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ABSTRACT. Most models in economics and the applied sciences are solved by first
order iterative techniques, usually those based on the Gauss-Seidel algorithm. This
paper examines the convergence of multiparameter extrapolations (accelerations) of
first order iterations, as an improved approximation to the Newton method for
solving arbitrary nonlinear equation systems. It generalises my earlier results on
single parameter extrapolations. Richardson's generalised method and the deflation
method for detecting successive solutions in nonlinear equation systems are also
presented as multiparameter extrapolations of first order iterations. New

convergence results are obtained for those methods.
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1. INTRODUCTION.

Solving systems of equations is one of the most commonly performed operations
of applied science. Every forecast and every simulation made with the aid of a
numerical model will be based on a sequence of solutions to the corresponding set of
equations. Moreover many optimisation techniques, such as maximum likelihood
estimation or stochastic nonlinear optimal control, involve repeated equation
solutions. It is therefore necessary to be able to solve an arbitrary equation
system efficiently. Indeed the British Treasury, for example, recently complained
that inefficient solution methods had seriously inhibited them'in their search for
better policies for the British Economy (HMSO [5]).

Iterative techniques, and the Gauss-Seidel method in particular, have been used
most frequently by applied scientists and economists for solving both nonlinear and
large linear systems. It is obviously important to know which methods can guarantee
convergence in an arbitrary equation system, and how accelerations can be introduced

so as to minimise computational costs. General convergence results and optimal
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extrapolations first appeared in the econometrics literature (Hughes Hallett [6]).
Subsequent results have stressed that the usual first order iterations with one
parameter extrapolations necessarily diverge in a large class of equation systems
(see Hughes Hallett [7), Hadjidimos [3], Hughes Hallett [9], [10]). In common with
many other areas of the applied science, econometric models can contain no
restrictions which would normally exclude them from that class.

The aim of this paper is to design first order iterative techniques which are
guaranteed to converge in an arbitrary equation system. This is done by assigning
separate extrapolation parameters to each equation. The resulting techniques
generalise on Richardson's method, and on the deflation method for detecting
successive solutions to nonlinear equation systems. Thus convergence results for the
latter two methods are derived together with those for multiparameter extrapolation
techniques.

2. STATIONARY INTERACTIONS AND ONE PARAMETER EXTRAPOLATIONS.

Consider the linear equation system
Ay = b (2.1)

where A € R™" is a known real matrix of order n with nonvanishing diagonal
elements, and where y and b respectively are real vectors of unknown and

predetermined variables. Stationary first order iterative techniques,
y(s+1) = G y(s) + c s =0,1,2,... (2.2)

with an arbitrary start y(o), are widely used to construct the numerical solution to
(2.1); see for example Hageman and Young [4] or Varga [14]. They are computationally
efficient if A is a large, sparse, or ill-conditioned matrix. They are also widely
used for solving nonlinear equation systems, in which case A represents the system's
Jacobian matrix.

These first order methods are based on the splitting A = P - Q where P is
nonsingular; and they are completely consistent with (2.1) when G=P_1Q and c=p”lp
define the iteration matrix and forcing function (Young [16]). The best known
examples of (2.2) are the Jacobi, Gauss—-Seidel, and Successive Overrelaxation (SOR)
methods defined by

P =D, and P = (D-L), and P = -}-1 D (I-ad” ') (2.3)

respectively, where D and L are matrices of order n such that

Dij = Aij if i=j and Lij = —Aij i<j, and a is a
0 otherwise 0 otherwise

scalar (Varga [14]). Without loss of generality, let (2.1) contain the normalisation
D=1and let B =1 - A,

The rate of convergence in (2.2) is often significantly increased by the one

parameter extrapolation
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y(5*D = v(6 ¥(9) + o) + (1-)y(8) = w y(8) 4 v . (2.4)

Two particular versions of (2.4) are routinely used; the Jacobi overrelaxation (JUR)
method with G=B, and the Fast Gauss-Seidel (FGS) method based on
G = (I-aL)~l(aU+(1-a)1). Both techniques are specialisations of the standard Newton
method for solving systems of equations (Hughes Hallett [7]).
It is well known that (2.2) converges if and only if p(G)<1, where p(.) denotes

spectral radius (Young [16], theorem 5.1). Similarly

LEMMA 1: (2.4)converges from some Y>0 if and only if aj<1, j=l..en, where G has
eigenvalues )\j=aj+ibj and i =/ - 1.

