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ABSTRACT. Using convolutions, a new family of analytic functions is introduced. This
family, called a* - family, serves in certain situations to unify the study of many
previously well known classes of analytic functions like multivalent convex, starlike,
close-to-convex or prestarlike functions, functions starlike with respect to symmetric
points and other such classes related to the class of univalent or multivalent functions.
A necessary and suflicient condition on the Taylor series coefficients so that an analytic
function with negative coefficients is in an a*-family is obtained and sharp coefficents
bound for functions in such a family is deduced. The extreme points of an a*-family of
functions with negative coefficients are completely determined. Finally, it is shown that
Zmorvic conjecture is true if the concerned families consist of functions with negative

coefficients.
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1. INTRODUCTION.

Let Ap’ p =1,2..., denote the family of functions f, analytic in E = {z : |z| « 1}
and having Taylor series expansion
- P © k+p
f(z) z +k§l ak z . (1.1)

In the present paper we introduce the concept of an a*-family of functions in Ap. It
turns out that many familiar subfamilies of Ap, related to univalent and multivalent
functions, are a*-families. We determine a sufficient condition, on the coefficients,
such that a function f in Ap, given by (1.1), is an a*-family. Further, we show that
such a condition is also necessary when f is in A pl, the family of functions f in Ap

having Taylor series expansion
_ . p_2 k+p
£(z) LA |ak| z . (1.2)

Using these results we determine the extreme points of an a*-family in Alpl. Finally,
we give some applications of our results in Section 4.
2. DEFINITION AND EXAMPLES.

The Hadamard product or convolution f * g of functions f and g, analytic in E and
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given by f(2) =kEO a z and g(z) =k20 bk zk, is defined as the analytic function
L k
(f * g)(2) —kgo akbkz
Definition. A family of functions f in Ap, p=1,2..., is said to be an a*-family if

there exist functions s, and 8o analytic in E defined by

k+p

so(z) =k§0 €y 2 s Cy > 0, e 20, k =1,2... (2.1)

and
@ k+

8o(2) =i & z P, d > 0,d 20, k=1,2... (2.2)
satisfying

c d

k - 'k

. T >0, k=1,2 .. (2.3)

o o

and a number p, 0 < < co/ do’ such that for every f in F

(8, * £)(2) 20, 0 < |z] <1 (2.4)
and
(s * £)(2)
Re o
G * D@ ° @

for z in E.

We write-F is an a*-family with the touple (so,go,o)— when the touple (so,go,p)
is explicitly needed. Further, we denote an a*-family in Alp] by [a*]-family.

The following well known families in AP are some examples of a *-families.
Example 1 For 0 <2 -~ 1 and p = 1,2 . , let S*(p,.) denote the a*-family in Ap

with the touple
p-1 P
=it -y -
(G il ™ 200, T PO (2 6)
and K(p,2) denote the a*-family in Ap with the touple
z(1+z) _ pzl p=1

(s = oL ™ 2" s bpgyz = oy m 2 ), pw) 2.7

It is easily seen that S*(p,u) is the family of p-valent starlike functions of order
i.e. family of functions f in AP satisfying Re(zf'(z)/f(z)) > pa, Also, K(p,2) is the
family of p-valent convex functions of order « i e. family of functions f in Ap such
that zf'/p is in S*(p,a) [4].

Example 2. Let K(n+p-1) denote the class of functions f in Ap satisfying the condition

+
po(ZD P i
(Zn—lf)(n+p-l) 2

where p = 1,2..., n = -p+l, -p+2, .., p; and z is in E. It is known [1] that f in Ap

is in K(n+p-1), £ and only if, Re G(z) > % where

z —_ *f(2)
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A brief calculation shows that, for h(z) = (zp/(l—z)n+p) *f(z) and f in K(n+p-1)
Re(zh'(z)/h(z)) = (p+n) Re G(z) - n > (p-n)/2 > 0
Thus, h(z) # 0 in 0 < |z| < 1 and it follows that K(n+p-1) is an a*-family with the
touple
zP z R (2.8)
(I_Z)n+p+1 (l_z)n+p

Example 3. Let J(p,a) denote the a*family in Ap with touple

ey I m zm}, zp, pa) (2.9)

z p-l
1
1

Qs

m

where 0 <2 < 1. It is easily seen that J(p,x) is a known subfamily of the family of

p-valent close-to-convex functions [5]. The family J(1,u) is the family of univalent

functions f in A1 satisfying Re(f'(z)) > a for z in E.

