ALMOST-PERIODICITY IN LINEAR TOPOLOGICAL SPACES AND APPLICATIONS TO ABSTRACT DIFFERENTIAL EQUATIONS

GASTON MANDATA N'GUEREKATA

Université de Bangui Faculté des Sciences BP 1450 Bangui République Centrafricaine

(Received April 28, 1982 and in revised form June 10, 1982)

ABSTRACT. Let E be a complete locally convex space (l.c.s.) and $f: R \to E$ a continuous function; then f is said to be almost-periodic (a.p.) if, for every neighbourhood (of the origin in E) U, there exists $\ell = \ell(U)>0$ such that every interval $[a,a+\ell]$ of the real line contains at least one point τ such that $f(t+\tau) - f(t) \in U$ for every $t \in R$. We prove in this paper many useful properties of a.p. functions in l.c.s. and give Bochner's criteria in Fréchet spaces.

KEY WURUS AND PHRASES. Almost-periodic functions, Bochner's criteria, weakly almost-periodic functions, abstract differential equations, perfect Fréchet spaces, infinitesimal generator of equi-continous C_{α} -group.

19x0 MATHEMATICS SUBJECT CLASSIFICATION CODE. 34G10.

1. INTRODUCTION

The notion of almost-periodic functions has been introduced by Bohl and Esclangon at the beginning of the century and widely studied by Bochner [1], [2] and many other mathematicians. The reader can see [3], [4], [5], [6], [7],... for what is written on the subject.

A definition of almost-periodic functions on a group and with values in a linear topological space is contained in the important 1935 paper of Bochner and Von Neumann [2]; we consider here the one suggested in [6] which is very easy to handle (see definition 1 below). We liost of the results of Part I of this paper are known in Banach spaces. We give their extensions to linear topological spaces.

In Section 5 of our paper, we study almost-periodicity of solutions of some abstract differential equations of the form : $x^{\dagger}(t) = Ax(t) + f(t)$, $-\infty < t < \infty$, in Fréchet spaces.

We suppose the reader is acquainted with elementary properties of linear topological spaces (see for example [8]).

We consider a locally convex space $E = E(\tau)$ over the field $\phi(\phi = R \text{ or } C)$; its topology τ is generated by a family of continous semi-norms $Q = \{p,q,\ldots\}$.

We assume E is a Hausdorff space. A basis of neighbourhoods (of the origin in E) contains sets of the form U = U (ε ; p_i , $1 \le i \le n$) = {x ε E; $p_i(x) < \varepsilon$, i = 1,...,n} $p_i \varepsilon$ Q. E is called a Fréchet space if τ is induced by an invariant and complete metric. If

E is a Fréchet space, we may take $Q = \{p_i\}_{i=1}^{\infty}$ A subset $D \subseteq E$ is dense in E if every $x \in E$ is the limit of a generalized sequence of elements of D. A linear operator A: $D(A) \rightarrow E$ with domain D(A) dense in E is closed if its graph G(A) is a closed subset of the product space E x E.

THEOREM. (See [9]). Let E be a complete locally convex space. Then the linear operator A : $D(A) \rightarrow E$ is closed iff for every generalized sequence (x_{ij}) in D(A) such that $\lim_{\mu} x_{\mu} = x$ and $\lim_{\mu} Ax_{\mu} = y$ we have $x \in D(A)$ and Ax = y.

COROLLARY. Every continous linear operator defined on all E is closed.

In a locally convex space E, a subset X is called totally bounded if, for every neighbourhood (of the origin) U, there corresponds a finite set Y such that X ⊂ Y+U. ALMOST PERIODIC FUNCTIONS WITH VALUES IN A LOCALLY CONVEX SPACE.

DEFINITION 1. Let E be a complete locally convex space (l.c.s.). A continous function $f: R \rightarrow E$ is called almost-periodic (a.p.) if for each neighbourhood (of the origin) U, there exists a real number $\ell=\ell(U)>0$ such that every interval $[a,a+\ell]$ contains at least a point τ such that $f(t+\tau)$ - f(t) ϵ U for every t ϵ R.

Obviously τ = τ_U and we call it a U-translation number of the function f. The following two theorems are known (see [6]). We give here a proof of the second one.

THEOREM 1. (a) If $f: R \to E$ is a.p. then f is uniformly continuous on R. (b) If $\binom{f}{n}_{n=1}^{\infty}$ is a sequence of a.p. functions which converge uniformly on R to a function f, then f is also a.p..

THEOREM 2. If f is a.p., then $\{f(t); t \in R\}$ is totally bounded in E.

PROOF. Let U be a given neighbourhood, and V a symmetric neighbourhood such that $V + V \in U$; let $\ell = \ell(V)$ as in definition 1. By continuity of f, the set $\{f(t)\}$ t ϵ [0, ℓ]} is compact in E (see [8] proposition 7, p. 53). But in a 1.c.s., every compact set is totally bounded (see [8] theorem 5, p. 60): therefore there exists x_1, \ldots, x_v such that for every $t \in [0, \ell]$, we have $f(t) \in \bigcup_{j=1}^{v} (x_j + v)$.

Take an arbitrary t ϵ R and consider τ ϵ [-t, -t+1] a V - translation number of f. Then we have:

$$f(t+\tau) - f(t) \in V.$$
 (2.1)

Choose $\mathbf{x}_{\mathbf{k}}$ between $\mathbf{x}_1, \dots, \mathbf{x}_{\nu}$ such that

$$f(t+\tau) \in x_L + V.$$
 (2.2)

Let us write $f(t) - x_k = [f(t) - f(t+\tau)] + [f(t+\tau) - x_k]$. Then by (2.1) and (2.2) we get f(t) - x_k ϵ U and therefore f(t) ϵ x_k + U; as t is arbitrary we conclude: {f(t); t ϵ R} ϵ U (x_t +U).

$$\{f(t); t \in R\} \subset \mathring{U} (x_j+U).$$

The theorem is proved.

