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ABSTRACT. Let K be a field of characteristic zero and suppose that D is a K-division
algebra; i.e. a finite dimensional division algebra over K with center K. In Mollin
[1] we proved that if K contains no non-trivial odd order roots of unity, then every
finite odd order subgroup of D*, the multiplicative group of D, is cyclic. The first
main result of this paper is to generalize (and simplify the proof of) the above.
Next we generalize and investigate the concept of admissible groups. Finally we
provide necessary and sufficient conditions for a simple algebra, with an abelian
maximal subfield, to be isomorphic to a tensor product of cyclic algebras. The

latter is achieved via symmetric factor sets.
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1. NOTATION AND PRELIMINARIES.

Let K be a field of characteristic zero. We define the Schur subgroup S(K) of
B(K), the Brauer group of K, to be those equivalence classes which contain a simple
component of the group algebra KG for some finite group G. We let [A] denote the
equivalence class of the K-central simple algebra A in B(K). The notation A ~ B
means [A] = [B] in B(K). When A ® B is written, the tensor product is assumed to be
taken over the algebra in the left factor. For most basic results pertaining to S(K)
the reader is referred to Yamada [2].

A crossed product algebra will be denoted (K/k,B) which is the central simple
k—algeb:a having K-basis ug with o € G(K/k), subject to: uu, = B(o,r)uOT and
ux = xu where x € K and 0,7 € G(K/k), the Galois group of K over k. For further
information pertaining to crossed products the reader is referred to Reiner [3].

Finally we comment on notation. If m is a positive integer with m = pan where
the prime p does not divide n then Imlp = pa; i.e. lmlp denotes the p-part of m. A

primitive mth root of unity will be denoted by €

2. SUBGROUPS OF SIMPLE ALGEBRAS.
Let K be a field of characteristic zero. The major thrust of this section is to
provide a generalization of Mollin [1, Theorem 3.6, p. 243]. To pave the road we

first need a definition and some preliminary results.
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Let D be an E-division algebra for some field E, finite dimensional over K, and
let n be a fixed positive integer. We say that D is (n,K)-adequate if there exists a
K-division algebra B with K = I € D E_Mn(B) where I is the identity of Mn(B), the full
ring of n X n matrices with entries from B.

We need the following result which generalizes Mollin [1, Theorem 3.4, p. 242].
In what follows Aut(D) denotes the automorphism group of D.

THEOREM 2.1. Let E/K be finite Galois. If D is an (n,K)-adequate E-division
algebra and o € G(E/K) then o extends to Aut(D).

PROOF. Let A = Mn(B) where D is embedded in A. If C = CA(E) denotes the centra-
lizer of E is A then by Reiner [3, Corollary 7.14, p. 96] we have [C] = [B Gk E]. The
remainder of the proof follows from this juncture exactly as the proof of Mollin i,
Theorem 3.4, p. 242]. Q.E..D.

The following which is immediate generalizes Mollin [1, Corellary 3.5,p. 242].

COROLLARY 2.2. Let E/K be finite Galois, and let D be an {a,K)-adequate E-division
algebra. If [D] e S(E), with exponent m, then e is in K.

In what follows a subgroup of Mn(D) will mean a finite multiplicative subgroup
of Mn(D)' The following result is immediate from Hikari [4, propositions 1 and 2,
pp. 369-370]. Note that if G is an abelian group expressible as a direct sum of

cyclic groups C; &...® Cn with |Ci| = e, such that eile for i = 1,2,...,n~-1 and

e # 1 then we say that G has invariants of length n. w

LEMMA 2.3. Suppose that G is a subgroup of Mn(D) where n < p for the minimum
odd prime divisor p of |G|. Then all odd Sylow subgroups of G are abelian with
invariants of length less than or equal to n.

Now we need another definition. Given a K-division algebra D amd a fixed
positive integer n, suppose that G is a subgroup of Mn(D). We let ¥(G) =
{z ag fa; € Q;gi € G}. V(G) is a Q subalgebra of Mn(D) and is, in fact, a direct
summand of the group algebra QG. This generalizes the concept as used in Amitsur [5]
for the case n = 1 wherein V(G) is a minimal division algebra containing G. Now we
are in a position to prove the main result of this section.

