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ABSTRACT. It is shown that if the socle soc(A) of a semisimple Banach algebra A
is norm-closed, then soc(A) is already finite dimensional. The proof makes use of
the Al-Moajil theorem. However it is remarked that our main theorem is an extension

of the Al-Moajil's.
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1. INTRODUCTION AND MAIN THEOREM.
Throughout the note, we will refer to the notations and terminologies in the

Bonsall-Duncan's book [3]. Let A be a (complex) Banach algebra and let comp(A) be

the compactrum of A, that is the set of all x in A such that the mapping : a =+
xax 1s a compact operator of A into itself. A. H. Al-Moajil [2] gives some charac-
terizations of a finite dimensionality of a semisimple Banach algebra in terms of its
compactrum and socle, which generalizes a theorem of A. W. Tullo [4]. 1Indeed his
characterization is essentially the following

Theorem A (A. H. Al-Moajil [2]). Let A be a semisimple Banach algebra with
lan(comp(A)) = {0}. Then A is finite dimensional if and only if soc(A) is norm-
closed. Here lan(comp{A)) denotes the left annihilator of comp(A).

However in case of a semisimple Banach algebra A which does not satisfy the Al-
Moajil condition : lan(comp(A)) = {0}, the closeness of sxcc(A) is not necessarily
equivalent to the finite dimensionality of A. There exists an easy counter exaumple.
In fact let A = C(R2) be the algebra of all continuous complex-valued functions on
= [0, 13 u{2, 3,..., n}, with supremum norm. As it is well-known that

comp(C(L0, 11)) = {0}, we have comp(A) = C({2,3,...n}) = Cn_l, where C denotes
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the field of complex numbers. Then lan(comp(A)) = C([0,1]) and so lan(comp(A)) #
{o}. Also notice that soc(A) = C({2,3,...,n}) = Cn_l, so that soc(A) is finite
dimensional and hence norm-closed. But A 1is of course infinite dimensional.

On the other hand, this counter example suggests to us the following statement.

THEOREM. Let A be a semisimple Banach algebra with soc(A). Then soc(A) is
finite dimensional if and only if soc(A) is norm-closed.

The purpose of this note is to prove the above theorem and to remark that our
theorem is an extension of the Al-Moajil theorem. To do this, we will prepare some
lemmas in the next section.

2. KNOWN RESULTS AND LEMMAS.
The next lemma can be seen in [3, pp. 155-1561].

LEMMA 1. Let A be a semiprime algebra. Then L 1is a minimal left ideal of
A if and only if L = Ae, where e 1is a minimal idempotent in A. The similar
result holds for minimal right ideals. In particular, if A has minimal left ideals,
then soc(A) exists.

The next lemma appears in A. H. Al-Moajil [2].

LEMMA 2. Let A be a semisimple Banach algebra. Then comp(A) is nonzero if
and only if soc(A) exists, in this case soc(A) C comp(A).

LEMMA 3. Let A be a semisimple Banach algebra and B a nonzero closed one-
sided ideal of A. Then B 1is not a radical algebra.

PROOF. Suppose that B 1is radical and hence B = rad(B). Choose a nonzero
element b of B, so that r(b) = 0 from [3, Proposition 25.1(i)]. If AB C B,
then r(ab) =0 for all a €A and hence b € rad(A) from [3, Proposition 25.1(ii)].
The semisimplicity of A implies that b = 0, a contradiction. We therefore conclude
that if B is a closed left ideal of A, then B is not radical. Of course, the
same conclusion holds for closed right ideals.

LEMMA 4. Let A Dbe a semisimple Banach algebra with soc(A) and let min(A)
be the set of all minimal idempotents of A. Then

lan(comp(A)) = lan(soc(A)) = lan(min(A)) = ran(min(a)).

ran(comp(A)). Here ran(min(A)) denotes the right

In particular, lan(comp(A))
annihilator of min(A).
PROOF. It is clear that lan(comp(A)) C lan(soc(A)) = lan(min(A)) from Lemma 2,
the definition of soc(A) and Lemma 1. Now in order to show that lan(soc(A)) C
ran(min(A)), assume, on the contrary, that lan(soc(A)) N (A \ ran(min(A))) # ¢ and
take an element from this set, say x. Then since x ¢ ran(min(A)), there is an
element e € min(A) with ex # O and hence exA # {0} from the semisimplicity of A.
Since {0} CexA CeA and eA is a minimal right ideal of A from Lemma 1, we have
exA = eA, so that there exists an element y € A with exy = e. Note that ye €
soc(A), so that xye = 0 because x € lan(soc(A)). However e = exy = exye = 0, a