REMARK 1. If E is a Fréchet space, then $\{f(t): t \in R\}$ is relatively compact in E if f is a.p.. For in every complete metric space, relative compacity and totally boundedness are equivalent ([13], p.13). We then conclude every sequence $(f(t_n))_{n=1}^{\infty}$ contains a convergent subsequence.

THEOREM 3. Let E be a complete 1.c.s. If $f : R \rightarrow E$ is a.p. then the functions $\lambda f(\lambda \epsilon \Phi)$ and \bar{f} defined by $\bar{f}(t) \equiv f(-t)$ are also a.p..

PROOF. λf is obviously a.p.. Let us consider \bar{f} ; by almost-periodicity of f, if U is a given neighbourhood, there exists $\ell = \ell(U)$ such that every interval [a,a+ ℓ] contains τ such that $f(t+\tau) - f(t) \in U$ for every $t \in R$. Put s = -t; we get:

$$\bar{f}(s-\tau) - \bar{f}(s) = f(-s+\tau) - f(-s) = f(t+\tau) - f(t)$$
.

Therefore $\overline{f}(s-\tau)$ - $\overline{f}(s)$ ϵ U for every s ϵ R, which shows f is a.p. with - τ as a U-translation number.

3. BOCHNER'S CRITERIA AND OTHER PROPERTIES.

We first give theorem 4 we prove as theorem 6.6 in [6].

THEOREM 4. Let E be a Fréchet space and f : R \rightarrow E a.p.; then for every real sequence $(s_n)_{n=1}^{\infty}$, there exists a subsequence $(s_n)_{n=1}^{\infty}$ such that $(f(t+s_n))_{n=1}^{\infty}$ is uniformly convergent in t ϵ R.

PROOF. Consider the sequence of functions $(f_{s_n})_{n=1}^{\infty}$ corresponding to $(s_n)_{n=1}^{\infty}$ and let $S = (\eta_n)_{n=1}^{\infty}$ be a dense sequence in R. By remark 1, we can extract from $(f(\eta_1+s_n))_{n=1}^{\infty}$ a convergent subsequence, for $\{f(t); t \in R\}$ is relatively compact in E.

Let $(f_{s_1,n})_{n=1}^{\infty}$ be the subsequence of $(f_{s_n})_{n=1}^{\infty}$ which converges at n_1 . We apply the same argument as above to the sequence $(f_{s_1,n})_{n=1}^{\infty}$ to choose a subsequence $(f_{s_2,n})_{n=1}^{\infty}$ which converges at n_2 . We continue the process and consider the diagonal sequence $(f_{s_n,n})_{n=1}^{\infty}$ which converges for each n_n in S. Call this last sequence by $(f_{r_n})_{n=1}^{\infty}$. Now we are going to show it is uniformly convergent in R, i.e. for every neighbourhood U, there exists $N = N_U$ such that $f(t+r_n) - f(t+r_m)$ ϵ U for every $t \in R$ if n, m > N.

Consider an arbitrary neighbourhood U and a symmetric neighbourhood V such that V+V+V+V \subset U. Let $\ell=\ell(V)$ as in definition 1. By uniform continuity of f over R (theorem 1), there exists $\delta=\delta_V>0$ such that

$$f(t) - f(t') \in V$$
 (3.1)

for every t,t' ϵ R with $|t-t'| < \delta$.

We divide the interval $[0,\ell]$ into ν subintervals of length smaller than δ . Then, in each interval, we choose a point of S and get $S_0 = \{\xi_1,\ldots,\xi_\nu\}$. As S_0 is finite, $(f_{r_n})_{n=1}^\infty$ is uniformly convergent over S_0 ; therefore there exists $N = N_{\nu}$ such that

$$f(\xi_i + r_n) - f(\xi_i + r_m) \in V$$
 (3.2)

for every i = 1, ..., v and if n, m > N.

Let $t \in R$ be arbitrary and $\tau \in [-t, -t+\ell]$ such that $f(t+\tau) - f(t) \in V$. Choose ξ_i such that $|t+\tau-\xi_i| < \delta$; then $f(t+\tau+r_n) - f(\xi_i+r_m) \in V$, for every n. Therefore, if n, m >N, we get:

$$f(t+r_n) - f(t+r_m) \in U,$$
 (3.3)

which proves uniform convergence of $(f(t+r_n))_{n=1}^{\infty}$.

To see (3.3) we write:

$$\begin{split} f(t+r_n) - f(t+r_m) &= [f(t+r_n) - f(t+r_n+\tau)] \\ + [f(t+r_n+\tau) - f(\xi_i+r_n)] + [f(\xi_i+r_n) - f(\xi_i+r_m)] \\ + [f(\xi_i+r_m) - f(t+r_m+\tau)] \\ + [f(t+r_m+\tau) - f(t+r_m)], \end{split}$$

and we apply (3.2) or (3.3) to each term in square brackets. The theorem is proved.

We now state and prove Bochner's criteria:

THEOREM 5. Let E be a Fréchet space. Then $f : R \rightarrow E$ is a.p. iff for every real

sequence $(s_n)_{n=1}^{\infty}$ there exists a subsequence $(s_n)_{n=1}^{\infty}$ such that $(f(t+s_n))_{n=1}^{\infty}$ converges uniformly in t ϵ R.

PROOF. The condition is obviously necessary by theorem 4; let us show it is sufficient; suppose f is not a.p.; then there exists a neighbourhood U such that for every $\ell > 0$, there exists an interval of length ℓ which contains no U-translation number of f, or :

there exists an interval $[-a,-a+\ell]$ such that for every

 τ ε [-a,-a+ ℓ] there exists t = t $_{\tau}$ such that f(t+ τ) - f(t) ℓ U.