THEOREM 2.4. Let n be a fixed positive integer and let D be a K—division algebra.
If K contains no non-trivial odd order roots of unity then every odd order subgroup of
Mn(D), with n < p for the minimum prime divisor of IGI, is abelian with invariants of
length = n.

PROOF. Suppose V(G) = ?Mn (0)) €M (D). Thus 2 n, <u <p. But n divides

. i
|G(, (see Curtis and Reiner [6, bhapter IV]). Hence, n, = 1 for each i. Now if Di
is commutative for each i then G is abelian in which case we get the result from
lemma 2.3. Thus we assume that Dj is a (non-trivial) division algebra for some j.

Then [Dj] has odd exponent, r > 1 say, in S(E) where E/Q is finite abelian (see

Amitsur [5]). But Dj < Mn(D) so Dj ® KE is (n,K)-adequate, and Dj @ KE is a division
algebra such that [Dj ® KE] has exponent r in S(KE). By corollary 2.2, € is in K,
contradicting the hypothesis. Q.E.D.
3. ADMISSIBILITY

The following definitions generalize concepts introduced in Schacher [7]. Let
K/k be a finite extension of fields. K is called (n,k)-adequate if and only if K is
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a self-centralizing maximal subfield of Mn(D) for some k-division ring D, and n is
the smallest positive integer for which there is such an embedding as k-algebras,
(see Reiner [3, Chapter 7]). A finite group G is called (n,k)-admissible if and
only if there is a Galois extension K of k with G = G(K/k) and K is (n,K)-adequate.
G is called totally n-admissible if and only if for each pair of number field K and
k with K Galois over k and G = G(K/k) we have that K is (n,k)-adequate.

The reader should note that the concept of K-adequacy was used in [1] to prove
that every finite odd order multiplicative subgroup of a division ring D is cyclic,
whenever the center of D has no non-trivial odd order roots of unity, ([1, Theorem
3.6, p. 243]). Herein our extension from the K-adequacy concept to the (n,K)-
adequacy concept tacitly allowed us to prove theorem 2.4 which generalized [ibid]
since we were in a position to consider subgroupsofuh(n) for a given fixed positive
integer n. The mechanism for proving theorem 2.4 was the Q-subalgebra V(G) of
Mn(D). This mechanism opened the door for the use of lemma 2.3 and corollary 2.2.

The first result of this section generalizes Schacher [7, Theorem 2.8, p. 455],
which is the n = 1 case. Also this proves Mollin [8, Theorem 3, p. 135].

THEOREM 3.1. Let n be a fixed positive integer dividing |G|. Then G is totally
n-admissible if and only if every Sylow p-subgroup of G has an element of order

lel /lal,

PROOF. Let G = G(K/k) for a given pair of number fields K and k. Suppose
that G, is a Sylow p-subgroup of G and o ¢ G, has order || I[ | Let MP) be the
fixed field of <g>; i.e. G(K/M(p)) = <g>. Therefore, by class field theory there are
distinct M(p)-prlmes P, and f, which are inert in K, and p; = ;1 nk# ;2 NK=p,,

(see Janusz [9, Chapter IV]). Define [A(p)] e B(k) by invp (A(p)) = (—l)i/[al for
i

i=1,2; and invq(A(p)) = 0 for all q # p,.

® and let A be the k-division algebra

ofec . Then K splits A and by Reiner [3, §28, pp. 237-241] n is the smallest
positive integer such that K is a self-centralizing maximal subfield of Hn(A); i.e.

Now for each p||G| form such a A
(»)

K is (n,k)-adequate. Hence G is totally n-admissible.

Conversely suppose that G is totally n-admissible. Then if G = G(K/k) we have
that K is embedded in Mn(D) for some k-division ring D, with n being the smallest
such positive integer. By Reiner, [3, ibid] we have that n = IK:kIIJTB?QT. Moreover,
by Artin and Tate [10, p. 75] we may assume that K/k is unramified.

