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ABSTRACT. Let K be a complete locally convex space (l.c.s.) and £ : R > E a continuous
function; then f is said to be almost-periodic (a.p.) if, for every neighbourhood

(of the origin in E) U, there exists £ = ¢(U)>0 such that every interval [a,a+f] of
the real line contains at least one point 1 such that f(t+t) - f(t) € U for every

t € R. We prove in this paper many useful properties of a.p. functions in l.c.s. and
give Bochner's criteria in Fréchet spaces.
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1. INTRODUCTION

The notion of almost-periodic functions has been introduced by Bohl and Esclangon
at the beginning of the century and widely studied by Bochner [1], [2] and many other
mathematicians., The reader can see [3], [4], [5], [6], [7],... for what is written
on the subject.

A definition of almost-periodic functions on a group and with values in a linear
topological space is contained in the important 1935 paper of Bochner and Von Neumann [2];
we consider here the one suggested in [6] which is very easy to handle (see definition 1
below). liost of the results of Part I of this paper are known in Banach spaces. We
give their extensions to linear topological spaces.

In Section 5 of our paper, we study almost-periodicity of solutions of some
abstract differential equations of the form : x'(t) = Ax(t) + £(t), -»<t<w, in Fréchet
spaces.

We suppose the reader is acquainted with elementary properties of linear topo-
logical spaces (see for example [8]).

We consider a locally convex space E = E(t) over the field ¢(¢ = R or C); its
topology 1 is generated by a family of continous semi-norms Q = {p,q,...}.

We assume E is a Hausdorff space. A basis of neighbourhoods (of the origin in E)
contains sets of the form U = U (e P 1<i<n)-= {x € L; pi(x)<€,i=l,..,n} 1 € Q.

E is called a Fréchet space if 1 is induced by an invariant and complete metric. If
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E is a Fréchet space, we may take Q = {pi}:=l. A subset DcE is dense in E if every
x ¢ bk is the limit of a generalized sequence of elements of D. A linear operator A :
D(A) » E with domain D(A) dense in E is closed if its graph G(A) is a closed subset
of the product space E x E.

THEOREM. (See [9]). Let E be a complete locally convex space. Then the linear
operator A : D(A) > E is closed iff for every generalized sequence (x“) in D(A) such
that l%m xu = x and l&m Axu = y we have x € D(A) and Ax = y.

COROLLARY. Every continous linear operator defined on all E is closed.

In a locally convex space E, a subset X is called totally bounded if, for every
neighbourhood (of the origin) U, there corresponds a finite set Y such that X < Y+U.
2. ALMOST PERIODIC FUNCTIONS WITH VALUES IN A LOCALLY CONVEX SPACE.

DEFINITION 1. Let E be a complete locally convex space (l.c.s.). A continous
function £ : R ~ E is called almost-periodic (a.p.) if for each neighbourhood (of the
origin) U, there exists a real number & = 2(U)>0 such that every interval [a,a+L]
contains at least a point T such that f(t+t) - £(t) € U for every t € R.

Obviously 1 = LY and we call it a U-translation number of the function f. The
following two theorems are known (see [6]). We give here a proof of the second one.

THEOREl 1. (a) If £ : R > E is a.p. then f is uniformly continuous on R.

(b) If (fn):=l is a sequence of a.p. functions which converge uniformly on R to a

function f, then f is also a.p..

THEOREM 2. If f is a.p., then {f(t); t € R} is totally bounded in E.

PROOF. Let U be a given neighbourhood, and V a symmetric neighbourhood such
that V + V ¢ U; let &= 2(V) as in definition 1. By continuity of f, the set {f(t);
t e [0,2]} is compact in E (see [8] proposition 7, p. 53). But in a l.c.s., every
compact set is totally bounded (see [8] theorem 5, p. 60) : therefore there exists

v
Xpseeos X such that for every te[0,2], we have f(t) € U (x.,+V).
j=1
Take an arbitrary t € R and consider 1 ¢ [-t, -t+%] a V - translation number of f.