Let us consider $\tau_1 \in \mathbb{R}$ and an interval $(a_1 - b_1)$ with $b_1 - a_1 > 2|\tau_1|$ which contains $a_1 - b_1$

no U-translation number of f. Now let $\tau_2 = \frac{a_1 - b_1}{2}$; then $\tau_2 - \tau_1 \in (a_1, b_1)$ and therefore $\tau_2 - \tau_1$ cannot be a U-translation number of f. Let us consider another interval (a_2, b_2) with $b_2 - a_2 > 2$ ($|\tau_1| + |\tau_2|$), which contains no U-translation number of f. Let

 $\tau_3 = \frac{a_2^{-b}2}{2}$; then $\tau_3^{-\tau}1$, $\tau_3^{-\tau}2$ ε (a_2,b_2) and therefore $\tau_3^{-\tau}1$ and $\tau_3^{-\tau}2$ cannot be U-translation number of f. We proceed and get a sequence $(\tau_n)_{n=1}^{\infty}$ such that no

$$\tau_{m}^{-\tau}$$
 is a U-translation number of f;

$$f(t+\tau_{m}^{-\tau}) - f(t) \notin U.$$
(3.4)

Put $\sigma = \sigma_{mn} = t - \tau_n$; then (3.4) becomes:

$$f(\sigma + \tau_m) - f(\sigma + \tau_n) \notin U.$$
 (3.5)

Suppose there exists a subsequence $(\tau'_n)_{n=1}^{\infty}$ of $(\tau_n)_{n=1}^{\infty}$ such that $(f(t+\tau'_n))_{n=1}^{\infty}$ converges uniformly in t ϵ R; then for every neighbourhood V, there exists N = N_V such that if m, n > N (we may take m > n), then we have:

$$f(t+\tau'_n) - f(t+\tau'_n) \in V$$
 (3.6)

for every t ε R.

But this contradicts (3.5); it suffices to take U = V and σ_{mn} = t in (3). Therefore $(f(t+\tau_n))_{n=1}^{\infty}$ does not contain any subsequence which converges uniformly in t. The theorem is proved.

REMARK 2. Here we do not use metrizability of E in the proof of the sufficiency of the condition.

THEOREM 6. Let E be a Fréchet space and consider the functions f, g, f_1 , f_2 : $R \rightarrow E$; then we have:

- a) f + g is a.p. in E if f and g are a.p. in E
- b) $F = (f_1, f_2)$ is a.p. in the product space $E \times E$ if f_1 and f_2 are a.p. in E.

PROOF. It is very easy to prove a) and b) by using Bochner's criteria; we omit it. The reader can see [9].

COROLLARY 1. If f_1 and f_2 are a.p. in the Fréchet space E, then for every neighbourhood U, f_1 and f_2 have common U-translation numbers.

PROOF. Let U be a given neighbourhood in E; by theorem 6, the function $f(t) = (f_1(t), f_2(t))$ is a.p.. Consider now τ a U x U-translation number of f; then $f(t+\tau) - f(t)$ ε U x U, for every t ε R and therefore $f_i(t+\tau) - f_i(t)$ ε U, i = 1, 2, for every t ε R; τ is then a U-translation number of f_1 and f_2 .

REMARK 3. Theorem 6, b) and corollary 1 are true even for n functions, $n \ge 2$.

WEAKLY A.P. FUNCTIONS; INTEGRATION OF A.P. FUNCTIONS.

Let E be a complete locally convex space.

DEFINITION. A function f: R → E is called weakly a.p. (we write W.a.p.) in E if the numerical function (x*f)(t) is a.p. for every $x* \in E$ where E* is the dual space

Obviously every a.p. function is w.a.p.; and if f is w.a.p. then it is weakly continous and weakly bounded.

THEOREM 7. Let E be a complete 1.c.s. and f a w.a.p. and continous function; assume $\{F(t); t \in R\}$ is weakly bounded, where $F(t) = \int_{0}^{\infty} f(\sigma)d\sigma$; then F(t) is w.a.p..

PROOF. We first note existence of the integral because of continuity of f over R. Take any $x* \in E^*$; then (x*f)(t) is a.p.. By continuity of x^* , we have (x*F)(t) = $\int_{0}^{1} (x*f)(g)dg, \text{ which is bounded by our assumption. Now } (x*F)(t) \text{ is a.p. (see [6],}$

theorem 6.20). The theorem is proved.

THEOREM 8. Let E be a Fréchet space and f: R → E a given function; then f is a.p. if f is w.a.p. and $\{f(t): t \in R\}$ is relatively compact in E.

PROOF. The condition is obviously necessary. Let us show it is sufficient by contradiction. Suppose there exists t_0 such that f is discontinuous at t_0 . Then we can find a neighbourhood U and two sequences $(s'_{n_1})_{n=1}^{\infty}$ and $(s'_{n_2})_{n=1}^{\infty}$ such that $\lim s'_{n_1} = 0 = \lim s'_{n_2}$ and

$$f(t_0 + s'_{n_1}) - f(t_0 + s'_{n_2}) \notin U$$
 (4.1)

for every n ϵ N. By relative compacity of $\{f(t);\ t\in R\}$ we can extract $(s_{n_1})_{n=1}^{\infty}$ and $(s_{n_2})_{n=1}^{\infty}$ from the respective first two sequences such that $\lim_{n\to\infty} f(t_0+s_{n_1}) = a_1 \in E$ and $\lim_{n\to\infty} f(t_0 + s_{n_2}) = a_2 \in E$. Consequently, using (4.1), we get $a_1 - a_2 \in E$ and therefore by the Hahn-Banach theorem ([13], corollary 1, p. 108), there exists x* ϵ E*such that $x*(a_1-a_2) \neq 0$; hence

$$x^*(a_1) \neq x^*(a_2).$$
 (4.2)

By continuity of x*, we have:

$$x^*(a_1) = \lim_{n \to \infty} x^*f(t_0 + s_{n_1}) = \lim_{n \to \infty} x^*f(t_0 + s_{n_2}) = x^*(a_2)$$
which contradicts (4.2): f is therefore continuous and P

which contradicts (4.2); f is therefore continuous over R.

