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ABSTRACT. In this paper we have derived a class of bilateral generating relation for
modified Bessel polynomials from the view point of Lie group. An application of our

theorem is also pointed out.
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1. INTRODUCTION.
In [1], the modified Bessel polynomials are defined by

yn(x; a-n, B) = 2Fo(—-n, a-1; -; -x/B), (1.1)

where yn(x;a,B) denotes the Bessel polynomials introduced by H. L. Krall and
0. Frink [2].
The object of the present paper is to derive the following theorem on bilateral
generating relation for modified Bessel polynomials from the view point of Lie-group.
THEOREM. If there exists a generating relation of the form,

L3

G(x,w) =L a Wy (x; a-n,B) (1.2)
n=o " n
then
(1-nw)1 ¢ 6"'(G—x— wz)= ; W g (2) y (x; a-n, B) (1.3)
l-xw n=o n n "’ ’
where

n g
= m m
gn(z) —mgo a7 (Bz) .

The importance of our result lies in the fact that if one knows a generating relation
of the type (1.2) for a particular value of a, then the corresponding bilateral
generating relation follows atonce from (1.3).

2. PROOF OF THE THEOREM.

From [1] we observe

a Bwy (X _ ) 2.0

1-
exp(wR) f(x,y) = (1l-wxy) T-wxy
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where
R = x2 y K + By + (a=1)xy
3x
and
R(Fn(x, y, a-n,B)) = BFn+1(X,y,a—n—l,B) (2.2)
where

n
Fn(x’ Y»O"n,ﬁ) =Yy yn(x; a_n)B)‘
In the formula: ’

bl n
G(x,w) = L aw y (x;a-n,B)
n=o 0 n

replacing wby wyz and then operating both sides by exp(wR), we get

exp(wR) G(x,wyz) = exp(wR) I an(wz)n Fn(x, y,o-n,B).
n
The first member of (2.3) is equal to

w  Bwy X
G
e (l-wxy

(L-wxy) 1 , wyz),

and the second member of (2.3) is equal to

® o +n
T I a E%?— 2" R™ (Fn(x, y,a-n,B))

o ™ m+n
= T I oa Y g" Fn+m(x,y,u—n-m,B)

where m
_ 2 (Bz)
gn(z) B mzo & !

Equating the above two results and then putting y=1, we get

l-a Bw X _ % .n o
(1-wx) e c(l-wx ,wz) = nfo ¥ gn(z) yn(x,u n,R)
where
n m
g(x)=ZaLB_Z')__,
n m=o M ml

this completes the proof of our theorem.
3. APPLICATION.

As an application of our theorem we consider the following generating relation

r3l.
n wx 1-a
oy (xamn,) = V(- D L (.1)

I ™8

n=o

If, in our theorem, we put a = 1/n! we obtain

l-a ®
e(B+2)w(l— (B+z)w x) = 7 W g (2) y (x; a-n,R) (3.2)
8 n=o n n
where
_ 2"
gn(z) = o mhT -
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