Then we have:

f(t+t) - f(t) e V. (2.1)
Choose X between xl,...,x\J such that
f(t+1) € xk+ V. (2.2)

Let us write f(t) - X = [£(t) - f(e+1)) + [f(t+T) - xk]. Then by (2.1) and (2.2) we
get f(t) - X € U and therefore f(t) ¢ Xy + U; as t is arbitrary we conclude:
v
{f(t); t e R} c U (x1+U).
The theorem is proved. =1 .
REMARK 1. If E is a Fréchet space, then {f(t): t € R} is relatively compact in
E if f is a.p.. For in everv complete metric space, relative compacity and totally
boundedness are equivalent ([13], p.13). We then conclude every sequence (f(t N> 1
: n’ ‘n=
contains a convergent subsequence.
THEOREM 3. Let E be a complete l.c.s. If f : R > E is a.p. then the functions
Af(Aed) and f defined by f(t) = f(-t) are also a.p..
PROOF. Af is obviously a.p.. Let us consider E; by almost-periodicity of f,
if U is a given neighbourhood, there exists £ = 2(U) such that every interval [a,a+R]
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contains 1 such that f(t+rt) - f(t) € U for every t € R. Put s = -t; we get :
F(s-1) - (s) = f(-s+1) - f(-s) = f(t+1) - £(t).
Therefore f(s-1) - f(s) € U for every s ¢ R, which shows f is a.p. with -1 as a
U-translation number.
3. BOCHNER'S CRITERIA AND OTHER PROPERTIES.
We first give theorem 4 we prove as theorem 6.6 in [6].
THEOREM 4. Let E be a Fréchet space and f : R > E a.p.; then for every real

sequence (s' , there exists a subsequence (sn):=l such that (f(t+sn)):=1 is

oo
n)n=1
uniformly convergent in t € R.

PROOF. Consider the sequence of functions (fsn):=1 corresponding to (sn):=1 and
let S = (nn):=1 be a dense sequence in R. By remark 1, we can extract from
(f(n1+sn)):=1a convergent subsequence, for {f(t); t € R} is relatively compact in E.

Let (fsl,n):=1 be the subsequence of (fsn):=1 which converges at n- We apply

-]
the same argument as above to the sequence (fsl n)n=l to choose a subsequence
s

(fSz n):__,1 which converges at n We continue the process and consider the diagonal
>

o Sn’n)nﬂl
(frn)n=l' Now we are going to show it is uniformly convergent in R, i.e. for every

9
sequence (f which converges for each n, in S. Call this last sequence by

neighbourhood U, there exists N = NU such that f(t+rn) - f(:+rm) € U for every
t e Rif n, m > N.

Consider an arbitrary neighbourhood U and a symmetric neighbourhood V such that
V4V4+V+V+V c U. Let 2= 2(V) as in definition 1. By uniform continuity of f over R
(theorem 1), there exists § =6v > 0 such that

f(t) - £(t') e V (3.1)
for every t,t' € R with |[t-t'| < §

We divide the interval [0,%2] into v subintervals of length smaller than §.
Then, in each interval, we choose a point of S and get S0 = {51,...,Ev}.

As SO is finite, (ftn):=1 is uniformly convergent over SO; therefore there exists
N = Nv such that

f(gi+rn) - f(gi+rm) eV (3.2)
for every i = 1,...,v and if n, m > N.

Let t € R be arbitrary and 1 ¢ [-t,-t+2] such that f(t+1) - f(t) € V. Choose

Ei such that lt+1-£il < § ; then f(t+r+rn) -f(£i+rm) ¢ V, for every n. Therefore,
if n, m >N, we get:
f(t+rn) - f(t+rm) e U, (3.3)

which proves uniform convergence of (f(t+rn))°°
n=

1
To see (3.3) we write :

f(ttr ) - f(t+rm) = [f(t+rn) - f(t+rn+T]
+ [f(t+r +1) - + -
[£Qetr +1) = £(5 4t )] + [E(54r) = £(g 7))
+ [f(5i+rm) - f(t4r +1)]
+ [f(t+r +1) - f(t+r )],
m m
and we apply (3.2) or (3.3) to each term in square brackets. The theorem is proved.

We now state and prove Bochner's criteria :

THEOREM 5. Let E be a Fréchet space. Then f : R > E is a.p. iff for every real
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o0 -] oo
sequence (s' ) there exists a subsequence (s ) such that (f(t+s )) converges
n’n n’n= n’ 'n=1 &

=1 1

uniformly in t € R.

