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ABSTRACT. This paper develops a formula of inversion for an integral transform of the
kind similar to that associated with the names of Kontorovich and Lebedev except that
the kernel involves the Neumann function Yu(kr) and the variable r varies over the
infinite interval a < r < where a > 0 . The transform is useful in the investi-
gation of functions that satisfy the Helmholtz equation and a condition of radiation
at infinity. The formula established is expressed entirely in terms of series expan-
sions and replaces earlier inversion formulas that require the evaluation of contour

integrals.
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1. INTRODUCTION.

In a previous paper Naylor and Chang [1] the author gave a formula of inversion
for an integral transform of the type associated with the names of Kontorovich and
Lebedev. The transform in question involves the truncated infinite interval

as<r <o where a >0 and was defined by the equation

o

JORNIR (k) £()%E . .1
a U r
Here k > 0 and Yu(kr) denotes the Neumann function, the notation being that of

Watson [2]. This transform is useful in the solution of certain boundary problems
involving the Helmholtz equation and the radiation condition
lim e} [£7(x) - ikf()] = 0 . (1.2)
e

The author has considered also the alternative transform G(u) defined by the equation

Glu) = Ia (3, GeoulD (ka) - 3 G’V ) 1)L

where H(l)
u

be applied to boundary problems of the above type but its formula of inversion involves

denotes the Hankel function of the first kind. This transform can also

either a contour integral, as obtained in Naylor [3], or a series and an integral, as
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derived in Naylor [4]. Likewise the inversion formula established in Naylor and Chang
[1] for the transform (1.1) also required an integral term as well as a series. In
this paper a simpler inversion formula is found for (1.1) which expresses f(r) as
the sum of two series, the integral term being absent.

The functions appearing in the series derived in this paper are the Bessel func-

tions Yu (kr) where Ups Ups oo denote the zeros of the function Yu(kr) regarded
n

as a function of the order u . These functions are not referred to as eigenfunctions

since they do not form an orthogonal set on the interval (a,») . The zeros of Yu(ka)

for given positive ka were discussed in Naylor [5] where it was shown that there

exist three infinite sets of zeros as follows:

(i) an infinite set of real negative zeros u, which for large n are given by the
asymptotic formula

u v '(n+-;-) + [ka/(2n+1))20%! (1.3)

‘s PP +i6 . .
(ii) two infinite sets of complex zeros u; = Rne N Jocated in the first and fourth

quadrants of the complex u-plane and given for large n by the asymptotic formu-

las
T 1
On v 2 (- 2 log (2Rn7kac)] (1.4)
R log (2R /kae) ™ (n-pr . (1.5)

The zeros of all three sets are simple and there are no purely imaginary zeros.
The actual expansion constructed in this paper is stated in the following theorem:
THEOREM. Suppose that f(vr) 1is continuous for r * a > 0 and that r-lf(r) €
L(a,») . let the transform F(u) be defined for positive values of k by means of
equation (1.1). Then, if r > a ,

uJ (ka)J (kr)cot ur F(u)
u u

E(r) =] (3750)Y_(ka)
u u
2
uJ (ka)J (kr)cot um F(u)e
. u u
+ 7lim

e EENACON (.6
where the summations together extend over all of the zeros of Yu(ka) regarded as a
function of u . The first series in (1.6) includes all of the real zeros v and
the second series includes all of the complex zeros u; . The exponential function
appearing in the second series in (1.6) is a summability factor, the parameter c
tending to zero through positive values. Because of the non-self adjoint character

of the underlying expansion problem it is not possible to deduce the above expansion
from Titchmarsh's treatise [6] on this subject, neither does it appear possible to ob-
tain such a formula without introducing a summability factor of one kind or another.
2. THE REAL RESIDUE SERIES.

In order to obtain the formula quoted in the above theorem it will be necessary

to appeal to the following formula which was established in Naylor and Chang [1],
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equation (45), cu
udu

1 [Yu(kr)Ju(ka) - Yu(ka)Ju(kr)]F(u)e
£(r) = i?'iig IL Y_(ka)

2
uY (kr)J (ka)F(u)e"
u u

(3730 (ka) (2.1)

+ mlim
0 u;
The summation in (2.1) extends over all of the complex zeros u; » all of which are
located in the half plane Re(u) > 0 .

