -v-1
SIn oot ax < eGD? [e w7 e[ § oG x dx

1#n 1+ Xo 1+n

which tends to zero as n > «©, This completes the proof.

LEMMA 4.3, If G(x) = o(x_kl_l) as x - o+ for every k1 > o0 and if (1) and (2) of
theorem 4.1 are satisfied, then
1-n
%ig 5 Hn(x) dx = o.
h, o _kxp, °
PROOF. Since o < 1 e n <1 for all x 2 o, we have by the ineguqlity (4.15)
X
n
1-n hy kY 1-n  |w(hy)|
—_— - — h -
G Golot ax < (2T SUP [l+h e m "] — 7V leax.
3 n 2n o<x<1l X ° (_ u(h )\%
|9 (hye) | 8

-1
%) as x > o+, the right hand side of the above

By the estimation = o(x

(-g" (hx)’s
inequality tends to zeio as n = » provided the condition (2) holds.

THEOREM 4.2. Let F(t) ¢ M(o,») with r,R,k; and k, as defined in definition 4.1,
If the conditions (1) and (2) of theorem 4.1 together with v-k > o, kl—k2>o and

B8 + v is not an integer hold, then for all n 2 k.
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lim (B8, (.) -
. Pn,t Lk,t [F] F(t)
for almost all t > o.

PROOF. 1If conditions (1) and (2) of theorem 4.1 together with kl > o and

o <k, <1 are satisfied, by the same theorem the real inversion operator (1.7) with

2
r = o exists for each t > o. By (4.3), there exists a positive integer n, such that

g

Hn(x) dx <1 for all n 2n_.

o
(B,Vv) ? )
Then, assuming P Lk't[F] and F(t) have the same sign at least in the interval
o<, <t <c, 3
(B.v) _(.) - _
|Pn’t Lk’t[F]| [F(e) || <§ B (x) |F(xt) - F(t)| dx.
Therefore,
fz B, )
[P(n’t) Lt [(F] - F(t) | dt
c
1 - c
< j H (x) dx 52 |F(xt) - F(t)| dt
n
o ¢y

oo

j‘ Hn(x) G(x) dx
o

3 b
= ( S + S + S ) H (x) 6(x) dx .
o r R

If r <1 and R >1, from lemma 4.2 and lemma 4.3 it follows that the first and third
integrals tend to zero as n - ., By the second conclusion of lemma 4.1 and by (4.3),
the second integral tends to zero as n » ©. This completes the theorem.

Moreover, the uniqueness of the real inversion operator (1.7) with r = o is
implicit in theorem 4.2. In other words, we have:
THEOREM 4.3. If the conditions stated in theorem 4.2 hold, if both F(t) and G(t)
belong to M(o, oo) and if their respective real inversion operators (B vy LLk v rFij
and P(B’v) LL [G].]are equal, then F(t) = G(t) for almost all t > 0.
PROOF. For all those values of t for which the theorem 4.2 hold

F(e) = M éBtV)t G gpy] = i p L0 )] = 6oy

Other results that we shall need subsequently are given by the following theorems
which are fundamental to the representation theory that will be established in the
next section.
THEOREM 4.4, Let F(t)€ M(o,») and let k, > o and o< k, < 1. Then for all

1 2

kl’k < k, the first operate of the Post-Widder inversion operator

L, L [F] = j h (u,6) L [F1du (4.16)
. ) ,

exists for each t > o, where hk(u,t) is given by (1.5.). If. in addition, conditions

(1) and (2) of theorem 4.1 are satisfied, then for all n 2 k the real inversion operator
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(8,v) () ) Fov (osBk2m) ) oy
P Ll L [F) = AG) .L < g [k TNoLY L [Flax (4.17)
exists for each t > o, where LéxiLk [F] is defined by (1.9) with r = 1, and
¢ @, [, ) ] NGO RIS . ]
é LCHON N [Lk’u[F] du = P VLo IPD) . (4.18)

PROOF. It is a simple calculation to show that Lk’t[F] belongs to M(o,»). Then by
theorem 4.1, the first operate of the Post-Widder inversion operator defined by (4.16)
exists for each t > o and by the same theorem, the real inversion operator defined
by (4.17) exists for each t > o.