PROOF. The condition is obviously necessary by theorem 4; let us show it is
sufficient; suppose f is not a.p.; then there exists a neighbourhood U such that for
every % > 0, there exists an interval of length 2 which contains no U-translation
number of f, or :

there exists an interval [-a,-a+?] such that for every

T € |-a,-at+2] there exists t = tT such that f(t+t) - f(t) ¢ U.

Let us consider 1) € R and an interval (a;-b)) with b -a, > 2|11| which contains
a_-b

no U-translation number of f. Now let 12 = ——E——-; then T,y € (al,bl) and therefore

12-11 cannot be a U-translation number of f. Let us consider another interval (az.bz)

with b -a, > 2 (i11|+|12|), which contains no U-translation number of f. Let

2 72
az-—b2
T4 = 7 ; then T37Tys T37T, € (a2,b2) and therefore 37Ty and 37T, cannot be
U-translation number of f. We proceed and get a sequence (Tn):=1 such that no
T T is a U-translation number of f;
f(t+r -t ) - f(t) ¢ U. (3.4)
m n
Put ¢ = 0 = t-1_; then (3.4) becomes:
nn A
f(o+1m) - f(0+1n) ¢ U. (3.5)
. 1 \® ® 4.1 had
Suppose there exists a subsequence (7 n)n=l of (-[n)n=1 such that (f(t+g n))n=1
converges uniformly in t ¢ R; then for every neighbourhood V, there exists N = Nv
such that if m, n > N (we may take m > n), then we have:
' - [
fedr' ) - £’ ) e V (3.6)

for every t € R.

But this contradicts (3.3); it suffices to take U = V and Omn= tmn in (3).
Therefore (f(t+1n)):=1 does not contain any subsequence which converges uniformly
in t. The theorem is proved.

REMARK 2. Here we do not use metrizability of E in the proof of the sufficiency

of the condition.

THEOREM 6. Let E be a Fréchet space and consider the functions f, g, fl, f2:
R + E; then we have:
a) f + g is a.p. in E if f and g are a.p. in E
b) F = (fl, fZ) is a.p. in the product space E x E if fl and f2 are a.p.

in E.
PROOF. It is very easy to prove a) and b) by using Bochner's criteria; we omit it.
The reader can see [9].
COROLLARY 1. If f and f, are a.p. in the Fréchet space E, then for every neigh-

1 2

bourhood U, f and f2 have common U-translation numbers.

PROOF. %et U be a given neighbourhood in E; by theorem 6, the function f(t) =
(fl(t), fz(t)) is a.p.. Consider now 17 a U x U-translation number of f; then f(t+t) -
f(t) ¢ U x U, for every t € R and therefore fi(t+r) - fi(t) e U, i = 1,2, for every
t € R; T is then a U-translation number of fl and f,.

2
REMARK 3. Theorem 6, b) and corollary 1 are true even for n functions, n > 2.
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4. WEAKLY A.P. FUNCTIONS; INTEGRATION OF A.P. FUNCTIONS.

Let E be a complete locally convex space.

DEFINITION. A function f: R > E is called weakly a.p. (we write W.a.p.) in E if
the numerical function (x*f)(t) is a.p. for every x* ¢ E where E* is the dual space
of E.

Obviously every a.p. function is w.a.p.; and if f is w.a.p. then it is weakly
continous and weakly bounded.

THEOREM 7. Let E be a complete l.c.s. and f a w.a.p. and continous function;
t

assume {F(t); t € R} is weakly bounded, where F(t) =(J/”f(o)dc; then F(t) is w.a.p..

PROOF. We first note existence of the integral because of continuity of f over

R. Take any x* € E*; then (x*f)(t) is a.p.. By continuity of x*, we have (x*F)(t) =
-/‘(x*f)(o)do, which is bounded by our assumption. Now (x*F)(t) is a.p. (see [6],

theorem 6.20). The theorem is proved.

THEOREM 8. Let E be a Fréchet space and f: R » E a given function; then f is

a.p. if f is w.a.p. and {f(t): t ¢ R} is relatively compact in E.