We are now going to show almost-periodicity of f; but first of all, we state and prove:

LEMMA 1. Let E be a Fréchet space and Φ : R \rightarrow E be a.p.. Let $(s_n)_{n=1}^{\infty}$ be a real sequence such that $\lim_{n\to\infty} \Phi(s_n+n_k)$ exists for each $k=1,2,\ldots$, where $(n_k)_{k=1}^{\infty}$ is dense in R. Then $(\varphi(t+s_n))_{n=1}^\infty$ is uniformly convergent in t ϵ R.

PROOF. Suppose by contradiction $(\Phi(t+s_n))_{n=1}^{\infty}$ is not uniformly convergent in t; then there exists a neighbourhood U such that for every N = 1, 2, ..., there exists $\mathbf{n_N^{},\ m_N^{}}$ N and $\mathbf{t_N^{}} \in \mathbf{R}$ such that:

$$\Phi(t_N^{+s}_{n_N}) - \Phi(t_N^{+s}_{m_N}) \notin U.$$
 (4.3)

By Bochner's criteria we can extract two subsequences (s' $_{N}$) < (s $_{N}$) and (s' $_{N}$) < (s $_{N}$) such that

 $\lim_{N\to\infty} \Phi(t+s'_{n_N}) = g_1(t)$ uniformly in t ϵ R,

 $\lim_{N\to\infty} (t+s'_{m_N}) = g_2(t)$ uniformly in $t \in R$.

Let V be a symmetric neighbourhood with V+V+V \subset U. Then there exists N_O = N_{OV} such that if N > N_O,

$$\begin{aligned} & \phi(t_N + s'_{n_N}) - g_1(t_N) \in V, \\ & \phi(t_N + s'_{m_N}) - g_2(t_N) \in V. \end{aligned}$$

We conclude $g_1(t_N) - g_2(t_N) \notin V$. If not, we should get

$$\begin{array}{lll} & \varphi(t_N^{+}s'n_N^{}) \; - \; \varphi(t_N^{}+s'_{m_N^{}}^{}) \; = \; \varphi(t_N^{}+s'_{n_N^{}}^{}) \; - \; g_1^{}(t_N^{}) \\ & & + \; g_1^{}(t_N^{}) \; - \; g_2^{}(t_N^{}) \\ & & + \; g_2^{}(t_N^{}) \; - \; \varphi(t_N^{}+s'_{m_N^{}}^{}) \end{array}$$

and therefore $\Phi(\textbf{t}_{N}^{}+\textbf{s'}_{n_{N}}^{})$ - $\Phi(\textbf{t}_{N}^{}+\textbf{s'}_{m_{N}}^{})$ ϵ U; this contradicts (1).

We have found V with the property that if N is large enough, there exists \boldsymbol{t}_N ϵ R such that

$$g_1(t_N) - g_2(t_N) \notin V$$
.

But this is impossible; because if we take a subsequence $(\xi_k)_{k=1}^{\infty} \subset (\eta_k)_{k=1}^{\infty}$ and $\xi_k \to t_N$, then we have

$$\lim_{N\to\infty} \Phi(\xi_k + s'_{n_N}) = \lim_{N\to\infty} \Phi(\xi_k + s'_{m_N})$$

for every k, and therefore $g_1(\xi_k) = g_2(\xi_k)$ for every k; by continuity of g_1 and g_2 , $g_1(t_N) = g_2(t_N)$, thus $g_1(t_N) - g_2(t_N)$ belongs to every neighbourhood of O. The lemma is proved.

Let us now continue proving theorem 8. Consider arbitrary real sequences $\left(h_n\right)_{n=1}^{\infty}$ and $\left(\eta_r\right)_{r=1}^{\infty}$ the rational numbers.

By relative compacity of if(t), t ϵ R}, we can extract a subsequence $\binom{h}{n}_{n=1}^{\infty}$ (we do not change notation) such that for each r,

$$\lim_{n\to\infty} f(\eta_r + h_n) = x_r \text{ exists in E.}$$
 (4.4)

Now $(f(\eta_r + h_n))_{n=1}^{\infty}$ is uniformly convergent in r. Suppose it is not; then we find a neighbourhood U and three subsequences $(\xi_r)_{r=1}^{\infty} \subset (\eta_r)_{r=1}^{\infty}$, $(h''_r)_{r=1}^{\infty} \subset (h_r)_{r=1}^{\infty}$, and

$$f(\xi_r + h'_r) - f(\xi_r + h''_r) \notin U.$$
 (4.5)

By relative compacity of $\{f(t); t \in R\}$ we may say

$$\lim_{r\to\infty} f(\xi_r + h'_r) = b' \epsilon E, \qquad (4.6)$$

$$\lim_{r\to\infty} f(\xi_r + h''_r) = b'' \in E,$$

and using (4.5), we get

By the Hahn-Banach theorem, there exists $x*\ \epsilon$ E* such that

$$x^*(b') \neq x^*(b'')$$
. (4.8)

But f(t) is w.a.p. hence (x*f)(t) is a.p. and consequently it is uniformly continuous over R.

Consider the sequence of functions $(\phi_n)_{n=1}^{\infty}$ defined by:

$$\varphi_{n}(t) = (x*f)(t+h_{n}), n = 1,2,...$$

The equality $\varphi_n(t+\tau) - \varphi_n(t) = x*f(t+\tau+h_n) - x*f(t+h_n)$ shows almost-periodicity of each ϕ_n . Also $(\phi_n)_{n=1}$ is equi-uniformly continuous over R because (x*f) is uniformly continuous over R, as it is easy to see. Using (4.4), we can say

$$\lim_{n\to\infty} x*f(\eta_r + h_n) = x*(x_r)$$

for every r. Therefore, by lemma 1, $(x*f(t+h_n))_{n=1}^{\infty}$ is uniformly convergent in t. Consider now the sequences $(\xi_r + h'_r)_{r=1}^{\infty}$ and $(\xi_r + h''_r)_{r=1}^{\infty}$. By Bochner's criteria, we extract two subsequences (we use the same notations) such that $(x*f(t+\xi_r+h'_r))_{r=1}^{\infty}$ and $(x*f(t+\frac{r}{r}+h''_r))_{r=1}^{\infty}$ are uniformly convergent in t ϵ R.