By formal change of order of integration twice we have
(0,B+2n)

j hy (0, ) Pi?;v)['Lﬁ:l[F]]du
Vo r

( -1, (),
g hk (u,t) du A(k) {)v QvL 1+2v 7] Lk,uLF] dv

"

©

i (0, 8+2n)
_ v-k-1 -1 _
= g hk(u,t) du A(k) ‘L v Qv [ 1+2v 7] Lk,uv 1[F] dv,
k+1 _ (v) 4 ]
['v Lk,u [F] = Lk,uv—l[F]
o % v-k (g8+2n) _ -1
= { hk(u,t) du A(k) % (us) Qv[l+2(us) ] s Lk,s_l[F] ds
(v = us)
F; @ (o, B+2n)
- £ s1 Ly -1F) ds A { (us) 7K QV[1+2(us)"1Jhk(“s)(s‘l,t) du,
-k _ (us) , -1
[ (us) hk(u,t) = hk (s 7,t)]
I 3 (0, B+2n) _
= R arlasaco § 0ol B e eThe
o ? o
(us = x)
(0, B+2n) %
~ v (o -1 (x), -1 -2 -1
= A(k)_g X Qv [ 1+2x ~1dx £ hk (s ",t) s Lk,s [F] ds
(o, B+2n)
_ . v ’ ~1 (x
= Ak) i x Qv[ 1+2x ~ 7 dx g hk }y,t) Lk’y[F] dy,
st =y
(o, B+2n)
= A(k) § x° Q[ 1+2x 7] Léfi Lk,.[F] dx.

o]

Thus we have established (4.18). Now it remains to justify the change in the order of
integration performed above. The second change of order of integration follows since

(4.17) exists. For the first change of order of integration, we note that
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ﬂt—’ﬁ
fun)
]
1
B
[
U
[\V]
[}
[e] YR
x

L, ¢~ lF1ds L [Flds
?_1 -2 R
s © L -1[Flds = {L [F] ds
-1 k,s k,
r
-1

f s2 L [Flds .
R

R
’ k-2 -
-1LF
S) s 2 Lk,Sl ]ds K, s

By the fact that Lk s[F] € M(o,»), the function s-2 Lk S—l[F] M(o,»). Hence the
’ ’

proof of the theorem will be complete if we show that the following iterated integrals

exist
= Ly o~10F) ds A(k)gg v (0s8¥20)) L (x) a1
i ] Q[ 1+2x “1s 2 n *(s7,t) dx
(o] v k
r B (o,R+2n) _
S s 2 Lk -1{F] ds A(k) \g X Q [ 1+2x l éx)(s 1,:) dx
-1
- (0,B8+2n) _
J( s k72 L, -10F] ds ( AG) x Q[ 1+2x 17 hlix)(s Loy ax. (4.21)
(o) 0

If conditions (1) and (2) of theorem 4.1 together with n 2 k are satisfied,
(4.19), (4.20) and (4.21) exists for each t > o in the same way as the integrals
(4.11), (4.12) and (4.13) exist for each t > o if N = k+k2, k and k—kl respectively.
THEOREM 4.5. 1If the hypothesis of theorem 4.2 are satisfied, then

- (B wroG) - -
lim i hk(u t) P LLk,u LF]J du = Lk’t[F].
n->x [¢]

PROOF. By Theorem 4.4, L. [Fle M(o,®) and L L, [F] exists for each t > o.
k,t k,t k,.

Then by the same theorem

g: by (0, ) Pf;”[ka;)[Fﬂ aw o= 2 m]

By Theorem 4.2
lim (s,v)[ ), }
o hk(u;t) Pn’u Lk.,u IF] du

n->o
lim _(B,V) (.) “-] _
o Pn’t Lk,t Lk"[tJ =

for almost all t > o.