PROOF. The condition is obviously necessary. Let us show it is sufficient by
contradiction. Suppose there exists t such that f is discontinuous at t . Then we
can find a neighbourhood U and two sequences (s' nl)n‘l and (s' nz)n-l such that

lim s' np 0= lim s' np and

nre n->-oo

f(t0+s' - f(t0+s'n2) ¢ U (4.1)

nl)

for every n € N. By relative compacity of {f(t); t € R} we can extract (snl)n-l and

(Snz)n~l from the respective first two sequences such that lim f(t +sn1) =a, € E

and %3@ f(t0+sn2) =a, € E. Consequently, using (4.1), we get a -a ¢ E and

therefore by the Hahn-Banach theorem ([13], corollary 1, p. 108), there exists x* ¢ E*

such that x*(al-az) # 0; hence
x*(al) # x*(a

By continuity of x*, we have:

2). (4.2)

% - 11 * o ora _
X (al) %l% X f(t0+snl) %;g x*f(t0+sn2) = x*(az)
which contradicts (4.2); f is therefore continuous over R.

We are now going to show almost-periodicity of f; but first of all, we state
and prove:

LEMMA 1. Let E be a Fréchet space and $: R > E be a.p.. Let (s )w -1 be a real
sequence such that %ig ¢(sn+nk) exists for each k = 1,2,..., where (nk)k_ is dense
in R. Then (¢(t+sn)):;l is uniformly convergent in t € R.

PROOF. Suppose by contradiction (¢(t+sn)):=1 is not uniformly convergent in t;
then there exists a neighbourhood U such that for every N = 1,2,..., there exists
oy my N and tN € R such that:

CI>(tN+an) - ¢(tN+smN) ¢ U. (4.3)
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Bv Bochner's criteria we can extract two subsequences (s'n ) © (sn ) and

(s' ) < (s_ ) such that N N

lim ®(t+s'nN)

gl(t) uniformly in t € R,
N->co

lim (t+s'p ) gz(t) uniformly in t € R.
N

Noo
Let V be a symmetric neighbourhood with V+V+V < U. Then there exists N0 = Nov
such that if N > NO,
@(tN+s'nN) - gl(tN) eV,
¢(tN+s'mN) - gy(ty) e V.
We conclude gl(tN) - gz(tN) ¢ V. 1If not, we should get
o(tys'ny) - ¢(tN+s'mN) = o(tyts'y) - 8, (ty)
+ g (t) - g,y (t)
+ gz(tN) - ¢(tN+S'mN)
and therefore ¢(tN+s'nN) - Q(tN+s'mN) e U; this contradicts (1).

We have found V with the property that if N is large enough, there exists
tN € R such that
g, () - 8, (ty) ¢ V. . .
But this is impossible; because if we take a subsequence (€k)k=l c (nk)kxl and
gk > tN’ then we have
lim ¢(g +s',, ) = lim ¢(g +s' )
Nowo k N Nowo k mN
for every k, and therefore gl(Ek) = gz(gk) for every k; by continuity of 81 and -5
gl(tN) = gz(tN), thus gl(tN) - gz(tN) belongs to every neighbourhood of 0. The lemma
is proved.

Let us now continue proving theorem 8. Consider arbitrary real sequences

o © .
(hn)n=l and ("r)r=l the rational numbers.
By relative compacity of {f(t), t € R}, we can extract a subsequence (hn):_1
(we do not change notation) such that for each r,
%&g f(nr+hn) =x exists in E. (4.4)

Now (f(nt+hn)):=l is uniformly convergent in r. Suppose it is not; then we find
. . @ © v @ - L]
a neighbourhood U and three subsequences (Er)r=l < (r]r =1’ (h r)r=l = (hr)r=1’

(h"r)r=l c (hr)r=l and
f(;r+h'r) - f(£r+h"r) ¢ U. (4.5)

By relative compacity of {f(t); t € R} we may say

. A - Al
lim £(5 *h') = b' € E, (4.6)
. 11 —_ ”
%&g f(5r+h r) = b" ¢ E,
and using (4.5), we get
b' - b" ¢ U. 4.7

By the Hahn-Banach theorem, there exists x* € E* such that
x*(b') # x*(b"). (4.8)
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But f(t) is w.a.p. hence (x*f)(t) is a.p. and consequently it is uniformly continuous
over R.