Let us now prove

$$\lim_{r \to \infty} x^* f(t + \xi_r + h'_r) = \lim_{r \to \infty} x^* f(t + \xi_r + h''_r). \tag{4.9}$$

Consider the inequality:

$$|x*f(t+\xi_{r}+h'_{r}) - x*f(t+\xi_{r}+h''_{r})|$$

$$\leq |x*f(t+\xi_{r}+h'_{r}) - x*f(t+\xi_{r}+h'_{r})|$$

$$+ |x*f(t+\xi_{r}+h'_{r}) - x*f(t+\xi_{r}+h''_{r})|$$
(4.10)

r = 1, 2, ...

Let $\epsilon > 0$ be given; as $(x*f(t+h_r))_{r=1}^{\infty}$ is uniformly convergent in t, we choose η_{ϵ} such that for r, s > η_{ϵ} , we have $\left|x*f(t+h_s) - x*f(t+h_r)\right| < \frac{\epsilon}{2}$, for t ϵ R; then

for r, s > η_{ϵ} , we get

$$|x^*f(t+\xi_r+h_s) - x^*f(t+\xi_r+h_r)| < \frac{\varepsilon}{2}.$$
(4.11)

Consequently, for r > η_{ϵ} , we get:

$$|x^*f(t+\xi_r+h'_r) - x^*f(t+\xi_r+h_r)| < \frac{\varepsilon}{2},$$

$$|x^*f(t+\xi_r+h''_r) - x^*f(t+\xi_r+h_r)| < \frac{\varepsilon}{2}$$

and the inequality (4.10) gives:

$$|x*f(t+\xi_r+h'_r) - x*f(t+\xi_r+h''_r)| < \epsilon$$

for t ϵ R. (4.9) is then proved.

Now take t = 0; then using (4.6) we get:

$$x*(b') = \lim_{r \to \infty} x*f(\xi_r + h'_r) = \lim_{r \to \infty} x*f(\xi_r + h''_r) = x*(b'')$$

which contradicts (4.8) and uniform convergence in r for $(f(\eta_r + h_n))_{n=1}^{\infty}$

If i, j > N, we have

$$f(\eta_r + h_i) - f(\eta_r + h_u) \in U$$
, for every r. (4.11)

Therefore if t ϵ R, we take a subsequence of $(\eta_r)_{r=1}^{\infty}$ which converges to t and using continuity of f and the relation (4.11), we obtain, for i, j > N,

$$f(t+h_i) - f(t+h_i) \in U.$$

f is then a.p..

THEOREM 9. Let E be a Fréchet space. If f: R \rightarrow E is a.p. and {F(t); t ϵ R} where $F(t) = \int_0^t f(\sigma) d\sigma$ is relatively compact in E, then F is a.p..

PROOF. Immediate from theorems 7 and 8.

THEOREM 10. Let E be a complete 1.c.s.. If f is a.p. and its derivative f uniformly continuous over the real line, then f' is also a.p..

PROOF. Consider the sequence of a.p. functions $\{n(f(t+\frac{1}{n}) - f(t))\}_{n=1}^{\infty}$; it suffices to prove it converges uniformly over the real line to f'(t).

Let $U = U(\epsilon; p_i, 1 \le i \le n)$; by uniform continuity of f', we can choose $\delta = \delta_{ii} > 0$ such that $f'(t_1) - f'(t_2) \in U$ for every t_1 , t_2 with $|t_1 - t_2| < \delta$. We write

$$f'(t) - n(f(t+\frac{1}{n}) - f(t)) = n \int_0^{\frac{1}{n}} [f'(t) - f'(t+\sigma)] d\sigma$$
.

Therefore, if we take N = N_U > $\frac{1}{\delta}$, then for n₁, N, we have:

$$p_{\mathbf{i}}[f'(t)-n(f(t+\frac{1}{n})-f(t))] \leq n\int_{0}^{\frac{1}{n}}p_{\mathbf{i}}[f'(t)-f'(t+\sigma)]d\sigma < \epsilon$$
 for every semi-norm $p_{\mathbf{i}}$ and every t ϵ R. The theorem is proved.

THEOREM 11. Let E be a Fréchet space; then the set of all a.p. $f:R \rightarrow E$ is a Banach space under the supremum norm.

PROOF. Obvious; use theorems 1, 2 and 6.

APPLICATIONS TO ABSTRACT DIFFERENTIAL EQUATIONS

A. A.P. SOLUTIONS OF
$$(\frac{d}{dx} - A) x = 0$$

Consider in a complete l.c.s. E the differential equation

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{t}} = \mathbf{A}\mathbf{x}(\mathbf{t}), \ \mathbf{-}^{\infty} < \mathbf{t} < \infty, \tag{5.1}$$

where A is a continuous linear operator such that $\{A^k; k = 1,2,...\}$ is equi-continuous. A solution of (5.1) is a continuously differentiable function which satisfies (5.1). It is easy to construct (as in [13] p. 244-246) a solution of the form:

$$e^{tA}x(0) = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k x(0).$$

We can say more:

PROPOSITION 1. The function $e^{tA}x_0$: R \rightarrow E is the unique solution of the Cauchy problem:

$$\frac{dx}{dt} = Ax(t); -\infty < t < \infty,$$

$$x(0) = x_0.$$
(5.2)

PROOF. Suppose there exists another solution y(t) with $y(0) = x_0$; consider the function $v(\tau) = e^{(t-\tau)A}y(\tau)$, with fixed t and show it is constant over the real line; therefore $v(\tau) = v(0)$ for every $\tau \in R$, which means v(t) = v(0), or $y(t) = e^{tA}x_0$, proving uniqueness of the solution (see[9] for a complete proof).