It should be noted that the series appearing in (2.1) is different from either
of those that are present in the formula (1.6) to be proved.

The method to be adopted requires the integral in (2.1) in which L denotes the
imaginary axis of the complex u-plane, to be evaluated by means of the calculus of
residues. The asymptotic behaviour of the integrand prevents a direct evaluation of
the integral in its present form, however the integral can be evaluated if the cross
product of Bessel functions appearing in the numcrator of the integrand is expressed
in a different form. The resulting integral can then be expressed as the difference
of two integrals each of which can be evaluated in terms of the residues at the poles,
one in terms of the residues at the poles in the half plane Re(u) > 0 , the other in
terms of the residues at the poles in the half plane Re(u) < 0 .

With this aim in view we appeal to the formula, Magnus et al [7] p. 66,
Y (x) =J (x) cotun - J (x)cosec ur (2.2)
u u -u
from which it 1s seen that
Y (kr)J (ka) - Y (ka)J (kr) = -[J (kr)J (ka) -J (ka)J (kr)]cosec ur
u u u u -u u -u u

so that

[Y (kr)J (ka) - Y (ka)J (kr)]F(u)e" udu
-1, =5 limf u u RN (2.3)
c0 ‘L u
where 2
Lo _L.lim J J_u(ka)Ju(kr)l"(u)(,-('u udu (2.9
1 21 0 1 Yu(ka)sin ut ) *
_ J_u(kr)Ju(ka)F(u)ecu udu
= ap lim JL ¥_(ka)sinur (2.5)
The quantity Il will be determined in terms of the residues at the poles located
in the left half plane Re(u) < 0 . There are two such series of poles corresponding
to the real nggative zeros of Yu(ka) and to the negative zeros of sinum ., If we

. iy 2
write u = Relo we sce that the summability factor exp(cu”) has modulus

. . 7 r .
exp(chcos 20) which tends to zero as R = = in the sectors % < |6| < %% but which
diverges as R > = in the sectors %? < |o] < . To evaluate the path L is

I
1
first deformed onto the path W which consists of the rays 6 = +

3n
% » as depicted
in Figure 1. This process leads to the equation

u

w  (ka)J (kr)F(w)e€" du
-u u

Yu(ka)sin un (2.6)

1 ;.
1. = = lim I
1 2 c0 ‘W
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Figure 1

The above procedure will be justified by an inspection of the asymptotic behaviour of
the integrand as u - « in the region between L and W . This is carried out in
the following paragraphs where it is also proved that the integral (2.6) is uniformly
convergent for all ¢ 2 0 . We may then set ¢ = 0 in the integral which can then
be evaluated by closing the contour on the left hand side of W and taking the resi-
dues at the poles.

To determine the asymptotic behaviour of the Bessel functions appearing in (2.6)
we employ the formula

TN
I, = FaED

This formula holds for fixed x and u large and bounded away from thc negative inte-

[1+0whH] . (2.7

gers. Upon using this result together with the identity T(u)T(l-u) = 7 cosecur we
find that

1
1.

uJ_u(ka)Ju(kr)cosec un = (r/a)u[l + O(u-l)] . (2.8)

A bound on the function F(u) present in (2.6) may be obtained from (1.1) by applying

the Schwarz inequality which leads to the incquality

[Fw | - e ] l|Yu(kr)]| (2.9)
where

|t = (J }f(r)l2 lant . (2.10)

a
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The quantity ||Y (kr)l] can be obtained from Naylor and Chang [1], equation (34)
HIXMEE

-ustin 20 f r-llYu(kr)Izdr = sinh(aRsin 0) + ka hnYu(ka)Y&(ka) (2.11)
a
Lo —i0

where u = Rclo, u = Re 1¢

The behaviour of Yu(x) can be obtained from (2.2) in conjunction with (2.7) and
the identity ©(u)T(l -u) = ncosecun . This yields the equation