Consider the sequence of functions (qh):=l defined by:

¢h(t) = (x*f)(t+hn), n=1,2,...
The equality ¢n(t+r) - ¢h(t) = x*f(t+1+hn) - x*f(t+hn) shows almost-periodicity
of each 9, Also (;pn)n=l is equi-uniformly continuous over R because (x*f) is uniformly
continuous over R,as it is easy to see. Using (4.4), we can say

i * + = x%
lim x f(n +h ) = x (xr)

for every r. Therefore, by lemma 1, (x*f(t+hn)):=1 is uniformly convergent in t.

Consider now the sequences (& +h' )m and (§ +h" )m_ . By Bochner's criteria,
r r'r= r r'r=1

1
o
we extract two subsegeunces ( we use the same notations) such that (x*f(t+£r+h'r))r=l

and (x*f(t+ir+h"r))t_1 are uniformly convergent in t € R.

Let us now prove

. x ' - . =% +h" . .
lim x £(t+6 +h r) Lim x*E(e+E h r) (4.9)
Consider the inequality:
| X% (e+E +h' ) - x*f(t+ +h" )| (4.10)
r r r r

* ' - x*

< |x £(t+g +h I f(t+gr+hr)|
* - "

+ |x f(t+€r+hr) x*f(t+£r+h r)|

r=1,2,...
Let € > 0 be given; as (X*f(t+hr)):=l is uniformly convergent in t, we choose

nC such that for r, s > ne’ we have ‘x*f(t+hs) - x*f(t+hr)‘ < %, for t £ R; then

for r, s > N, we get

€
- x* =
|x*E (chg +h ) = ¥*E(EHE +h )| < 5 (4.11)
Consequently, for r > N, we get:
*£(t+£ +h' - 2
| x*£ (t g ') - x f(e+g +h )| < 5,
*f (t+ "y - £
|3k (E4g +h" ) = x*E(eHE th )| < 3

and the inequality (4.10) gives:
' v
|x%E(ehg +h' ) = x*E(ohg ") | < e
for t € R. (4.9) is then proved.
Now take t = 0; then using (4.6) we get:
% ] - . .
x*(b') = %}Q x*f(£r+h’r) = %&g x*f(5r+h"r) = x*(b")
which contradicts (4.8) and uniform convergence in r for (f(n_+h ))uo 1
r n’’'n=

If i, j > N, we have

f(nr+hi) - f(nr+hu) e U, for every r. (4.11)
Therefore if t ¢ R, we take a subsequence of (nr):_1 which converges to t and using
continuity of f and the relation (4.11), we obtain, for i, j > N,

f(t+h,) - f(t+h,) € U.
. 1 J
f is then a.p..

THEOREM 9.t Let E be a Fréchet space. If f: R+ E is a.p. and {F(t); t € R}
where F(t) =OJ. f(o)do is relatively compact in E, then F is a.p..
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PROOF. Immediate from theorems 7 and 8.

THEOREM 10. Let E be a complete l.c.s.. If f is a.p. and its derivative f'
uniformly continuous over the real line, then f' is also a.p..

PROOF. Consider the sequence of a.p. functions {n(f(t+%) - f(t))}:=l; it suffices
to prove it converges uniformly over the real line to f'(t).

Let U = U(e;pi,liiip); by uniform continuity of f', we can choose & = GU >0
such that f’(tl) - £'(t,) ¢ U for every t, t, with itl—tzl <o .
We write 1

£1(t) - n(f(c%) - E©) = n [REN) - £ (tro) ldo

Therefore, if we take N = NU > %, then for o N, we have:
pLIf'(6) = n(E(eHD) = ()] < n [P [£7(6) - £'(e40) Jdo < ¢
for every semi-norm P and every t € R. The theorem is proved.
THEOREM 11. Let E be a Fréchet space; then the set of all a.p. f:R > E is a
Banach space under the supremum norm.
PROOF. Obvious; use theorems 1, 2 and 6.
5. APPLICATIONS TO ABSTRACT DIFFERENTIAL EQUATIONS
A. A.P. SOLUTIONS OF (%; -A)x=0

Consider in a complete l.c.s. E the differential equation

d
d—}t( = Ax(t), —o<t<eo, (5.1)

k . .
where A is a continuous linear operator such that {A7; k = 1,2,...} is equi-continuous.
A solution of (5.1) is a continuously differentiable function which satisfies (5.1).