contradiction. We therefore conclude that 1lan(soc(A)) C ran(min(A)). Moreover the
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symmetric argument implies that ran(min(A)) C lan(min(A)) (consider the reversed
algebra rev(A)). In order to show that lan(soc(A)) C lan(comp(A)), we will apply
the method which appears in the proof of [2, Lemma 3]. In fact suppose, on the con-
trary, that lan(soc(A)) N (A \ lan(comp(A))) # ¢ and take an element from this set,
say x. Then since x €& lan(comp(A)), there is an element y € comp(A) with xy #
0. Set J = ;;K, the norm-closure of xyA. Then J 1is a nonzero closed right ideal
of A. Also J 1is a compact Banach algebra from [2, Proposition 1] and it is not
radical from Lemma 3. Then by [1, Theorem 4.3], J contains a nonzero idempotent e
such that eJe 1is finite dimensional. Since ele = e(eA)e C eJe, it follows that
eAe 1is also finite dimensional and so e € soc(A) from [1, Theorem 7.2]. Now since
e €EJ, we can write e = limn+u>xyan, a € A (n=1, 2,...). But since each ya e
belongs to soc(A) and x € lan(soc(A)), we have that e = e2 = lim xya e =0,

n-+ o
a contradiction. We therefore conclude that lan(soc(A)) C lan(comp(A)) and hence

lan(comp(A)) = lan(soc(A)) = lan(min(A)) = ran(min(A)).

In particular the symmetric argument implies again that lan(comp(A)) = ran(comp(A)).

NOTE. By the above lemma, if lan(comp(A)) = {0}, then ran(comp(A)) = {0}. We
then see that the conclusion of [2, Lemma 3] holds certainly for closed left ideals.

The next result is known in the structure theorem of a finite dimensional complex
algebra (cf. [3, Proposition 26.7]), but we here give an alternative proof.

LEMMA 5. If A is a semisimple finite dimensional Banach algebra, then it has
an identity element.

PROOF. Note that A = comp(A) from the finite dimensionality of A and 1lan(A)
= {0} from the semisimplicity of A, so that lan(comp(A)) = {0}. Therefore the
second half of the proof of [2, Theorem] implies directly the desired conclusion.

3. PROOF OF MAIN THEOREM.

Let denote by B the norm-closure of soc(A) in A. Then B is a closed two-

sided ideal of A. Since A 1is semisimple, it follows that B is also semisimple.
We first claim that soc(A) exists and soc(A) = soc(B). Actually, choose a minimal
left ideal L of A arbitrarily. Then by Lemma 1, we can write L = Ae, where e
is a minimal idempotent in A. But {0} g eBe C eAe and eAe 1is one-dimensional and
so eBe = eAe. In other words, e 1is also a minimal idempotent in B. Again by
Lemma 1, Be 1is a minimal left ideal of B and so soc(B) exists. Also since e €
soc(A) and Ae CB, L = Ae = (Ae)e C soc(B). We thus obtain that soc(A) C soc(B).
Conversely choose a minimal left ideal M of B and write M = Bf for some minimal
idempotent f in B. But since B 1is a two-sided ideal of A, fAf CB and so fAf
= fBf. Thus f 1is also a minimal idempotent in A. Then f € soc(A) and hence M =
Bf C soc(A). In other words, soc(B) C soc(A) and so soc(A) = soc(B).

Now it is clear that if soc(A) is finite dimensional, then it is norm-closed,
and hence assume conversely that soc(A) is norm-closed. Since soc(B) exists from

the above argument, it follows from Lemma 2 that soc(B) C comp(B) and so

B = soc(A) = soc(A) = soc(B) ¢ comp(B) C B,



522 S. TAKAHAST

where the bar denotes the norm-closure in A. Then B = soc(B) = comp(B). But since
B is semisimple, lan(B) = {0}, so that lan(comp(B)) = {0}. Therefore Theorem A
implies that B 1is finite dimensional and so is soc(A). The proof is complete.
4. REMARK.

In this section we see that our theorem implies the Al-Moajil theorem. Indeed if
A is finite dimensional, then by [1, Theorem 7.2], A = soc(A) and hence soc(A) is
norm-closed. Then it is sufficient to show that if the socle of a semisimple Banach
algebra A with lan(comp(A)) = {0} is norm-closed, then A 1is already finite
dimensional. Then assume that soc(A) is norm-closed and lan(comp(A)) = {0}. By
our theorem, soc(A) is a semisimple finite dimensional Banach algebra and so it has
an identity element e from Lemma 5. Let x be any element of A. Then x(1 - e)
belongs to lan(soc(A)) and hence lan(comp(A)) from Lemma 4. Hence we obtain that
x(1 - e) = 0. Also since soc(A) is a two-sided ideal of A, it follows that e is
a central element of A. Then e is an identity element of A and so A = soc(A).
Therefore A 1is finite dimensional.
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