PROOF: Hughes Hallett [6].
The latter result implies(2,4)also converges for some y<0 if aj>l all j; but that it
is necessarily divergent 1if aj<l<ak for some j#k. Hence it is not possible to
achieve convergence using (2.4) in a wide class of equation systems. A simple

iteration guaranteed to converge for arbitrary values of G is therefore required.

Finally, if p(H)<1, the number of steps for convergence such that

max (s) (s=1),, (s-1)
1 (y1 -y )/yi <1 (2.5)

is approximately log <t/log p(H). That criterion 1is equivalent to defining

convergence in My(s) - y(s'l)nw.

The corresponding speed to convergence can then be
measured as an asymptotic rate (- log p(H)) or as an average rate (é log MHSH, for
some norm). We can therefore aim to minimise p(H) in order to ensure convergence.

3. MULTIPARAMETER FIRST ORDER EXTRAPOLATIONS.

There are two ways forward when faced with the inevitable divergence of one
parameter first order extrapolations in an equation system where G has roots
spanning unity in real parts. One possibility is to try multiple extrapolation
parameters. The other possibility is to wuse second order iterations, with
extrapolations as required. The question then arises, do both approaches guarantee
convergence for arbitrary values of A, G and y(o)? If so, which method converges
fastest and at the lower computational cost?

Although these two approaches may be combined, they are presented here as
dichotomousoptions for three reasons:

(i) Second order iterations are now known to offer guaranteed convergence for any
value of G, and also to involve relatively economical calculations (Hughes Hallett
[8]). The question is whether multiparameter first order extrapolations have the
same properties,

(ii) The multiparameter first order extrapolation method is easily shown to include
Richardson's generalised method for solving equation systems (the GRF method in
Young [16]) as a special case. No convergence results have been presented for
Richardson's method, except for the particular case where A is either positive
definite or symmetric (Young [16]). Indeed the method appears to have been neglected

in applications, probably for lack of a general convergence theory since it 1is no
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more difficult to use than (2.4). A general convergence theory for this class of
iterations is therefore required.
(iii) In an attempt to design an algorithm to locate all the real solutions of 4
nonlinear equation system, Salmon [13] has proposed a multiparameter first order
nonlinear iteration due to Brown and Gearhart [1]; the deflation method. However
that algorithm can only be certain to locate those solutions if the iterations are
convergent for arbitrary values of G, since the underlying Jacobian matrix is then
strictly - to the exteant of sign changes - path dependent. Once again a general
convergence theory is needed.
3.1 STATIONARY MULTIPARAMETER EXTRAPOLATIONS.

The multiparameter extrapolation of the general first order stationary

iteration, (2.2), is
y(5tD) = R g y(8) 4 (1-R)y(S) + R ¢ (3.1)

where R is a real nonsingular diagonal matrix. This iteration is a generalisation of
(2.4) in which each equation can be assigned a separate extrapolation parameter. But
if R = yI, then (3.1) specialises to (2.4). Of course any G which is completely
consistent with (2.1) may be used in (3.1); and the Jacobi, Gauss-Seidel and SOR
iteration matrices defined by the values of P in (2.3) will be typical examples. The
iteration matrix of (3.1) is I+R(G-1I), so the multiparameter extrapolation is
convergent if and only if p(I+R(G-I))<l.

3.2 RICHARDSON'S ITERATIONS.

Richardson's generalised method, applied to (2.1), is

g(st1) = y(8) 4 px (ay(S)-p) (3.2)

where R* is a real diagonal matrix. Each iterate is therefore constructed from the
previous step plus a proportion of the previous step's error Ay(s)-b. Evidently this
method is identical to a multiparameter extrapolation of the Jacobi method when
R=-R*, since (3.2) has iteration matrix I+R*A = -R*B.+ (I+R*) and forcing function
—R*b. Similarly the multiparameter Jacobi extrapolation, (3.1), has iteration matrix
RB+(I-R) and forcing fuaction Rb. Moreover if R¥=rI, yielding Richardson's ordinary
method, then (3.2) specialises to the JOR method given by (2.4) with r=-Y.
Convergence conditions and optimal values of r, for this method and for (2.4), have
been given by Hughes Hallett [9].

Likewise Gauss—Seidel and SOR based versions of Richardson's generalised method

are also possible:
y(S+l) = y(s) + {R* (1-G) Y(S) - C} (3.3)
where G = (I-aI..)'l (aU + (1-a)I) and ¢ = a'l(I—aL) for suitable a values, and R* is

a real nonsingular diagonal matrix. This obviously coincides with the multiparameter

SOR extrapolation defined by (3.1). Indeed, a Richardson method can be constructed
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from any first order iteration described by (2.2) which is completely consistent
with (2.1) since the same splittings are used. For that reason, the Richardson
method is best interpreted as a multiparameter extrapolation of any underlying first
order iteration represented by (2.2).
3.3 THE DEFLATION METHOD'S ITERATIONS.