It is easy to construct (as in [13] p. 244-246) a solution of the form:
k k

Lo A x(0).

tA
e x(0) = X1
o K!

k

M8

We can say more:

PROPOSITION 1. The function etAx : R~ E is the unique solution of the Cauchy

0
problem:
dx
—E = Ax(t); —o< <o, (5.2)
x(0) = Xy
PROOF. Suppose there exists another solution y(t) with y(0) = xo; consider the
. t-T)A . .
function v(1) = e( ) y(1), with fixed t and show it is constant over the real line;

therefore v(t) = v(0) for every 1 € R, which means v(t) = v(0), or y(t) = etAxo,
Proving uniqueness of the solution (see[9] for a complete proof).

Now, define a perfect Fréchet space E as a Fréchet space with the following
property: every function f: R > E with (i) {£(t); t € R} is bounded in E; (ii)
f'(t) is a.p. in E; is necessarilya.p. in E.

We state and prove the two following theorems inspired from a result of PEROV
(see [15] theorem 1.1) but they are not direct generalisations. In fact they are
new results,

THEOREM 1. Let E be a perfect Fréchet space; assume (i) A is a compact linear
operator; (ii) {Ak; k = 1,2,...} is equi-continuous; (iii) for every semi-norm p,

there exists a semi-norm q such that p[etAx] < q(x) for every x € E and every t ¢ R.
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Then every solution x(t) of (5.1) is a.p. in E.
PROOF. Because x(t) = etAx(O), then x(t) is bounded in E by (iii). E being a

perfect Fréchet space, it suffices to prove x'(t) is a.p..

{Ax(t); t € R} is also relatively compact in E for A is a compact operator;

consequently {x(t); t € R} is also relatively compact. Let (s'n):=1 be an arbitrary

o o«
real sequence; we then can extract a subsequence (sn)n=l such that (x'(sn))n=l is

a Cauchy sequence in E. But we have:

x'(t+sn) Ax(t+sn) = Ae(tq,.sn)A tA spA

x(0) = Ae e n x(0)

= AetAx(s ) = etAAx(s ) = etAx'(s )
n n n

for every n = 1,2,..., and every t € R. If p is a given semi-norm, there exists a

semi-norm q such that

p[x'(t+sn) - x'(t+sm)]

ple™(x'(s ) - x'(s,))]

| A

q[x'(Sn) - X'(Sm)]
for every t € R and every n, m € N. Therefore (x'(t:+sn)):=l is uniformly Cauchy in t;
we then conclude almost-periodicity of x'(t) by Bochner's criteria.

THEOREM 2. Let E be a Fréchet space; assume conditions (1) - (iii) in theorem 1
are satisfied and moreover the range R(A) of A is dense in E. Then every solution
x(t) of (5.1) is a.p. in E.

We remark the first part of the proof of theorem 1 tells us if x(t) is a
solution of (5.1) with x(0) € D(A) = E, then x"(t) is a.p.. Before proving Theorem
2 let us state and prove:

LEMMA 1. Every solution of (5.1) with initial data in R(A) is a.p..

PROOF. Let a € R(A) and consider the solution y(t) with y(0) = a; there exists
tA A tA

Xy € D(A) = E such that Ax, = a. We have y(t) = e a = et Ax = ae x
A 0 0 0

x'(t) where x(t) = e X3 therefore x'(t) (and consequently y(t)) is a.p.. The lemma

= Ax(t) =

is proved.
PROOF OF THEOREM 2. Consider a solution x(t) of (5.1) with x(0) € E; as R(A) is
dense in E, there exists a sequence (an):_l in R(A) such that a -+ x(0). Consider
= n

o

a sequence of solutions (yn(t)) with yn(O) =a,n= 1,2,... To prove almost-

periodicity of x(t) it sufficesnté prove yn(t) + x(t) uniformly in t € R for every
yn(t) is a.p. by lemma 1. We have x(t) = etAx(O), yn(t) = etAan, n=1,2,... Now
given a semi~norm p there exists, by assumption (iii), a semi-norm q such that
p(yn(t) - x(t)) < q(an - x(0)), for every t € R and every n € N. The conclusion is
immediate.