5. REPRESENTATION THEOREMS. In this section we obtain the necessary and sufficient
conditions for the representation of a given function as the rth operate of the Post-
Widder inversion operator of certain class of generalised functions. For this purpose,

we first obtain the necessary and sufficient conditions for a given function to be the
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Post-Widder inversion operator of a class of generalised functions from which the

general case easily follows.

THEOREM 5.1. Let Qt ={t, ac< % < b with o< a <b < =} and let the conditions (1)

and (2) of theorem 4.1 together with kl-k2

integer be satisfied.
inversion operator Lk t[F] with F € M(o,») to have the representation as

L ([F1 =< FQw), b (u,0) )
of some regular generalized functions is that it should be bounded for every t in
Qt.
PROOF. By the boundedness property of generalised functions, there exist a constant

and a positive integer n, such that

> o,v—k1> o, n2kand B+ v is not an

Then the necessary and sufficient conditions for the Post-Widder

C

L ([F) = {F@), hy (u,0))
sup max
SC Ly <o 0<n <0 Ya,ba (hk(u,t))’
where Ya,b,n(') is defined by (2.4).
By lemma 3.1
sup max _,._ Dbu _(k
Lk,t[F:| < C—w< u<» o< < n0 e 2n( k +1)(%u+l) e (t a)u
< sup max -2n[ By + 1)—1og(2u + 1)) .n _(E -a)u
~@<u<® osn<n t t Gu+ De 't

from which the necessary part follows.

Sufficiency. To establish the sufficient part we assume that L t[F] is bounded for
’

each t in Q . Then we show that there exists a generalized function F such that

t

Lk,t[F] =< F(u), hk(u,t)> .
We further assume that F is a regular generalised function so that

Lk,t[F] = \i hk(u,t) F(u) du.

By Theorem 4,2.
_ lim  _(B,V)[. (*)
F(t) noe Pnt [}k’t[F]] .

T
Now to complete the theorem we must show that the real inversion operator

B,y . () .
Pn,E \-Lk,t [FW] is bounded and continuous for all n 2 k and every t > o, Then

follows that F(t) is bounded and continuous for every t > o,

Let OQ y and wa be the sets of y > o satisfying y < % and y 2 E. Then
(8,v) «
) sup -1 sk (0f+2n)
' A _ . v -1
n, Ik,t[F] yely ILk’y[F] o A(k)y “(t/y) Q, [(1+2(t/y) 71 dy
* (o,B+2n)
-1 v-k ’ -1
+ \S Ak) y = (t/y) 0 [1+2(t
ooy y %, (t/y) ]Lk’y[F] dy
(o, B+2n)
-1 - ’ -
+ g A(k) y (t/y)v k 0y, [1+2(t/y) 1] L y[FJ dy.
bl

Ny

it

(5.1)
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We observe that if conditions (1) and (2) of Theorem 4.1 together with kl > o and
o < k2 < 1 are satisfied,
(0, B+2n)
A e/ M o T 2(e/ TN 2 0 as y o e
(5.2
(0,B+2n)
A (e/n) M (/T 0 as y oo

for all n = k.

Then by the fact that
and all n 2 k.

each t > o

4.1 hold the first integral exists for each t > o

L t[F] € M(o,»), the second and third integrals exist for
’
Furthermore, if the conditions (1) and (2) of Theorem

and all n 2 k.