_ o x/2)Y cotum 1 -u -1
Yu(x) = [-—r—(m;— p (x/2) T + 0(u )] (2.12)

for large u bounded away from the integers. The TI'-functions occurring in the above
formulas may be estimated for large values of u by means of Stirling's formula,

Magnus et al [7], p. 12,

r'(u) = (21r/u)i exp(ulogu-u)[1l + 0(u—1)] (2.13)

which holds as u + « in |argu| v r - § . It follows from this formula that
|F(u)[ = (2"/R)5 exp[Rcos 0 log(R/e) - Rusino][1 + O(R-l)] (2.14)

so that T(u) -0 as R > o in the sectors % < 10] < r since cos8< 0 whilst
Jsint 2 0 there. It follows from (2.14) that (2.12) simplifies in these sectors to

give the equation

_ (x/2)" cot un -1
Yu(X) = ——r(u—.‘_—n—— [1 + O(U )] (2.15)
for large u and %-f argu| ©~ w - 5 . The form of the derivative Yﬂ(x) for large

u can be found from the identity

PAMNCONLR SERNCORLI SIRICOB (2.16)

Upon substituting the values of Yu_l and Y“+l obtained from cquation (2.15) we

find, after slight reduction, that

u-1
' _u(x/2) cot um -1
2y (x) = TGTD) [1 +0(u )]
so that, by virtue of (2.15),
XY G =y GO{L + 0w DY . 2.7
After inserting this expression, with x replaced by ka therein, into equation
(2.11), we find, since Imu = RsinO , that
2 2
e ) sinh(R sin 0) Iy, (ka)| Iy, (ka)|
r ]y (kr)|%dr = - = . <y . (2.18)
. u . ZiR cos 0 |2R cos 0]
a 2vR sin Y cos O
This applies in the sectors % <lo] -1 =38 since cos® < 0 there. It follows
from (2.9) that
F(u) -4
7 _ . ‘ )
Yu(ka) 0(|Rcos | °) (2.19)
for % < |l s = 8 . The bound (2.19) breaks down in the vicinity of the imaginary

axis where, however the function F(u) may be estimated with the aid of the inequality

¥ (o) | -+ 2Gkr) Heoshi (5 R sin 0) . (2.20)



422 D. NAYLOR

This result, which holds for |Re(u)| < % was established in appendix 1 of Naylor and

. . -3/,
Chang [1]. On using this bound in (1.1) we find, since r 2 £(r) ¢ L(a,») , that
F(u) = O(explg R sin 9]) (2.21)

for |Re(u)] s .
The value of Y (ka) for large u in the strip - 3" Re(u) « 0 follows from (2.15)
u

W=

and (2.14). Since |cotum| + 1 as u -~ e in this strip we find the cquation

lYu(ka)l ~ (ZWR)-% exp[-R cos 0 log (2R/kae) + RO sin 0]

E (2uR)"é exp (RO sin 0) . (2.22)

On combining this bound with (2.17) we find that

YE%E%Y = O{Ri exp[(% - |8])|Rsin0]]}
as u - = in the strip - % < Re(u) £ 0 . Since |cos®| 5 1/3R then % - o] is
O(R-l) and the above simplifies to yicld the equation
F(w /Y (ka) = O(RD) (2.23)
as u~ ® in the strip - % < Re(u) 2 0 .

An inspection of (2.8) and (2.19) or (2.23), as the case may be, reveals that

the integrand in (2.4) is

4

- 2 .
2{R % exp[Rcos 0 log(r/a) + cR cos 26]}

" Re(u) < 0 and,

W —

in the strip -

0(|Rcosu|-5 cxpl[R cos 6 log (r/a) + CRZCOSZOI}

. i 3n ..
elsewhere in the sectors 7 |o] < 7 Both these bounds tend to zero sufficiently

rapidly as R > « to permit the path L in (2.4) to be deformed onto the path W
and this establishes the validity of (2.6).