Now, define a perfect Fréchet space E as a Fréchet space with the following property: every function f: $\mathbb{R} \to \mathbb{E}$ with (i) $\{f(t); t \in \mathbb{R}\}$ is bounded in E; (ii) f'(t) is a.p. in E; is necessarily a.p. in E.

We state and prove the two following theorems inspired from a result of PEROV (see [15] theorem 1.1) but they are not direct generalisations. In fact they are new results.

THEOREM 1. Let E be a perfect Fréchet space; assume (i) A is a compact linear operator; (ii) $\{A^k; k = 1, 2, ...\}$ is equi-continuous; (iii) for every semi-norm p, there exists a semi-norm q such that $p[e^{tA}] \leq q(x)$ for every x ϵ E and every t ϵ R. Then every solution x(t) of (5.1) is a.p. in E.

PROOF. Because $x(t) = e^{tA}x(0)$, then x(t) is bounded in E by (iii). E being a perfect Fréchet space, it suffices to prove x'(t) is a.p..

 $\{Ax(t); t \in R\}$ is also relatively compact in E for A is a compact operator; consequently $\{x(t); t \in R\}$ is also relatively compact. Let $(s'_n)_{n=1}^{\infty}$ be an arbitrary real sequence; we then can extract a subsequence $(s_n)_{n=1}^{\infty}$ such that $(x'(s_n))_{n=1}^{\infty}$ is a Cauchy sequence in E. But we have:

are in E. But we have.

$$x'(t+s_n) = Ax(t+s_n) = Ae^{(t+s_n)A}x(0) = Ae^{tA}e^{s_nA}x(0)$$

$$= Ae^{tA}x(s_n) = e^{tA}Ax(s_n) = e^{tA}x'(s_n)$$

for every $n=1,2,\ldots$, and every t ϵ R. If p is a given semi-norm, there exists a semi-norm q such that

$$p[x'(t+s_n) - x'(t+s_m)] = p[e^{tA}(x'(s_n) - x'(s_m))]$$

$$\leq q[x'(s_n) - x'(s_m)]$$

for every t ϵ R and every n, m ϵ N. Therefore $(x'(t+s_n))_{n=1}^{\infty}$ is uniformly Cauchy in t; we then conclude almost-periodicity of x'(t) by Bochner's criteria.

THEOREM 2. Let E be a Fréchet space; assume conditions (1) - (iii) in theorem 1 are satisfied and moreover the range R(A) of A is dense in E. Then every solution x(t) of (5.1) is a.p. in E.

We remark the first part of the proof of theorem 1 tells us if x(t) is a solution of (5.1) with x(0) ϵ D(A) = E, then x'(t) is a.p.. Before proving Theorem 2 let us state and prove:

LEMMA 1. Every solution of (5.1) with initial data in R(A) is a.p..

PROOF. Let $a \in R(A)$ and consider the solution y(t) with y(0) = a; there exists $x_0 \in D(A) = E$ such that $Ax_0 = a$. We have $y(t) = e^{tA}a = e^{tA}Ax_0 = ae^{tA}x_0 = Ax(t) = x'(t)$ where $x(t) = e^{tA}x_0$; therefore x'(t) (and consequently y(t)) is a.p.. The lemma is proved.

PROOF OF THEOREM 2. Consider a solution x(t) of (5.1) with x(0) ϵ E; as R(A) is dense in E, there exists a sequence $(a_n)_{n=1}^{\infty}$ in R(A) such that $a_n + x(0)$. Consider a sequence of solutions $(y_n(t))_{n=1}^{\infty}$ with $y_n(0) = a_n$, n = 1,2,... To prove almost-periodicity of x(t) it suffices to prove $y_n(t) + x(t)$ uniformly in $t \in R$ for every $y_n(t)$ is a.p. by lemma 1. We have $x(t) = e^{tA}x(0)$, $y_n(t) = e^{tA}a_n$, n = 1,2,... Now given a semi-norm p there exists, by assumption (iii), a semi-norm q such that $p(y_n(t) - x(t)) \le q(a_n - x(0))$, for every $t \in R$ and every $n \in N$. The conclusion is immediate.

B. A.P. SOLUTIONS OF
$$(\frac{d}{dx} - A) x = f$$

We now consider the non-homogeneous differential equation

$$\frac{dx}{dt} = Ax(t) + f(t), \quad -\infty < t < \infty$$
 (5.3)

where A is a closed linear operator with domain D(A) dense in a Frechet space E; the function f(t) is a.p. in E. Let us recall some useful definitions (see 13). A family of continuous linear operators T(t), t ϵ R, is an equi-continuous C_0 -group:

- (i) $T(t_1+t_2)x = T(t_1)T(t_2)x$, T(0)x = x, for every $x \in E$ and every t_1 , $t_2 \in R$;
- (ii) for every semi-norm p, there exists a semi-norm q such that $p[T(t)x] \leq q(x)$ for every x ϵ E and every t ϵ R.
- (iii) $\lim T(t_0)x$, for every $x \in E$ and every $t_0 \in R$.