To prove the continuity, we assume that a < %f; < %? <b for some h > o so
that Lk,(t+h)x_1[FJ and Lk’tx—lfF] are Eounded. wi denote by @ the set of x
satisfying the above inequality and by on’ and —wﬂx' the sets of x > o such that
x < éifth) and * respectively. Then
(B,v) ( . ] (8 V)
an,:+h Ly eenl P14 2y (_L [r]]
© (o 8+2n)
v ’ (x) (x)
< A(K) 5; QD2 h) L LanlFl - 1] e
. (o,B+2n)
_ v-k-1 ’ =14,
= A(k)_(; X Q, [1+2x ]luk,(H_h)x—l[F] - Lk,tx l[F]’ dx
o (0, B+2n)
sup ( v-k-1_7? -1
|Lk,(t+h)x_l[F] - Lk,tx-ltF]LO A(K) x q, [1+2x7"1 dx
; \ (0,8+2n) _
+\§ - f,xv Q, [m+2x™ 1)1, . [F]) - (") (Fl] dx
Q Q
o x %
= I+ (IZ+I3).
Obviously, Il tends to zero as h »> o since the integral exists by virtue of (4.6)

with A, = -1
i

similarly follows.

for all 1.

We only show that I tends to zero as h > o since I

2 3
For this, we consider

{ _ _kxuh
t(t+h)
I (X) [ (x) ! sup | e (x)
F]l - L (Fl1! < wil - h' "7 (u,t+h) [F(u) | du
k t+h k,t o<u< (t/(t+h))k+l k
kxuh
{ " t(t+h)
2 [ I AL [CF1].
osu<e (t/(t+h))k+1J k t+h
Then clearly, using (4.8), we have
\ kxuh =i ( g+2 )
! t (t+h) : o 0,B+2n
I, £ sup sup 1 e i (v (142 (x)
S A Uiy YOS R 4 ST SR
xeoflX o<u< L (t/(t+h))k+1 J 4

387
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_ kxuh
sup sup |, e t(t+h) P(B,V) L(’) I[F]l]
= P . JE +
xeoflx o<u< (t/(t+h))k+l n,t+h | "k,t+h

which tends to zero as h =+ o since P(S’v) L(') I[F]I[ exists for each t > o by

n,t+h |k, t+h
Theorem 4.1. This completes the proof of the theorem.

DEFINITION 5.1. Denote by M(o,») the class of functions F satisfying the first two
conditions of definition 4.1.

DEFINITION 5.2. A function F(t) belongs to the class of functions M¥*(o,®) if it
belongs to ﬁ(o,m) and if for some negative real number A such that

—kl—l < A < kz—l with k1 >0 and o < kz < 1 and for some constant C it satisfies

|F(t)] < et for every t in Q (5.3)

e’
where Qt is defined in Theorem 5.1.
Clearly, the class M(o,») is a subclass of M*(o,*).
A more general result is contained in the following theorem. The proof is based
on the fact that every generalized function is of finite order distributional derivative
of continuous function.
THEOREM 5.2. Let Qt be defined as in Theorem 5.1 and let the conditions (1)-(2) of

Theorem 4.1 together with kl—kz >0, v -k, >0, n > k(%)% and B + v is not an integer be

1
satisfied. Then a necessary and sufficient condition for a function Lk t[F] to have the
’

representation as the Post-Widder inversion operator
L [F1 = < F(uw), hy (u,t) >

of certain class of generalized functions is that it has derivatives of all orders and

satisfies

|Lk t[F]I < P(t_l) for every t in ., (5.4)

where P(t—l) is a polynomial in -

PROOF. Let F ¢ \Va b.n® Then the first part of the necessity follows from Theorem 3.1
b4 ’ ’

L
and the second part follows as in Theorem 5.1 except that we have to use n > k(%? .
For the sufficiency we need the following lemmas.

LEMMA 5.1. Let [F] ¢ M*(o,*). Then the first operate of the Post-Widder inversion

Lt
operator defined by

L el [P =SO by (0,01, [F) du (5.5)

exists for each t > o and belongs to M*(o,®) for some fixed k > kl,k2> o.