Example 4. The family I(p,a), 0 £ u < 1, p =1,2..., of functions f in Ap satisfying
Re {f(z)/zp} > pa, for z in E, is an a*-family with the touple

P

_Z2 P 2.
Ty > 2 pe)- (2.10)

(

z

Example 5. The family N(x) of univalent functions starlike of order a, 0 <o <1, with
respect to symmetric points i.e. the family of functions f in Al satisfying

Re (zf'(z)/(f(z) - f(-z)) > a, is an a*-family with the touple

z z .
((l—z) 9'(1_—2)4, '1)' (2.11)
Example 6. A function f in A, p = 1,2..., is said to be p-valent prestarlike of order
¢, 0 <a < 1, if the function h(z) = (zp/(l-z)ZP(l—u)) * f(z) is p-valent starlike of

order . A brief calculation shows that

(1-20) L zh'(2)
P@ BTy oAy he
pll=2a) ( =z _ _ p;l Pt SRS S SR mzm}—]* h(z)
_ | 2(1~a) (1-2) m=2 2(1-a) (1_2)2 m=2 R
T h(z)
= o 2ull-a)4m M
lnio T 2" "] * h(z)/h(z)
- I 6 VR N
(1-z)2p(1-)+l1 (1-z) 2P(1-2)

Further, a function f is p-valent prestarlike of order a, if and only if, Re F(z) - p/2.
Now, it follows that the family PS*(p,x), of p-valent prestarlike functions of order o,

is an a*-family with the touple

_=2b , 2P L) . (2.12)
(l_z)zP(l‘a)'H- (1_2)29(1‘0()

We note that PS*(l,a) is the class of prestarlike functions of order a studied by

Ruscheweyh [7].



438 G. P. KAPOOR AND A. K. MISHRA

3. NECESSARY AND SUFFICIENT CONDITIONS AND EXTREME POINTS.
We have the following sufficient condition on [an| for a function f in Ap, given
by (1.1), to be in an a*-family.

Theorem 1. Let f, in A_, be given by (1.1). Let {c }o and {d ¥ , the sequences
Jasoren 2 in &, k’k=0 Ko

of real numbers with c, > 0, dO > 0, (ck/co) - (dk/do) 2 0; and p, 0 € p < (co/do) be

such that

kil (e = 0d) Jap| < (e = pd). (3.1)
Then, f is in the a*-family with the touple (so,goo), where Sy and g, are defined by

(2.1) and (2.2) respectively.
Proof. Let h(z) = (g0 * f)(z). Then, for z in E,

e k
Re (h(z)/2zP) 2 d, - il 4 la ] lz1". (3.2)
Now, since (ck/co) - (dk/do) 2 0 and (3.1) holds, we have

w (¢ —pd)
1-% £ —Ka |20 (3.3)

r %
k=1 (¢ 7 Pdy)

k=1 do
Thus, (3.2) and (3.3) give that h(z) # 0 in 0 < |z| < 1.

Next, for S, and g defined by (2.1) and (2.2) and |z| =r,

1

v

la, |

© k
) +k§1 (ck—pdk)akz

(s, * £) (z) (co—pd
m )

_ o
Re (g, v oGy ~ 0 T Re

d +7% doaz
R k 'k

® k
(c-pd)) - t (e, -pd) |a | r

w k
d -I d |a]|r
S e

Thus, by (3.1) and (3.3), we get

(s_ * £)(2)

Re (__EL_______ > 0

(g, * D)(2)
Hence, f is in the a*-family with the touple (so,go,p) and this completes the proof of
the theorem.

The following theorem gives a necessary and sufficient condition on |an| for a
function f in Alp], given by (1.2), to be in an [a*]-family.
Theorem 2. Let thesequences{ck}w , {dk}:=0 and the nonnegative number p be defined
as in Theorem 1. Then a functionk? in Alp], given by (1.2), is in the l[a*]-family with
the touple (so,go,p), if and only if,
A o B B N B L ) (3.4)

where S, and g, are defined by (2.1) and (2.2) respectively.
Proof. Let f be in the [a*]-family with the touple (so,go,o). Then, for |z| =r <1,

® k
(s_*£) (2) (c -pd ) - (c,-pd ) |a| 2
Re(—2~— - 0) = Re(——— KLk Kk 0. (3.5)
(go f) (z) d - °Z° d [a | Zk
o TkE1 Yk 1%
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Now, let -1 < z < 1. By the condition (2.4),
_ ] k+p .
h(z) = do 2P -kgl dk lakl z 20 in 0 < Izl < 1, so that

© k+p
dy ey 4 lakl z >0 for -1 <z < 1. It follows now by (3.5) that

kzl (ck - pdk) |ak| X < (c° - pdo). (3.6)
Now, taking limit z - 1 along the real axis in (3.6), we get (3.4). Thus, the proof
of the theorem is complete in view of Theorem 1.
Corollary 1. Let f, given by (1.2), be in an ia*J-family with the touple (so,go,o),
where $,28, and p are defined as in the definition in Section 2.