B. A.P. SOLUTIONS OF (%;—— A) x = £

We now consider the non-homogeneous differential equation

dx _
e Ax(t) + f(t), —o<t<e (5.3)

where A is a closed linear operator with domain D(A) dense in a Fréchet space E;
the function f(t) is a.p. in E., Let us recall some useful definitions (see 13 ).
A family of continuous linear operators T(t), t € R, is an equi-continuous

C0~gr0up:
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(i) T(tl+t2)x = T(tl)T(tZ)x, T(0)x = x, for every x € E and every tl’ t2 € R;
(ii) for every semi-norm p, there exists a semi-norm q such that p[T(t)x] < q(x)
for every x € E and every t € R.
(iii) 1lim T(to)x, for every x € E and every to e R.
t’*to
Now consider an equi- continuous C -group T(t). A is called the infinitesimal
T(n)x -"x

generator of T(t) if Ax = lim , i.e., A is the linear operator with domain

>0

N - . T X - X

D(A) = {x ¢ E; lim liﬂ)%?——ii exists in E} and for every x ¢ D(A), Ax = lim —iﬂz;r———a
n>0 n>0

It can be proved %; T(t)x = AT(t)x = T(t)Ax for every x € D(A) (see[1l3] for the
case of a semi-group).

We are going to prove the following theorem 3 which is a generalization of theorem
3.2 [15] due to ZAIDMAN.

THEOREM 3. Let E be a Fréchet space. Suppose x(t) is a solution of equation
(5.3) with relatively compact trajectory; A is the infinitesimal generator of equi-
continuous C.-group T(t) such that T(t)x : R > E is a.p. for every x ¢ E; f(t) is

0
a.p.. Then x(t) is also a.p..

Before we prove theorem 3, let us mention some useful lemmas (see [9] for proofs):
LEMMA 2. Let E be a complete l.c.s.. If f(0) is continuous, then T(t-g)f(o):
R > E is also continuous for every t € R.
LEMMA 3. 1In a complete l.c.s. E, every solution of (5.3) admits the integral
representation:

t
x(t) = T(t)x(0) + ‘/ﬁ T(t-o)f(o)d .
0

LEMMA 4. Let E be a Fréchet space. If {T(t)x; t ¢ R} is relatively compact in E
for every x € E and {f(t); t € R} is also relatively compact in E, then {T(t)f(t);
t € R} is relatively compact in E.

PROOF. Let (t"n):= be an arbitrary real sequence; by our assumption on f(t), we

1

can extract a subsequence (t'n):=1 C (t"n)n= such that lim f(t'n) exists in E;

n->o

1
let x be this limit.

© ' oo oo .
Take another subsequence (tn)n=l c (t n)n=l such that (T(tn)x)n=l is a Cauchy
sequence in E. Write:
T(tn)f(tn) - T(tm)f(tm)

(TCe) - T(e )] [f(e - x]
+ [(T(c) = T(t ))x]
+ T E(e ) = £(e )],
Let p be any semi-norm; then we have
PIT(c DE(t ) - T(tm)f(tm)] < pllT(e ) - T(t )] (¢ ) - x]]
+p[T(e ) - T(t ))x]
+ pIT(e ) [£(e) = £(e )]l
Using equi-continuity of T(t), we can take a semi-norm q such that
PIT(e )£Ce)) = £(e)1] < alf(e) = £(e )]
and
pLIT(e) = T(e )] [£(c) = x]) < 2ql£(c ) = x].
Now we choose n and m sufficiently large such that

alf(e) - £(e )] <5, alf(e ) - x] <5, pI(T(e) - T(e Nx) < §
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then we obtain:

pIT(e DECe ) - T(t DE(e )] < ¢
which shows (T(t )f(tn)): 1 is a Cauchy sequence. The lemma is proved.
n =

LEMMA 5. Let E be a Fréchet space and consider the equi-continuous Co—group
T(t) such that T(t)x : R > E is a.p. for every x € E. Suppose also f(t) is a.p..
Then T(t)f(t) : R > E is a.p..
PROOF. Consider U = U(e; P> 1 < i < n) a given neighbourhood; because of equi-
comtinuity of T(t), there corresponds to each semi-norm pi, a semi-norm ay such that:
(i) pi(T(t)x) iAqi(x), xe E, t € R.
Consider also the symmetric neighbourhood
= V(%; Py d, Lism); VHVHVHVCU.