On the path W, U = % %; and the modulus of the summability factor is equal to
unity. The integrand in (2.6) is then

r _i R
0'R % exp[- — log(r/a)}}
V2

so that 1l is absolutely and uniformly convergent for all ¢ » 0 and the limiting
value may be obtained by setting ¢ = 0 in the integrand. This lcads to the equation
uJ_u(ka)Ju(kr)F(u)du

Yu(ka)sin u. ) (2.24)

1
Il 21 Jw

The next step 1s to evaluate the above integral in terms of the residucs at the
poles situated to the left of W . All of these poles are located on the negative
real axis. The relevant zeros of Yu(ka) are located at the points u which for
large n are asymptotic to the values =(n + %) whilst those of sinunm occur at the
points u = -n where, in each case, n =1, 2, ... On closing the contour in (2.24)
on the left hand side of W and evaluating the residues at the stated poles we find

the formula
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uJ_ (ka)J (kr)F(u) ® an(ka)Jn(kt)F(n)

=7 3 -
1 w 51n|nr(375u)Yu(ka) n=l Yn(ka)
The first series occurring in the above equation is summed over the real negative

(2.25)

1

zeros u  of Y (ka) and we have used the properties J_ = (-l)an » Y o = (-l)nYn
and F(-n) = (-1)"F(n) to simplify the second series appearing therein.

To justify the above procedure the contour of integration must be closed on the
left side of W by means of a sequence of curves Cn which recede to infinity and
which avoid the poles of the integrand. A suitable curve Cn can be made up of the

. 19 3
two circular arcs u = Re' s I

IA

< |8] £ m - § connected by the part of the straight

[}

line u = -(n + %) + is located inside the Yedge m-6s |6] 7 . The radius R

of the arcs is chosen so that Rcos§ =n + A to ensure that a continuous curve is

formed. It is clear that for large n the curves Cn constructed in this way will

avoid the poles of the integrand, since the latter are positioned at the points where

u=-n and u~ -(n+ %) . .
The asymptotic behaviour of the integrand in the sectors % s |0| smT™-=-46 can

be obtained from (2.8) and (2.19) both of which apply in these sectors. These equa-

tions show that the integrand in Il is
O(chos()]-i exp[R cos 6 log (r/a)l} (2.26)

which tends to zero as R » « since cos® < 0 and log(r/a) > 0 . It will be veri-

fied that the above bound also applies in the wedge m - § = |6] s © and therefore
in the entire sector %; < lel s .

To estimate the asymptotic behaviour of the integrand in the wedge T -8 = |6| <
we appeal to the formula (2.12) in which the TI-functions of argument u must be
replaced by ones of argument =-u in order to permit the use of Stirling's formula in
this region. This can be carried out with the help of the identity T(u)T(l1-u) =
7 cosec un  which enables equation (2.12) to be converted to the desired form:

x/2)™

T ewsinu 1+ ow ™y . (2.27)

Yu(x) = P—%(X/Z)UT(—u)cosuﬂ +

To apply Stirling's formula (2.13) in the stated sector we ensure that |arg(-u) |
)

< 7w - § therein by writing =-u = Re'” where v=0-1u1 for n -8 567 and
v=06+m for -m s 0 S -1+38 . With this definition of ¢ , || s 6 and (2.15)

gives the formula

T (=) (2u/R)i exp[R cos ¥ log (R/e) - Ry siny][1 + o(R")] . (2.28)

This diverges as R - » in the wedge 7 - § s |0| £ 7 since |v] = 6 and cosy > 0
there. On the lines u = -(n-&%) +is , |sinun| = |cosun| = (%cosh2sn)§ so on
collecting these results it is seen that the first term on the right hand side of

(2.27) is the dominant one so that
Yu(x) = -%—(x/Z)uF(-u) cosun[l + O(u-l)]

This is the same formula as (2.15), since TI'(u)T(l -u) = mcosecur , so that (2.17),
(2.18) and therefore (2.19) also hold in the wedge m - & < |0| © m . Hence the bound

(2.26) is also valid throughout the sector %} < |8] £ » , as stated above.
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Since (2.26) tends to zero sufficiently rapidly as R -+ = in the sectors
%} < lO| s 7 the integrals along the sequence on curves Cn used to close the contour
tend to zero as their radii tend to infinity and this verifies the validity of (2.25).
3. THE COMPLEX RESIDUE SERIES.