Now by Albert, [11, thoerem 33, p. 150] we have /TB?ET is equal to the least
common multiple of the degrees |K§'k l taken over all primes at which D has non-zero
Hasse invariant. Thus there exists a K-prime P such that IKP k | = lD kl for each
p dividing |K kl Since G(KP/kP) is generated by the Froebenius automorphlsm of P
in K/k then G must have an element of order /TBTET; lK.klp/|n|p = IGIP/I lP
each p dividing |G]|. Q.E.D.
The following are immediate.

COROLLARY 3.2. Let n divide |G|. If G is totally n-admissible then G is

metacyclic. In particular G is solvable.
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COROLLARY 3.3. For each pair of number fields K and k with K/k normal and
G = G(K/k) we have that the following are equivalent:
(1) |c} = %, the l.c.m. of the Inertial degrees of all k-primes in K/k.
(2) All Sylow p-subgroups of G are cyclic.
(3) G is totally %-admissible nilpotent .
(4) Let m,r be two relatively prime integers. Put s = (r-1,m), t = m/s and n, =

n,

minimal integer satisfying r © = 1(mod m). Then(;=<a,b:am =1, bno = at,
-1
b

Now we consider the case where G is abelian.

ab = a"> where l6]| = mn and g.c.d. (no,t) =1.

THEOREM 3.4. Let G be a finite abelian group. Then G is (n,k)-admissible for
some number field k and some positive integer n dividing |G|.

PROOF. Schacher [7, Theorem 6.2, p. 465] guarantees that G = G(K/k) for some
abelian extension K of k. We must show that K is (n,k)-adequate. Since G is abelian
then there exists a subgroup of order n. Let E be the fixed field of this subgroup.
Since H = G(E/k) is abelian then H is (1,k)-admissible by Schacher [7, ibid]; i.e.

E is embedded as a maximal self-centralizing subfield of a k-division algebra A.
Since K splits A then by Reiner [3, Chapter 7] K is embedded in Mn(A) as a self-
centralizing maximal subfield with n as the least such positive integer. Q.E.D.

Now suppose that G is finite abelian and Mn(A) is a K-central simple algebra
with G = G(L/K) where L is a maximal subfield of Mn(A). Thus Mn(A) -~ (L/K,B) for a
suitable factor set B. Now G = <01>X<02>X...X<ct> where o has order ng, say.

It is natural to ask whether (L/K,B) has a similar decomposition as a product of
cyclic algebras of exponent n,. The following theorem yields a necessary and
sufficient condition for such a decomposition to exist. In what follows a symmetric

factor set B means one such that B(o,t) = B(t,0) for all o,t € G. Moreover Li shall
denote the fixed field .7, <o.>.

31 %

THEOREM 3.5. Let G be a finite abelian group. Then G is (n,K)-admissible for
some number field K and some n dividing ]Gl. Suppose that A = (L/K,B) is a K-central
simple algebra with G = G(L/K). Then A 2 A) ®...® At where each Ai is cyclic K-central
simple with maximal subfield L1 if B is symmetric. Conversely we have the weaker
result: If A >A) ®...® At then B is cohomologous to a symmetric factor set.

PROOF. Assume B is symmetric. Now each o € G clearly extends to an inner
automorphism of A:a > uouu;l;u € A. Since B(o,t) = B(1,0) gor each 0,7 € G then
usu = v fg; each 0,1 € G. These two facts imply that hi'j = hi for each 1 and j
where hi = uoi. Therefore hi € K for each i, which implies Ai = (Li/K’hi) is a
cyclic crossed product algebra with maximal subfield Li’

Now sincexL =L} x Ly 9...0 Lt then n = n; np...n, . Since ¢ = olxl...ctxl thenxt
u, = uﬁi ...uOtt. Therefore the map from A to A; ®...@ At given by u, > u:i ®...Gu°t

yields a K-algebra isomorphism.
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Conversely assume A = A; ®...® A Now by Reiner [3, Theorem (29.16),p. 249]
Ai ~ (L/K, 1nf(i)h ) where inf( ) denotes the inflation map from Li to L. Moreover
h is symmetric, so inf(i)hi is symmetric. Since the factor set of inf(l)A 8...

inf(t)A is the multiplication of inf(l) it follows that B is cohomologous to a

i
symmetric factor set. Q.E.D.
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