PROOF. By Theorem,4.1, [F] exists for each t > o and has Post-Widder inversion

L
k,t
operator. That is, the first operate of the Post-Widder inversion operator exists for

each t > o and for all k > kl,k2 with kl >0 and o < k2 < 1. Now with the same

a of definition of Qt, we have
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ILk,t Lk’.[F]I < _i-uhk(u,t) uA du + -S{ hk(u,t) Lk,u[F] du

® u

+ ,é hk(u,t) Lk,u[F] du

o*“u

<cth+ ‘% hk(u,t,k1 ukl L u[F] du
b

@ u

+ S hy (u,t,k,) w®2 L [F] du

2 k,u
o u .
A, k-1 j kg
<Ct +t D(k,kl) ) u Lk,u[F] du
o u
k-1 e * D(k,kp) { —x
+ ¢kl e Dlkky) | -k2 L [F] du, (5.6)
1 a, k+k o8 s U
(E'— i) 2 u

where D(k,kl) and D(k,k,) are given by given by (4.5) and hk(u,t,kl) and hk(u,t,kz)
are respectively defined by

k+1 '
k k-1 - k-k
hk(u,t,kl) =X t et u 1
and
k+1 -k
hk(u,t,kz) = -k—k-r— t k-1 P uk+k2

with their obvious properties

{ k1 h (u,t,k) de = i k1 h (u,t,k;))  du
(o] o

(5.7)
© —kz ~ L —kz
S t hk(u,t,kz) dt = f t hk(u,t,kz) du
o o
where the integrals are bounded for some fixed k > kl,k2 > o and tend to unity as
k > =,
If t e Qt' -kl—l <A <o and k > kl,k2 > o fixed, then from the fact that

th[F] € M*(o,~) it readily follows that the first operate of the Post-Widder inversion
oéerator satisfies (5.3). If a = o, mQu becomes a null set and (5.5) still satisfies
(5.3).

Using (5.6) and (5.7) it is easy to show that Lk,t Lk,.[F] belongs to M(o,)
if —kl-l < A< kz-l for all k > kl’kZ > o fixed.

Then the lemma follows.
LEMMA 5.2. If in addition to the hypothesis of Lemma 5.1, conditions (1)-(2) of Theorem
4.1 together with n > k are satisfied, then the real inversion operator

(B,v .
| ) Lé Z[F] defined by (1.7) with r = o exists for each t > o and belongs to
Ly ’

M*(o0,),

PROOF. If conditions (1)-(2) of Theorem 4.1 together with kl >0 and o < k2 <1 are

satisfied, then using (5.2) and the fact that L t[F] € M*(o,»), we see that the real
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nversion operator iBtv) L ()[F] exists for each t > o and afl n > k. To show

that it also satisfies (5. 3), in view of (5.1) we need only show that the third integral
in (5.1) is majorised by a constant multiple of t k- 1.
If a = o, the assertion is obvious from (5.1). Let a # o. We observe that for

any p >0 and t € Qt’ the function (ty)'i/(y+t)p is decreasing for all y > t.

Hence
S (o0,R+2n)

J AW y e ™ o s e/ L, (FI] gy
k. p/2
()P (0,B+2n)
<2 5‘ At y N/ ¥ g [1+2(t/y)-l](1-i—t-)p L, [F] dy
(E )p eoQ y k’y
a-t y
ek2Lkeyp/2 vokele t1op/a (228420
s TE e AGK) (t/y)” P, [1+2(t/y)” J(1+—)Py 2L, dy.
a-t wa

The quantity inside the first brace is bounded for all y 2 E- and t in Qt provided
B+2n-p > o, n > k and n+l-p/2 > o. Now the assertion follows by taking p = 2(k1+k2).
Again, if conditions (1)-(2) of Theorem 4.1 with kl >0 and o < k2 < 1 are satisfied,
then using (4.6) it readily follows by straightforward manipulations that the real
inversion operator Pé?;v) LL{T& [F]] belongs to M*(o,») provided A < kz—l.
This completes the proof of the lemma.

We next turn to the sufficiency part.