In this section the integral I, defined by equation (2.5) will be transformed

2
by closing the contour on the right hand side and taking the residues at the poles of

the integrand located in the half plane Re(u) > O . These poles occur at the complex
zeros u; of Yu(ka) and at the points u = 1,2,3, ... which arise from the positive
zeros of sinum .

We commence with the equation

1 ..
7 lim
2i 0

== Y (ka) ‘ (3.1)
n

2
wJ_ (kr)J (ka)F(u)e® du @ nJ (kr)J_(ka)F(n)
f u u n n
W

Y (ka)sinum
v 1

In this equation, which will be established by closing the contour on the right hand
side and taking the residues at the zeros of sinun, the path wo , illustrated in

Figure 1, coasists oi the parts of the rays argu = * v lying to the right of

4
the line Re(u) = n - % together with the segment of this line cut off between the
rays. The positive intcger n is chosen large enough to ensure that all of the zeros
of Yu(ka) lie to the left of W This choice is possible since the complex zeros

m™
u‘; are such that argu‘_'l > tf as n > o,

The asymptotic form of Yu(x) as u - « in the half plane Re(u) > 0 can be
obtained from (2.12) and (2.14) which show that

v 0 = -Lemtrwin + ow™) (3.2)

for large u and |argu] s % - & . The derivative Y'(x) can be obtained from
u

(2.16) and (3.2) which yield the formula
X' G0 = 2 /I + 0w H] . (3.3)

On substituting (3.2), (3.3) into (2.11) it is found that

R%sin ze[ r !y (kr)|%ar = sinh(rRsin6) + Rsine|y (ka)|2[1 + 0®™)] (3.4)
a

whilst from (3.2), (2.14) it is seen that
|Yu(ka)| = (2/nR)i exp[R cos 6 log (2R/kae) - RO sin8][1 + o™ L . (3.5)

Equation (3.5) shows that the dominant term on the right hand side of (3.4) as u + «
in the sector |0| < % - 8§ 1is the second one so that, by (2.9),
F(u) -4
= [¢] .
Wk—a) O[IRCOS | ] . (3 6)
On combining this with (2.8), with (a,r) interchanged, it is seen that the integrand
in (3.1) is

0{{R cos W_i exp[-Rcos 8 log (r/a) + cRZCOSZO]}, (3.7)

This ajplies in the sector |v| > % - § provided that u 1is large and bounded away
from the positive integers.
It is seen from (3.7) with 6 set equal to tZ  therein that the integral in

4
(3.1) is absolutely and uniformly convergent for all real c¢ and the value of the
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limit may be deduced by setting ¢ =0 in the integrand. With the summability factor
removed the bound (3.7) on the integrand reduces to O{R.i exp[-Rcos 0 log (r/a)]} .
The resulting integral can then be evaluated by closing the contour on the right hand
side of wo and taking the residues at the zeros of sinum situated to the right of
WO . This procedure leads to the series on the right hand side of equation (3.1)
which is therefore established.

To complete the transformation of 12 it remains to deform the path Wo appear-
ing in (3.1) onto the imaginary axis and take into account the residues at the poles
of the integrand traversed in the process. These poles occur at the complex zeros
u; as well as at those zeros of sinum that are positioned between Wo and the
imaginary axis. The latter zeros are at the points u = 1,2, ..., n - 1 . This leads
to the equation

2 2
[ uJ_u(kr)Ju(ka)F(u)ecu du uJ_u(kr)Ju(ka)F(u)ecu
L

1 .