Salmon [13] examined the deflation method for detecting the real solutions of

nonlinear equation systems of the form

y = f(y,b) . (3.4)
A convergent first orde} iterative technique

y(SHD = g(y(8)py, (3.5)

which can be the nonlinear counterpart to any of the iterations described by (2.2),
is adopted to locate any solution to (3.4). Let that first solution be (1) Then

(3.5) is restarted in the form

y(s+l) = R g(y(S),b) + (1-R) y(S) (3.6)

-1 "y(s) - y(l)"p for a suitable choice of norm. That

extrapolation ensures that another real solution y, . \# , if one exists, will be
(2)7™(1)

where R = rI, with r

found whenever the method converges. Then (3.6) is repeated, where R is now a

. . . (s) -1 (s) -1
1 o= (I - ] o= (0 - I
diagonal matrix with elements R;; (ly y(l) p) but RJJ (@)% Y(2) p)
for at least one j#i. Ultimately, (3.6) will be run n-1 times with R specified to be
a diagonal matrix having at least one element equal to the inverse of the chosen
norm applied to each solution vector so far detected. The alternative version with
(s)
i

Rijj = |y§s) - y(k)il_l’ where y and Y(k)i are respectively the 1th elements of

y(s) and the ki solution Y(k)» for i=l...n, must be ruled out because it cannot
prevent a previous solution being "rediscovered" when k>»2.

There are two points to note about Salmon's iterations:
(a) They are just multiparameter extrapolations (or Richardson's generalised method)
applied to the underlying nonlinear iteration (3.5). They therefore form the
nonlinear counterpart to (3.1), and may be analysed for convergence accordingly.
(b) The success of the method depends entirely on first picking an underlying
iterative method (3.5) which converges; and then picking values for R which allow
(3.6) to converge at each of the n-1 repetitions. However it is not proven that any
values of R do in fact exist to guarantee convergence for an arbitrary iteration
matrix, G = [0g/dy], associated with each step y(s) in (3.6). Nor is it proven that
the particular values proposed for R would necessarily imply convergence. In fact,
divergence appeared in numerical tests.
4. THE CONVERGENCE RESULTS.
4.1 DIAGONAL EXTRAPOLATION MATRICES.

THEOREM 1: A real diagonal matrix R does not always exist such that the
multiparameter extrapolations (3.1), and Richardson's generalised method (3.3), are

guaranteed to converge for an arbitrary real matrix G.
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PROOF: Iterations (3.1) and (3.3) are identical when R=-R*. Thus they are
convergent iterations, given arbitrary values of G and y(o), if and only if a real
diagonal R matrix exists such that R(G-I) has all its eigenvalues in the left halt-
plane. That follows because the iteration matrix is I + R(G-I). Hence, by lemma 1,
Y>0 exists such that the additional extrapolation

y*D o {y(ree-D) + 11 + (111} v + v ke (4.1)

is convergent if and only if the roots of R(G-I) lie in the left half-plane. But
(4.1) just reproduces (3.1) with YR for R. (Similarly if R exists such that the
roots of R(G-I) all lie in the right half-plane, then substituting —-R for R provides
roots with negative real parts). The Lienard-Chipart stability criterion (Gantmacher

[2]) states that the polynomial

£ =aA+a A"+ (i +a =0 with ag =1 (4.2)

has all roots in the left half-plane if and only if

a, >0, a,_; >0, a,;_3>0 ... and 4 > 0, 83> 0,... (4.3)
or ay > 0, ag_o > 0, +es and A2 > 0, by, > 0yees (4.4)
a) a3 as .- .- ap a3 - - - .0

where A1 = ajp, Ay o= ao‘. i . and A, = ag
8j-1 0
0 aj_1 34 0 an-1 an

and |.l denotes a determinant. (4.3) and (4.4) are implied by the Routh-Hurwicz
stability criterion, A; > 0 for i=l...n. But a = (-1)n|R"G-I'and

(k)
3

[
]
™MD

cee rj)d k=l...n-1 (4.5)

(r._
k j=k j=k+1

(k)

where 4.’ 1s the 3t

principle minor of G-I, with leading element 34k+1, jok+1® of
order k. The theorem now follows from two counterexamples where (4.3) and (4.4) are
violated for every value of R; namely (i) where G-I is singular, and/or (ii) where
dgk) = 0 for all j=k...n and some 2 < k < n. Notice that case (ii) is entirely
consistent with nonsingular G-I matrices.