Then, for k = 1,2...

ol = 2
a | < ———. (3.7)
k ck pdk
The inequality (3.7) is sharp, the extremal function being
- P _ _ _ k+p
£ (2) =z ((ey = pd )/ (e pd)) z (3.8)

for each k = 1,2,... .
Proof. The corollary is a direct consequence of the necessary and sufficient condition
(3.4).

Corollary 2. Let F and G be two a*-families with the touples (so,go,O) and
(so,gl,O) respectively. Then,

F n Alp]l = G n Alp]. (3.9)

Remark 1. Choosing {ck} = {k+p}, {dk} = 1land p = pa; k=0,1,2,...; p=1,2,...; and

0 <a <1, it follows from Theorem 1 that the condition

B Getp - pa) o | s p (1) (3.10)

is sufficient for a function f, given by (1l.1), to be in S*(p,u). Further, by Theorem 2,
it follows that the condition (3.10) is both necessary and sufficient for a function f,
given by (1.2), to be in S*[p,a] = S*(p,a) n AlpJ.

{(tp)?}, {d,} = {k+p} and p = po, k = 0,1,2...,

If we choose {ck}

p=1,2..., 0 <o <1, then Theorem 1 gives that the condition
£ ikgﬂl-(k+p-pu) la | < p(1-a) (3.11)

is sufficient for a function f, given by (1.1l), to be in K(p,a). Further, by Theorem 2
we have that the condition (3.11) is both necessary and sufficient for a function f,
given by (1.2), to be in K[p,a] = K(p,a) n A [pl.

We note that the sufficient conditions (3.10) and (3.11) have been obtained by
Ozaki [6], Goodman [2] and Schild [8] respectively in the particular cases
a=0,p21l;a=0, p=1land a =%, p=1. Silverman [9] has obtained similar necessary
and sufficient conditions in the particular case p =1 and 0 < a < 1.

oo = (k+P) s d = 1, d = 0,k=1,2,... and p = pa,

p=1,2..., 0 <a <1, it follows from Theorem 1 that the condition

Remark 2. Choosing {ck}

WL Getp) ay | < p(l-e) (3.12)
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is sufficient for a function f, given by (l1.1), to be in J(p,a). Further, by Theorem 2,
it follows that the condition (3.12) is both necessary and sufficient for a function f,
given by (1.2), to be in J[p,al = J(p,al n AlpJ.

Remark 3. With the choice {c_ } - = {1}, d =1landd =0, k=1,2,... and p= pa,
p=1,2..., 0o <1, we have that, if

k_ ]akl p(l-a) (3.13)
then f, given by (l1.1) is in I(p,a). Further, the condition (3.13) is both necessary
and sufficient for a function f, given by (1.2), to be in I[p,al : I[p,a] n Alpl.

Remark 4. If we choose {c } k=0 - {k}k 0’ k = 1 when k is odd and dk = 0 when k is
even; and p = a, 0 £ a < 1, then it follows from Theorem 1 that the condition

l82k+l[ +k§1 Zklakl < (1-a) (3.14)

Wby (kL)
is sufficient for a function f, given by (l.1), to be in N(a). Further, it follows from
Theorem 2 that the condition (3.14) is both necessary and sufficient for a function f,
given by (1.2), to be in Nla] = N(a) n Alp].

Remark 5. Let zp/(l z)2p(1 a) C (a, k+p)z P and zp/(l-z)ZP(l-U‘)+1

® k:
= £y 0y (a,k+p) 2P

Then, by choosing {c = {C (a, k+p)}k_o,{dk k=0 H {Co(a,k+p)}:=0 and p = % it follows

k}k—O

from Theorem 3.1 that the condition
Kk &ﬂhw)CJamﬂ)I%lsp(hw (3.15)

is sufficient for f, given by (1l.1l), to be in PS* (p,a).
Further, from Theorem 2 it follows that the condition (3.15) is both necessary and
sufficient for a function f, given by (1.2) to be in PS* [p,a] = PS*(p,a) n AlpJ.
We note that (3.15) includes a recent result of Silverman and Silvia [10].
In view of Theorem 2, it follows that an [a*]-family is a closed convex subset of
the space of analytic functions in E with the compact open topology. Thus, the closed
convex hull of an [a*]-family F is equal to itself. In the next theorem we determine
the extreme points of an [a*]-family.
Theorem 3. Let the sequences {Ck}:=0’ {dk}:=0’ the nonnegative number p and the functions
P

s, and g, be defined as in the definition in Section 2. Further, let fo(z) =2z,

fk(z) = 2P - (c0 - pdo)/(ck - pdk) zk+p, k = 1,2... . Then, the extreme points of the

[a*]-family with the touple (so,go,p) are precisely the set of functions {fk}:=0'
Proof. We show that a function f is in the [a*]-family with the touple (sc,go,p),

if and only if, it can be written in the form fk(z), where th 0 and

Tt
k=0
kEO tk = 1. The conclusion in the theorem about the extreme points is equivalent to
this result.