Sufficiency. Consider a function Gy t[g] defined by
b

)

t[g] = g hk(u,t) g(u) du with g € M*(o,») (5.8)

which has derivatives of all orders and satisfies (5.3). Then, If conditions (1)-(2)

of Theorem 4.1 with k. > o and o <k, <1 are satisfied, the real inversion operator

1 2
defined by
(o, B+2n)
éBt\’)[c(:)[g]J A(k)j x” Q [142x Jc(x)[] dx (5.9)

exists for each t > o and all n 2 k. If in addition v—kl > o,kl—k2 >0 and B + v
is not an integer, then as in Theorem 5.1, g(t) is continuous and bounded for each
t > o.

By Lemma 5.2, the real inversion operator defined by (5.9) satisfies (5.3), and
hence belongs to M*(o,»). Then by Theorem 4.1, it has Post-Widder inversion operator.
We have yet to verify that this Post-Widder inversion operator is Gk,t[gl'

k,t k,.
exists for each t > o and belongs to M*(o,~). Then by Lemma 5.2, the real inversion

operator (B v)l_G G

By Lemma 5.1, the first operate of G, t[g] on itself, that is, G G, [gl
’

x [g]] exists for each t > o and belongs to M#*(o,»).
-

Moreover, by Theorem 4 4
(h(u:)p(B")L [J] au = p(E:V) ()ck [g]J.

4
A »t Gkt
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Finally, the use of Theorem 4.5 and the uniqueness Theorem 4.3 show that the Post-Widder
inversion operator of Pésév)[;cé'i [g]]is G t[g] for almost all t > o and all

’ ’ ’
n 2np some ng > k > kl,k2 > o. This verifies the assertion made above.

A
Now, by (5.4), there exist a positive number d such that Qt = {t; o £ a <

% < d < b}, a negative number A satisfying —kl—l <A< kz-l and a constant C such
that
A . A
\Lk’t[F]‘S Ct for every t in Q. (5.10)

For any nonnegative integer m and A # -1. We set

m
Lk’t[F] = (tDt) G, .[gl,

k,t

so that Gk t[g] satisfies (5.3) for every t in 6t' Then Lemma 3.1 and Corollary

A

3.2 yield for every t in Qt

o
~m
ey
[
"

(e )™ < g(w), hy (u,t) >

= < g(w), (0" h (u,8) >

>

1]
A

g(u), (—uDu-l)m hk(u’t)

=< (uDu)m g(u), hk(U,t) >

m
b ay (m) g(N)(U), h (u,t) >,
N=o

L[}
A

so that the generalized function F has the representation

L (N)
F(u) = 21_ aN(m) g (u. (5.11)
N=

This form was obtained by Treves ([7], pp. 274) and Gelfand and Shilov ([6], pp. 117).
This completes the proof of the theorem.
The following theorems provide further generalisations of Theorems 5.1 and 5.2.

THEOREM 5.3, Let all the hypothesis of Theorem 5.2 be satisfied. Then a necessary

and sufficient condition for a function t+l Lk t[F] with L t[F] ¢ M(o,®) to have the
b}

’
representation as the rth operate of the Post-Widder inversion operator

r+l _ r
Lk’t[F] =< Lk,u[F], hk(u,t)7, F e }Ja,b,n’ (5.12)
of regular generalized function in i}'a b.n is that Lk t[F] has derivatives of all
orders and satisfies T ’
L, [F1] <p (¢7h for in @
K, t <Py every t in ¢ (5.13)