Now consider an equi-continuous C -group T(t). A is called the infinitesimal generator of T(t) if Ax = $\lim_{n\to 0} \frac{T(n)x - 0x}{n}$, i.e., A is the linear operator with domain D(A) = $\{x \in E; \lim_{n\to 0} \frac{T(n)x - x}{n} \text{ exists in } E\}$ and for every $x \in D(A)$, $Ax = \lim_{n\to 0} \frac{T(n)x - x}{n}$.

$$D(A) = \{x \in E; \lim_{\eta \to 0} \frac{T(\eta)x - x}{\eta} \text{ exists in } E\} \text{ and for every } x \in D(A), Ax = \lim_{\eta \to 0} \frac{T(\eta)x - x}{\eta}.$$

It can be proved $\frac{d}{dt} T(t)x = AT(t)x = T(t)Ax$ for every $x \in D(A)$ (see[13] for the case of a semi-group).

We are going to prove the following theorem 3 which is a generalization of theorem 3.2 [15] due to ZAIDMAN.

THEOREM 3. Let E be a Fréchet space. Suppose x(t) is a solution of equation (5.3) with relatively compact trajectory; A is the infinitesimal generator of equicontinuous C_0 -group T(t) such that $T(t)x : R \to E$ is a.p. for every $x \in E$; f(t) is a.p.. Then x(t) is also a.p..

Before we prove theorem 3, let us mention some useful lemmas (see [9] for proofs): LEMMA 2. Let E be a complete 1.c.s.. If $f(\sigma)$ is continuous, then $T(t-\sigma)f(\sigma)$: $R \rightarrow E$ is also continuous for every t ϵ R.

LEMMA 3. In a complete 1.c.s. E, every solution of (5.3) admits the integral

$$x(t) = T(t)x(0) + \int_{0}^{t} T(t-\sigma)f(\sigma)d.$$

LEMMA 4. Let E be a Fréchet space. If $\{T(t)x; t \in R\}$ is relatively compact in E for every $x \in E$ and $\{f(t); t \in R\}$ is also relatively compact in E, then $\{T(t)f(t);$ t ϵ R} is relatively compact in E.

PROOF. Let $(t''_n)_{n=1}^{\infty}$ be an arbitrary real sequence; by our assumption on f(t), we can extract a subsequence $(t'_n)_{n=1}^{\infty} \subset (t''_n)_{n=1}$ such that $\lim_{n \to \infty} f(t'_n)$ exists in E; let x be this limit.

Take another subsequence $(t_n)_{n=1}^{\infty} \subset (t_n)_{n=1}^{\infty}$ such that $(T(t_n)x)_{n=1}^{\infty}$ is a Cauchy sequence in E. Write:

$$\begin{split} T(t_{n})f(t_{n}) - T(t_{m})f(t_{m}) &= [T(t_{n}) - T(t_{m})] [f(t_{n} - x] \\ &+ [(T(t_{n}) - T(t_{m}))x] \\ &+ T(t_{m})[f(t_{n}) - f(t_{m})] \,. \end{split}$$

Let p be any semi-norm; then we have

$$\begin{split} p[T(t_n)f(t_n) - T(t_m)f(t_m)] &< p[[T(t_n) - T(t_m)] [f(t_n) - x]] \\ &+ p[T(t_n) - T(t_m)]x] \\ &+ p[T(t_m)[f(t_n) - f(t_m)]]. \end{split}$$

Using equi-continuity of T(t), we can take a semi-norm q such that

$$\texttt{p[T(t}_n)[\texttt{f(t}_n) - \texttt{f(t}_m)]] \leq \texttt{q[f(t}_n) - \texttt{f(t}_m)]$$

and

$$p[[T(t_n) - T(t_m)] [f(t_n) - x]] \le 2q[f(t_n) - x].$$

Now we choose n and m sufficiently large such that

$$q[f(t_n) - f(t_m)] < \frac{\varepsilon}{3}, q[f(t_n) - x] < \frac{\varepsilon}{6}, p[(T(t_n) - T(t_m))x] < \frac{\varepsilon}{3}$$

then we obtain:

$$p[T(t_n)f(t_n) - T(t_m)f(t_m)] < \varepsilon$$

which shows $(T(t_n)f(t_n))_{n=1}^{\infty}$ is a Cauchy sequence. The lemma is proved.

LEMMA 5. Let E be a Fréchet space and consider the equi-continuous C_0 -group T(t) such that $T(t)x: R \to E$ is a.p. for every $x \in E$. Suppose also f(t) is a.p.. Then $T(t)f(t): R \to E$ is a.p..

PROOF. Consider U = U(ϵ ; p_i , $1 \le i \le n$) a given neighbourhood; because of equicomtinuity of T(t), there corresponds to each semi-norm p_i , a semi-norm q_i such that:

(i)
$$p_i(T(t)x) \leq q_i(x)$$
, $x \in E$, $t \in R$.

Consider also the symmetric neighbourhood

$$V = V(\frac{\varepsilon}{h}; p_i, q_i, 1 \le i \le n); V + V + V + V \subset U.$$

As $\{f(t); t \in R\}$ is totally bounded, there exists t_1, \ldots, t_{v} such that for every $t \in R$ we have f(t) $\epsilon_k \overset{\vee}{=} 1$ $(f(t_k) + V)$. Consider now the following a.p. functions: f(t), $T(t)f(t_k)$, $k = 1, \ldots, v$. Then they have the same V-translation numbers; therefore we can say there exists $\ell = \ell(V) > 0$ such that any interval $[a,a+\ell]$ contains τ with

$$f(t+\tau) - f(t) \in V, t \in R$$

$$T(t+\tau)f(t_k) - T(t)f(t_k) \in V, k = 1,..., t \in R.$$
(5.4)

Take t ϵ R arbitrary; then there exists k ($1 \le k \le \nu$) such that

$$f(t) \in f(t_L) + V.$$
 (5.5)

Write:

$$\begin{split} & T(t+\tau)f(t+\tau) - T(t)f(t) = \{T(t+\tau)[f(t+\tau) - f(t)]\} \\ & + \{T(t+\tau)[f(t) - f(t_k)]\} + \{T(t+\tau)f(t_k) - T(t)f(t_k)\} \\ & + \{T(t)[f(t_k) - f(t)]\}. \end{split}$$

For every semi-norm p_i ; there exists a semi-norm q_i such that:

$$\begin{split} & p_{i}[T(t+\tau)f(t+\tau) - T(t)f(t)] \leq q_{i}[f(t+\tau) - f(t)] \\ & + q_{i}[f(t) - f(t_{k})] + p_{i}[T(t+\tau)f(t_{k}) - T(t)f(t_{k})] \\ & + q_{i}[f(t_{k}) - f(t)] < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \varepsilon , \text{ (using (5.3) - (5.5).} \end{split}$$

Therefore $T(t+\tau)f(t+\tau) - T(t)f(t) \in U$ for every $t \in R$, which is almost-periodicity for T(t)f(t).