As {f(t); t e R}“is totally bounded, there exists tl,...,tv such that for every t € R
we have f(t) Ekgl (f(tk) + V). Consider now the following a.p. functions: f(t),
T(t)f(tk), k =1,..., v . Then they have the same V-translation numbers; therefore
we can say there exists £=2(V) > O such that any interval [a,a+%] contains T with
f(t+t) - £(t) € V, t € R (5.4)
T(t+T)f(tk) - T(t)f(tk) eV, k=1,..., t € R.
Take t ¢ R arbitrary; then there exists k (1 £ k < v) such that
f(t) e f(tk) + V. (5.5)
Write:
T(t+t)f(t+t) - T(e)f(t) = {T(t+r)[£(t+7) - £(t)]}
+ (e () = £ )]} + {T(e+) £(e) - T(O) ()}
+ {T(t)[f(tk) - f(t)]}.
For every semi-norm Py there exists a semi-norm a such that:
P, [T(E+D)E(e+t) - T(DE(D)] < q [£(t+t) - £(6)]
+ qi[f(t) - f(tk)] + Pi[T(t+T)f(tk) - T(t)f(tk)]
*alf(e) - €] <7+ + o+ o=, (using (5.3) - (5.5).
Therefore T(t+t)f(t+t) - T(t)f(t) € U for every t € R, which is almost-periodicity
for T(t)f(t). N
PROOF OF THEOREM 3. By lemma 3 we have : x(t) = T(t)x(0) + ./ﬂoT(t-c)f(o)do.

But T(t)x(0) is a.p.. It remains to prove the function

v(t) = jotT(t—c)f(o)do

is also a.p..
As {x(t); t € R} and {T(t)x(0); t ¢ R} are relatively compact, then {v(t); t € R}
t
also is relatively compact. Let us write v(t) = ‘/~0T(t)T(—c)f(o)dc

t
= T(t) T(-0)f(o)do. Then T(-t)v(t) = [t T(-0)f(o)da.
fo fo

By theorem 3 of chapter 1, T(-t)x is a.p. for every x ¢ E, therefore {T(-t)x;
t € R} is relativgly compact for every x ¢ E. By lemma 4, {T(-t)v(t); t € R} and
consequently { j”T(—c)f(c)dc ; t € R} is relatively compact. By lemma 5, T(-t)f(t)
0

t
is a.p., therefore ‘/nOT(—c)f(c)dc is a.p.. We apply again lemma 5 to conclude almost-

t
periodicity of ./‘T(t—c)f(c)do. Theorem 3 is proved.
0



540 G. M. N'GUEREKATA

THEOREM 4. Let E be a Fréchet space. Solutions of the equation x'(t) = Ax(t),
—wo<t<eo, with relatively compact trajectory are precisely almost-periodic ones, if

A is the infinitesimal generator of equi-continuous C.-group T(t).

0
PROOF. Let x(t) be a solution of the given equation. It suffices to prove that
if x(t) has a relatively compact trajectory, then x(t) is a.p.. Take an arbitrary
[ Sl . © ' o
real sezuence (s n)n=l’ we can extract a subsequence (sn)n=l(: (s n)n=1 such that
(x(sn))n=l is a Cauchy sequence in E; but we have

x(t+sn) = T(t+sn)x(0) = T(t)T(sn)x(O) = T(t)x(sn), n=1,2,...
Therefore

x(c+sn) - x(t+sm) = T(t)[x(sn) - x(sm)], n, m € N.
Let p be a given semi-norm; by equi-continuity of T(t), there exists a semi-norm q
such that:

plx(t+s ) -wx(t+sm)] < alx(sp)) - x(sm)], t € R,
Which shows (x(t+sn))n=1 is a Cauchy sequence, uniform in t ¢ R, We conclude using
Bochner's criteria.
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