-1
where Pq(t ) 1is a polynomial of degree q.
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PROOF. Let Fe }' . . Then by Corollary 3.3, r L, J[F), T =1,2,3,...... defined
’ ? ’

by(l.4) exist as regular generalized functions in jja bon Hence by Lemma 3.1,
’ ,
(5.12) has sense.
Necessity follows as in Theorem 5.2. For the sufficiency, in view of (1.4) we

note that by repeated applications of Theorem 3.1 and of (5.6) on L u[F], it is
’

easy to see that r+1Lk t[F], r= 01,2,3,...... has derivatives of all orders and

b
satisfies (5.13) provided 1+k1—q > 0 1in case when the constant term of the polynomial
is zero. Then, as in Theorem 5.2, there exist a subset St E_Qt, a negative number A

satisfying —kl-l < A< kz—l and a constant C such that

]r+1 L [Fl]| < ce? for every t in g . (5.14)
k,t t

Next, consider a function G t[g] as defined by (5.8) and then as in Theorem 5.2,
> (B,Vv)
n,t

’
t >0 and for all n = some no> k > kl’kz > 0. For any non-negative integer m and

the Post-Widder inversion operator of P Gé.i[g] is G t[g] for almost all
bl ’

A # -1, we set

r+1 m
Lk,t[F] = (tDt) [g]

Ot

then Gk,t[g] satisfies (5.3) for every t in St' Proceeding as in Theorem 5.2, we
finally get the regular generalized functions, which has the representation
m
T 1= am g™, (5.15)
’ N=o0
This completes the proof of the theorem.
In the preceding theorem the representation of functions by the rth operate of
the Post-Widder inversion operator was restricted to the class of regular generalized
functions, In the following theorem we extend it to the class of generalized functions in
A} 'a,b,n' For this, we redefine the rth operate of the Post-Widder inversion operator

in the form

r+l Lk,t[F] = g r+1hk(u,t) F(u) du, r =o0,1,2,.0.. , (5.16)
where
+l hk(u,t) = S T hk(u,v) hk(v,t) dv. r 4o M
o (5.17)
= hk(u,t) r# o

and hk(u,t) is given by (1.5).

The relation (5.16) has much similarity with ([20], pp. 18) and the relation (5.17)
is a form obtained by Widder ([10], pp. 263) for the iterated Stieltjes transform.

With the function hk(u,t) the following interesting properties are easy to

prove. For any nonnegative integer r
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©

f ™ e ae= § hy (u,) du = 1 (5.18)
o o

o4l @ r+l

£ r hk(u’v) hk(V,t) dv = % hk(u,v) nk(v,t) dv (5.19)
g r+l hk(u,v) hé.)(v,t) dv = é hé.)(u,v) r+l hk(v,t) dv (5.20)
é "l v b (v,e) av =£ nww @ e s
g r+l hk(u,v) u %du < M(k) v, (5.22)
o

where o is any positive number less than k and M(k) is bounded and tends to zero
as k tends to infinity.

THEOREM 5.4. Let all the hypothesis of Theorem 5.2 be satisfied. Then a necessary and
r+1L [F] with L,  [F] ¢ M(o,®) to have the

k,t k,t
representation as the rth operate of the Post-Widder inversion operator

sufficient condition for a function

r+l L [F) = P, ™ oh () > (5.23)

of a class of generalized functions is that Lk t[F] has derivatives of all orders
’

and satisfies (5.13) for every t in Qt'

PROOF., Let F ¢ -;'a b.n Consider the first operate of the Post-Widder inversion
- ’ 2]

operator
Lk't Lk’.[F] = < Lk’V[F], h (v,t) >
= {F(u), h (u,v)> , h (v,t) 7 (5.24)
=< F),¢ h (u,v), b (v,e)>) . (5.25)

In view of the fact Lk v[F] belongs to S;a b.n.v < i'a b.n by Corollary 3.3, the
’ £ ] ’ ’ ~ ’ ’

expressions (5.24) and (5.25) are meaningful if we show that
< h (u,v), h (v,t)) = y h, (u,v) h (v,t) dv = 2 h (u,t)
k ’ k] k ’ A k ’ k ’ k ]

belongs to(]
Indeed

a,b,n’

n._n 2
Ika’b’n(u) u' D hk(u,c)[

n

n
<
< g | ka,b,n(u) u Du hk(u,v)l hk(v,t) dv
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sup sup lk