First, let f(z) =k§O tkfk(z), where tk 20 andkzo tk=1. Then

(co B pdo) zk+p
pdy)

.

£(z) = 2P - T
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Now,

® (ck-pdk)c(&:o—odo)= 2 e <
k=1 (c:o - pdo) k(ck - pdk) k=1 'k o
Thus, by Theorem 2, f is in the [a*]-family with the touple (so,go,p).
Conversely, let f, defined by the Taylor series (1.2), be in the [a*J-family with
the touple (so,go,p). Then, by Corollary 1, for k = 1,2,...,
c = pd
o o
ol ¢ 2 -
2 e pdk
We let, for k = 1,2,..., e = ((ck - odk)/(co - pdo)) Iak[ and t, = 1 —k§ tk. Note

IA

that 0 < t 1 for k = 1,2,3,... . Now with this choice of t,, we can write

k

f(z) =k£0 tkfk(z) wherekéo tk = 1. This completes the proof of the theorem.

Remark 6. The extreme points of individual [a*]-families can be obtained from Theorem 3

k

by substituting appropriate values of S dk and p as in Remarks 1-5.
4. APPLICATIONS.

In our next theorem, using Theorem 2, we determine the sharp values of B = B(a)
and vy = y(a) such that K[p,a] ¢ S* [p,8] and Re {f(z)/zp} > y for f in K[p,a] and 2z in
E. It is to be noted that, in general, there does not exist B = B(x) > a such that
K(p,a) < S* (p,a), p = 2,3... . Further, the value of Re {f(z)/zp} can well be negative
for |z| < 1 and f in K(p,a), p = 2,3,... [3].

Theorem 4. Let f, given by (1.2), be in K [p,a]. Then,
(i) f is in S*[p,B] where
g =8 () = EEEiiTl:_;E 4.1)
and
(ii) Re{f(z)/zp} > y, for z in E, where

2
- - pt(l-o)+p+l |
Y2y (@ = Y (pHlpa) (4.2)

Both the results in (i) and (ii) are sharp.

Proof. Let f be in K [p,a]. Then, by the necessary condition (3.11), we have

o (k+p) (k+p-pa)
Iy __}ﬂ;(I:EE_JL__ la | = 1. (4.3)
In view of the sufficient condition (3.10), we first determine the maximum value of B

such that (4.3) implies

© k+4+p-~
ki1 SB%%iggﬁl Iak' < 1. (4.4)

Again, it is sufficient to determine the maximum value of B such that for k = 1,2,...,

(k+p) (k+p-pa) _ (k+p - PB)
p(1l-a) N 1 -8

or, equivalently, B < (k+p)/(2p+k-pa). Since the sequence {¢k} = {(k+p)/(2p+k-pa)}

is increasing in k, we choose

B = B(a) = (p+l1)/(2p+l-pa). (4.5)

Further, by using (3.10) and (3.11), it is easily seen that the function
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_ 2(1-a) Pl
(p+1) (p+1-pa)

in K[p,a] is in S*[p,B8] with B defined by (4.1) but is not in S*[p,Bl] for any Bl > B.

h(z) = zZP (4.6)

This shows that the value of B = B8 (a) is precise.

In view of (3.13), to prive (ii), we first find the maximum value of y = vy (a)
such that (4.2) implies
© {akl
k=1 p(l-v)

Adopting the proof for part (i), we get

©

<1 .7

p2(1-a)+pt+l
(p+1) (p+l-pa) ’

Further, the function h(z) given by (4.6) shows that Re{h(z)/zp} > py but

Yy = v(a) =

Re{h(z)/zp} < PY; for Yy and z = r <1 where y is defined by (4.2). This completes
the proof of the theorem.

We, next, consider Zmorovic conjecture for functions in A{lJ]. Zmorovic [11]
conjectured that J(1,0) < S*(1,0). Subsequently, this conjecture was proved to be
false, by Zmorovic himself [12] among others, by showing the existence of a function
in J(1,0) which is not in S*(1,0). On the other hand, K(1,0) ¢ J(1,0), for the function
hl(z) = z/(l-z) is in K(1,0) and Re h'(z) < 0 in a region - % < 1,0 < arg z < w/2.

Thus, it follows that there is no inclusion relation between the three classes K(1,0),

S*(1,0) and J(1,0). However, it follows easily from Corollary 2 that
s*[1,0] = J[1,0] = N[O].
Further, for p =1, (3.11) ==> (3.12) ==> (3.14) ==> (3.10) ==> (3.13). Thus, we have

K[1,a] S J[1,a] $>N[a] S S*[1,a] 3 I[1,a].
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