= lim Q + 7li T

21 0 Yu(ka)sln um cig gt sinum (BfJSU)Yu(ka)

n
n -1 cu2
1 an(kr)Jn(ka)F(n)e o an(kr)Jn(ka)F(n)
+ lim -
c>0 n=1 Yn(ka) n=n, YQTREY

from which it follows

2
ul_ (kr)J (ka)F(u)e = nJ (kr)J_(ka)F(n)
sin um (B/BU)Yu(kE) Yn(ké)

12 = -1lim . (3.8)

c>0 U;l n=]1

To establish the truth of the above equations the path wo in (3.1) will be con-
nected to the imaginary axis L by a sequence of paths C; which avoid the (complex)
zeros of Yu(ka) and which recede to infinity as n + «» ., The procedure to be fol-
lowed here is similar to that described in the writer's earlier paper Naylor and Chang
[1] where a slightly different integral was encountered. It was proved in Naylor and
Chang [1], equation (39), or it can be deduced from (2.12) and (2.13), that

-in/4

IYu(ka)| = -2(1m)“i e sinh(A+iB)[1 + O(R-l)]

as u-+>o in 0 < § s 6 < % , where
A = Rcos 0 log (2R/kae) - R6sin6 + %log 2

B = Rsin 6 log (2R/kae) + RO cos 6 + % .

6

The large complex zeros u' = Re'” that lie in the first quadrant are given by the
g

Al

n

equations A =0 , B = nm where n is a large positive integer. The zeros located
i6

in the fourth quadrant are situated at the conjugate points Re . The path C;

may be taken as that whose polar equation in the sector % -8 <80 s % is

B = (n4~%)ﬂ and which is continued beyond this sector by means of a circular arc to
meet the path wo . The part of C; located in the fourth quadrant is defined simi-
larly. On the parts of C; lying inside the the stated sectors, sinh(A+iB) reduces

to *icoshA so that

Y (ka)] 2(R) ™ cosh A

2(1rR)-4 cosh[R cos 0 log (2R/kae) = RO sin 0 + %log 2] (3.9)
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as R+ o in -121 -8 < |of g% . The asymptotic bound on F(u) valid in these sectors
is given by the formulas (42), (43) of Naylor and Chang [1]:

F(u) = O[IR2 sin 26|-i exp[%Rsin 8|1
+ 0{|R2 sin ZBI-é exp[R cos 6 log (2R/kae) - RO sin6 + llog 2]}  (3.10)

2
or

F(u) = 0(exp|-72£R sing|) (3.11)
1

3 -

It follows on combining (3.9), (3.10) that

as R+ » in the strip [Rcosol <

F . - .
T((}%T = O[ |R sin 26] t expl%RsmBl]

for %'65 le] <2 and

F(u) T, .
?(l%;)— = OIR4 explik sin8]]

in the strip 0 £ Re(u) 5—:13- .

In the remaining sectors < || <

(3.6) is valid in this region also.

- § the formula (3.2) applies so that

[STE]

&=

An inspection of the above bounds together with (2.8) reveals that the integrand
appearing in (3.1) is, at most,

-Rcos6

O{R&(r/a) exp[l%R sin@| + cR? cos 20]} (3.12)

as R~ « in the sectors laf' < |e] = % . The expression (3.12) tends to zero as R + =
sufficiently rapidly to permit the contour to be closed in the manner described. The
dominant term in the exponential is the summability factor and cos26 s 0 in the
stated sectors.

This establishes the validity of (3.8) and on subtracting (2.25) and (3.8) we
find that the second series in each formula cancels leaving the equation

uJ_ (ka)J (kr)F(u)
I, -1, = X -

1 2 =" z sinur (3/3u)Y (ka)
u u

2
uJ_u (kl:')Ju(ka)F(u)em'l
sin um (alau)Yu(ka)

+ mlim
c>0 u'
n

On substituting this expression for the integral present in (2.3) into the formula
(2.1) and combining the two series involving the complex zeros u; with the aid of
the identity (2.2), we obtain the formula
uJ_ (ka)J (kr)F(u)
f(r) = Z —u u

Jsinum (3/3u)Y (ka)
N u

5 uJu(kr)Ju(ka)F(u)cot ur e
+ mlim
0 ur.\ (alau)Yu(ka)

. (3.13

Now it follows from (2.2), if u 1is a zero of Yu(ka) , then J_u(ka) = Ju(ka) cos um
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and on making this change in the first of the series present in (3.13) we arrive at

the expansion (1.6) quoted in the theorem.
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