T —o<yw 0Sv<® 4

L@ 0 b (v, SO h (v,8) dv (5.26)

which, by Lemma 3.1, is bounded and tends to zero as n > <,

In order to prove the equality between (5.24) and (5.25), we need only show that

<CFQ), b (0,v) 2 b (v,8) dv =< FQw), i b (u,v) b (v,0) dv ) (5.27)

o3

By using the technique of Riemman sum, we can easily show that

N N
“\o { F(u), hk(u,v)) h (v,0) dv = F(u), 50 h (u,v) by (u,t) dv )y .(5.28)

Since by (5.26)
ot .
j hk(u,v) hk(v,t) dv > o in ;a b.n 2% N >
N
one can readily justify taking limit as N > ® in (5.28) to obtain the equality between
(5.24) and (5.25). Then by repeated applications of the above arguments for
r=2,3,.... , it follows that (5.23) has sense.
The necessity follows as in Theorem 5.2. For the sufficiency, we consider a

function Gk t[g] with g € M*(o,») defined by
’

Gk,t[g] = .g hk(u,t) g(u) du

which has derivatives of all orders.

It is a simple calculation to show that g € M*(o,~) implies Gy t[g] € M*(o,»),

4l [gl, r = 0,1,2,.... belongs to M*(o,~). By Lemma 5.2,

Then in view of (5.12),
(Bv) r+1()
Poe L Gt

(5.16), (5.20) and Theorem 4.4, we have

k t
[g]J exists for each t > o and belongs to M*(o,®)., Then using

r+l B,V (D 17
\2 hk(u,t) Pn,u L.Gk,u[gJ } du

(8, v)‘ (" r+1 (.) ]
nt\j by (0, 8) G ) g

‘B \’)U gv) dv ( ™1 b (u,0) hi')(v,u) duJ

Sﬁ
;

= Pé?;v) i g(v) dv r+l hé.)(v,u) hk(u,t) du}
+ Pé?;v) go ( )[g] b (u,t) du]

@, [ 2 () 1
P c;k’t [g] .

n,t

Then by Theorems 4.5 and 4.2
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1im ( r+1 B,V T () ]
jo By Cu,0) 2% LGk,u (gl | du

n-e k
_ lim (8 v) ( r+l
= . n : k C ]] Gk,t[g] .

Now it remains to justify the changes in the order of integrations performed above.

By the arguments used in Theorem 4.4, we need only show that

P(B,v)\'i r+l h, (u,t) cizitg]] du

n,t

exists. For this, it is sufficient to show that the following iterated integrals exist.

© (o,B+2n)
-k+k ’ -1 -1 -k +1 k

A(k) S x KL Q, [142x77 dx x é TR hk(u,t)cﬁ) 1 /x[g]| du
o o ‘u/x
o B (0,B+2n)

A(k) S xv—k A-1 Q, [1+2x_1] dx Sﬂ T+l hk(u,t) WA au
5} Qu/x
© (o, B+2n) f
© _v-k=k k2 r+l u, -kp

Al g 2 g Ut Ml dx -1 by (,0) 726, (8]l du
o

Using the fact that [g] € M*(o,®) and relations (5.17), (5.19) and (5.20), it is

easy to see that all the right hand u integrals exist for each t > o, and in view of
(4.6) all the left hand x-integrals exist if Ai = kl’ -A-1, —k2 according as
i=1,2,3 in (4.6).

A
As in Theorem 5.3, there exist a subset Qt’ a negative number A satisfying
-k-1 < A < k2-l and a constant C such that
+ A
g [F]) < et for every t in Q.
k,t t
For any nonnepative integer m and A # -1, set

r+l

r+l
Lk,t

9 m
[Fl= (th> Gk’t[g]

r+1 A

so that t[g] satisfies (5.3) for every t in 1 .

Now the theorem follows as in Theorem 5.2.
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