COMMENTS: (a) Theorem 1 demonstrates that the convergence of a first order
iteration cannot be guaranteed by choice of a real diagonal matrix R, given an
arbitrary matrix A. An alternative interpretation of theorem 1 is that, given an

arbitrary matrix G, it is not possible to assign the eigenvalues of I + R(G-I) to an
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arbitrary subspace of the complex field (to the left half-plane in this instance) by
choice of a diagonal R.

(b) Theorem 1 1is consistent with the standard result that convergent single
parameter extrapolations of the Jacobi and Gauss-Seidel methods exist when either A
or I-G are positive definite with unit diagonal elements (Young [16]), because
d{k) > 0 for all k and G-I = -A when G=B.

(c) Theorem 1 is not reworked to establish the conditions on A which ensure that a
real diagonal R matrix can be found to make (3.1) convergent because: (i) such
conditions would still not indicate what should be done in the unavoidably divergent
cases; and (ii) convergence is already guaranteed by a computationally simple second
order method, so that (3.1) is not generally competitive with second order methods.
(d) The case where G-I (or equivalently A, see theorem 2 below) is singular is not
uninteresting. Equations where A is 1ill-conditioned, or where there are multiple
(indeterminate) solutions, are exactly the situations where iterative techniques are
essential even in linear systems. In nonlinear systems the iteration matrix is path
dependent, and convergence should be preserved even if G(S)—I passes through a
singular value. However theorem 1 also applies to nonsingular G-I matrices, and an
equality in one of the conditions in (4.3) or (4.4) generally implies others in the
sequence are violated. For example, suppose a

n-] = 0 but { G-I, a_} # 0. The matrix

in An then implies

A = - 2 (4.6)

a_ .a .
n n-3'n n-3

ii
The sign of An is therefore determined by -a _4 An—3' Using the fact that xnx1 > 1

ii 4re corresponding diagonal elements from X and )(-l respectively

where x,. and x

(Rao [l;;), we have alan_3/An_3>l. So if a; > 0 is chosen to satisfy the Routh-
Hurwicz criterion, then A < 0.
4,2 NONDIAGONAL EXTRAPOLATION MATRICES.

DEFINITION: Let K and L be n x n and n x m matrices respectively. They are said
to be a controllable pair if and only if some t > n > 2 exists such that
r(L,KL,KzL,...,Kt_lL) = n, where r(.) denotes rank (Wonham [15]).

LEMMA 2: (I,G-1) form a controllable pair if and only if G-I is nonsingular.

PROOF: r(eB(G-I)) = n if r(G-I) = n where e=(l,...,1) is of length t.

THEOREM 2: Let A be nonsingular. Then a real matrix R exists such that the
eigenvalues of I°= R(G-I) assume an arbitrary symmetric set of complex numbers,
where G is the iteration matrix of any first order method, (2.2), which is
completely consistent with (2.1).

PROOF: By definition A = P - Q = P(I-G), where P is nonsingular, when G is
completely consistent with A. Hence the nonsingularity of A implies that of G-I, and
vice versa. Consequently (I1,G-I) form a controllable pair. Moreover the nonzero
eigenvalues of I + R(G-I) are identical to those of I + (G-I)R (Young [16], theorem
2.1, p. 48). R always exists such that I + (G-I)R has eigenvalues which form any
arbitrary symmetric set of complex numbers if (I,G-I) is a controllable pair. That

completes the proof.
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COMMENTS: Theorem 2 implies that, given an arbitrary nonsingular A, a real
nondiagonal R may be chosen to make p(I + R(G-I)) arbitrarily small, and hence to
guarantee the convergence of (3.1). But it does not specify how such an R should be
determined. The obvious procedure of setting R = (D—I)(G—I)—l, where D 1is a
nilpotent matrix, suggests that finding such an R matrix will involve no less
computation than solving (2.1) by matrix inversion. This method would not be used in
practice ~ at least not for linear equation systems.

4.3 NONLINEAR ITERATIONS.

Now consider iterative techniques designed to solve the nonlinear equation
system (3.4); e.g. (3.6) where R may be any real diagonal matrix. As usual, the
convergence of nonlinear iterative processes must be based on a linearisation of the
system in the neighbourhood of some solution y*,

THEOREM 3: There exists a continuous neighbourhood about y*, with an interior
point for y(o), such that the nonlinear iteration (3.5) is convergent to y* only if
p(G*) < 1 where G* = [dg/dy] at y = y*.