PROOF OF THEOREM 3. By lemma 3 we have : $x(t) = T(t)x(0) + \int_0^t T(t-\sigma)f(\sigma)d\sigma$. But T(t)x(0) is a.p.. It remains to prove the function $v(t) = \int_0^t T(t-\sigma)f(\sigma)d\sigma$ is also a.p..

As $\{x(t); t \in R\}$ and $\{T(t)x(0); t \in R\}$ are relatively compact, then $\{v(t); t \in R\}$ also is relatively compact. Let us write $v(t) = \int_0^t T(t)T(-\sigma)f(\sigma)d\sigma$ = $T(t) \int_0^t T(-\sigma)f(\sigma)d\sigma$. Then $T(-t)v(t) = \int_0^t T(-\sigma)f(\sigma)d\sigma$.

By theorem 3 of chapter 1, T(-t)x is a.p. for every $x \in E$, therefore $\{T(-t)x; t \in R\}$ is relatively compact for every $x \in E$. By lemma 4, $\{T(-t)v(t); t \in R\}$ and consequently $\{\int_0^T T(-\sigma)f(\sigma)d\sigma; t \in R\}$ is relatively compact. By lemma 5, T(-t)f(t)

is a.p., therefore $\int_0^t T(-\sigma)f(\sigma)d\sigma$ is a.p.. We apply again lemma 5 to conclude almost-periodicity of $\int_0^t T(t-\sigma)f(\sigma)d\sigma$. Theorem 3 is proved.

THEOREM 4. Let E be a Fréchet space. Solutions of the equation $x^{\dagger}(t) = Ax(t)$, $-\infty < t < \infty$, with relatively compact trajectory are precisely almost-periodic ones, if A is the infinitesimal generator of equi-continuous C_0 -group T(t).

PROOF. Let x(t) be a solution of the given equation. It suffices to prove that if x(t) has a relatively compact trajectory, then x(t) is a.p.. Take an arbitrary real sequence $(s_n')_{n=1}^{\infty}$; we can extract a subsequence $(s_n')_{n=1}^{\infty} \subset (s_n')_{n=1}^{\infty}$ such that $(x(s_n))_{n=1}^{\infty}$ is a Cauchy sequence in E; but we have

$$x(t+s_n) = T(t+s_n)x(0) = T(t)T(s_n)x(0) = T(t)x(s_n), n = 1,2,...$$

Therefore

$$x(t+s_n) - x(t+s_m) = T(t)[x(s_n) - x(s_m)], n, m \in N.$$

Let p be a given semi-norm; by equi-continuity of T(t), there exists a semi-norm q such that:

$$p[x(t+s_n) - x(t+s_m)] \le q[x(s_n) - x(s_m)], t \in R.$$

Which shows $(x(t+s))_{n=1}^{\infty}$ is a Cauchy sequence, uniform in t ϵ R. We conclude using Bochner's criteria.

ACKNOWLEDGEMENT. We would like to thank Professor S. ZAIDMAN for the useful discussions we had during this work and Professor J.A. GOLDSTEIN for suggesting theorem 2 in section 5 and encouraging me to publish these results.

REFERENCES

- BOCHNER, S., Continuous Mappings of Almost-Automorphic and Almost-Periodic Functions, Proc. Nat. Acad. Sc. 52 (1964).
- BOCHNER, S. and von NEUMANN, J., Almost-Periodic Functions in Groups, <u>Trans. Amer. Math. Soc.</u> 37 (1935), 21-50.
- 3. AMERIO, L., Funzioni Debolmente Quasi-Periodiche, Rend. Sem. Mat. Padova 30 (1960).
- AMERIO, L. and PROUSE, G., <u>Almost-Periodic Functions and Functional Equations</u>.
- 5. BESICOVITCH, A.S., Almost-Periodic Functions, Dover.
- 6. CORDUNEANU, C., Almost-Periodic Functions, Interscience, 1968.
- 7. FINK, A.M., Almost-Periodic Differential Equations, Springer Verlag, 1974.
- ROBERTSON, A.P. and ROBERTSON, W., <u>Topological Vector Spaces</u>, Cambridge University Press, 1973.
- NGUEREKATA, G.M., Remarques sur les équations différentielles abstraites, Thèse de Ph. D. Université de Montréal, Juin 1980.
- HILLE, E. and PHILIPS, R.S., <u>Functional Analysis and Semi-Groups</u>, A.M.S. Colloquium Publications, 31 (1957).
- MIYADERA, I., Semi-Groups of Operators in Fréchet Space and Applications to Partial Differential Equations, <u>Math. Inst., Tokyo Metro Univ.</u> (1958) 162-183.
- 12. NEUMANN von, J., Almost-Periodic functions in a Group, <u>Trans. Amer. Math. Soc.</u> 36 (1934), 445-492.
- 13. YOSIDA, K., Functional Analysis, Springer Verlag, 1968.
- 14. ZAIDMAN, S., Some Remarks on Almost-Periodicity, Atti della Academia delle scienze di Torino 106 (1971-72).
- 15. ZAIDMAN, S., Solutions Presque-Périodiques des Équations Différentielles Abstraites, L'enseignement Math. 24 (1978), 87-110.