PROOF: Ostrowski [11], Appendix K.

In the nonlinear case, theorems 1 and 2 can be reformulated as:

THEOREM 4: (i) A real diagonal matrix R does not always exist to make (3.6)
convergent for an arbitrary nonlinear function g(.,.) and solution y*; (ii) A real
nondiagonal matrix R exists such that (3.6) is convergent in a neighbourhood of y*,
for an arbitrary g(.,.) and y*. Moreover a sequence of matrices, R(s), exists such
that (3.6) is convergent from any y(o) for an arbitrary function g(.,.).

PROOF: (i) By theorem 1, a real diagonal matrix R does not exist to ensure that
p(I + R(G*-I))<l. In that case, by theorem 3, no neighbourhood exists about y* such
that y(s) in that neighbourhood implies (3.6) converges.

(ii) By theorem 2, a real nondiagonal matrix exists such that p(I + R(G*-I))<1 for
any g(.,.) and y*. Hence (3.6) can be made convergent within a neighbourhood of y*

because an R(S) can be found such that
iy D g car + ROV -y 1y ogrn ¢ ay(S gy (4.7)

for some norm and every s, where G(s) = [dg/dy] at y = y(s) for any g(.,.) and y(o)
(Young [16], p. 81).

COMMENTS: (a) This section has assumed throughout that (3.4) has at least one
real solution. The iteration (3.6) is of course convergent if (4.7) holds for every
s, but that does not mean every (or any particular) solution of (3.4) can be found
by these means.

(b) Salmon's iterations cannot necessarily detect the remaining real solutions of
(3.4) even if some iteration such as (3.6) has located the first solution. That is a
consequence of theorem 4(i) with G* replaced by G(k) = [dg/dy] at y = Y(k) for k>1.

(c) However a sequence of nondiagonal R(S) matrices exists which guarantees that the

real solutions of (3.4) are all detected. One possibility is to set
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- h
(s) -1 (s) _ -1
Iyl - y(1)1| Iyn - Y(n
(s) (s) -1 (s) _ : -1
RS> = lyls -y(k-l)ll Iyn y(k—l)nl (4.8)
i J

at run k=2...n of (3.6), where elements below the partition line may be set at any
values which preserve convergence. It is not certain that Rﬁs) will always satisfy
(4.7) at each s, and fprther modifications to that end may be necessary. The key
question therefore remains; how may a nondiagonal R matrix be chosen to guarantee
convergence to each real solution?
5. CONCLUDING REMARKS.

The main result of this paper is that first order iterative techniques, which
are guaranteed to converge in solving an arbitrary equation system, do indeed exist
but they may require a nondiagonal matrix of extrapolation parameters. Thus

multiparameter extrapolations which assign one parameter to each equation cannot
necessarily resolve the cases where standard one parameter extrapolations diverge.

Consequently neither the deflation method for detecting multiple solutions, nor
Richardson's generalised method, have guaranteed convergence.

Simple iterative techniques are effective for solving equation systems because
they approximate the standard Newton method in a way which avoids any derivative
evaluations and because they exploit the sparseness of the system by avoiding any
matrix inversions. Precisely the same advantage has established Powell's method as
the most economical optimisation technique for typical econometric problems. The

Newton method applied to (3.4) - rewritten as f(y,b) = 0 - would be

y(8) = y(smD) _ p(emDp=l g(y(s=1) ) (5.1)

where F(571) = [0£/0y] evaluated at y(s'l). Hence, in the absence of normalisation,
JOR can be regarded as a restricted Newton method with F(s-l) = Y_II for all s.
Similarly Gauss—-Seidel 1is (5.1) with f(y(s), y(s'l), b). In either case, a
stationary approximation to the inverted matrix of partial derivatives, proportional
to the identity matrix, is imposed throughout. Multiparameter extrapolations impose
the more flexible approximation of R-l, which is still stationary and usually
diagonal, for F(S'l). This restricted Newton interpretation explains the ultimate
necessity for a full (and nonstationary) R matrix to ensure convergence; also why it
may be expensive to find suitable values for R, and why (since rR! is not the true
value of F(S—l)) it is still possible to construct convergent first order iterations
when the Newton method is divergent. Multiparameter extrapolations therefore
represent a retreat towards Newton methods which may sacrifice the computational
advantages of other techniques (e.g. second order iterations, which continue to
exploit sparseness without derivative evaluations) without securing guaranteed

convergence in exchange.
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