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ABSTRACT. Ue extend the results of Csiszar (Z. Wahr. 5(1966) 279-295) to a
topological semigroup S. Let u be a measure defined on S. We consider the value

of a = sup lim sup pn(Kx_l). First, we show that the value of a is either
K N XeS
compact

zero or one. If a = 1, we show that there exists a sequence of elements (a ) in

S such that [.ln » 6a converges vaguely to a probability measure where § denotes
n

point mass. In particular, we apply the results to inverse and matrix

semigroups.
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1. INTRODUCTION.

Csiszar [1] proved the following result concerning a regular probability
measure p on a locally compact. second countable, Hausdorff group G: Either
sup pn(Kx-l) - 0 as n 4 o for all compact sets K, where pn denotes the n-fold

convolution of u. or there exists a sequence of elements (a ) such that P 5,
n

converges vaguely to a probability measure where Ga denotes point mass at a
n

We will extend this result to probability measures defined on certain types of
locally compact, second countable, Hausdorff semigroups which satisfy condition
(c): If A and B are compact then so are AB ' and A”'B where

-1
AB = = (y: there exists z € B such that yz € A).
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We will also consider /.ln(Kx—l) when u is defined on a semigroup S of
m X m matrices. A matrix semigroup does not necessarily satisfy condition (c).
To each regular probability measure uy on a semigroup S we associate the

value o, = sup lim sup un(l(x_l). We first show that a, = O0Oor a_ = 1. If

K n-wo  X€S ° 0
compact
a, = 0 then ”n * 6, - 0 vaguely for any sequence of elements (an) in s. If
n
ay = 1 we find (an) such that pn »* sa converges to a probability measure.

n
2. PRELIMINARY RESULTS.
In order to show the main results. we need the following lemma. WUe omit 1ts
proof since 1t 1s quite similar to an argument of Csiszar [1].

LEMMA 1. Assume S satisfiles condition (c). Let My be a probability measure
such that sup yl(kx-l) ¢ a for a compact set K € S, Then there exists a compact

set Kz (depending on “1) such that for any other probability measure on S,

-1 -1
Hy % py(Rx) € a - ar2(1 = (KX ).

Define a (K) = sup u"(Kx '), Then if k < n.
X

WPty = 1Rl )

a, () 1 " May) = o, (K).

A

Therefore (cxn(l()) is a nonincreasing sequence. Define a(kK) = lim a.n(l()

and a_ = sup a(K).

[

K
compact

THEOREM 1. If S satisfies condition (c) then either a, =0or ay = 1.

PROOF. Suppose 0 < %y ¢ 1. Then there exists an a such that
0 < a(1+a)r/2 < ay < a < 1. For any compact set K there exists a k(K) such that
sup pk(Kx_l) <a 1ying Lemma = u* nok

. Applying 1 to My = M and Hy = yields the fact that

for some Kz.

pn(Kx-l) {a-a2(1 - pn‘k(xzx—l)).

If n is sufficiently large, pn-k(l(zx-l) < a for all x since

n-k -1
Sup p o (Kyx ) < (Ky) £ ay <a.

n -1
But then H (Kx ) Ca- a’2(1-a) = a(1+a) 2,
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Therefore a(K) ¢ a(1+a)/2. Since K 1s arbitrary we have a contradiction. We

conclude that ao = 0 or ao = 1.

QED
Before proceeding we present an example. Let S = [0,%) with the usual
topology. Define multiplication by r-s = max(r.s). Let K = [0.n] be a compact
subset of S. Then

o

n n
n K(K)

-1 0 x> n -1
Kx ={ x < and;.l(l(x):{

Therefore 1f y has compact support then % = 1. Otherwise, % = 0.

3. MATRIX SEMIGROUPS
Let S be the set of all m x m matrices with probability measure y defined on
S such that the support of u generates a subsemigroup s# of S, We assume S has

the usual topology. Define G = (X € S : X is nonsingular). Then G forms a
subgroup of S. We want to consider the subgroup Gy of G generated by the set

S N G. We consider the case where GI-' is locally compact. Then G” becomes a

topological subgroup of S. If u(G) = 1 then we need only apply Csiszar [1] to

show that ay = 0 or ay = 1. Therefore we assume 0 < p(G) < 1. Define a measure

p° on G such that

p'(B) = (B N G)/u(G) for B < S,

men (u)*(8) = [ wr(ax) wr(an)
S

]

[ ™ neyue) (e
G

-1
1/u(G) J H(Bx = N G)/u(G) p(dx)
G
. Therefore.
Noqu_lnG=(g€G:gxeB)=(ges:gxeBnG)xfxeG ere

w)2B) = 1/u(6)? I (B N G)X 1) p(aK)-
G

Therefore

If x € G then (B N G)yx ! = o.
3@ = v [ e noxT ue
s
2 2
= p (B N G)/H(G) -

By an induction argument .,

W) = i (B0 6 mE)
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Define the following notation:

a =sup Lm sup (u)"(kx 1)
9 k6 n  xeG

sup lim sup (p')n(Kx—l)
KSG n  xes

sup lim [sup pn(Kx_l)]/p(G)n.
KeG n X€S

Since p(G) < 1. p(G)n - 0as n 4 = By Csiszar’s result [1] for groups. either
a =0or a_ = 1. However,
9 9

Lim{sup " (Kx 1)1 u(G)" < .

: . : n._ -

This is only possible if lim sup pg (Kx 1) = 0 for any K € G. Henceforth, we
assume that K is a compact set consisting of singular matrices. We will also
exclude the zero matrix from our discussion since 0_10 = S reduces the problem to

a triviality and 1t 1s obvious that a, = 1. That is, we define

a, = sup lim sup yn(Kx-l).
Kcs n X€ES
X#0

We give an example. Suppose SIJ consists of matrices with nonnegative
entries such that for any X € SIJ' every entry in X is contained in the set [§.%)

where 6§ > 1/m. Then
WYy = e Ry, g, %) TRy, ) - e(ay,)

where K(gn---glx)-l = (zes:zgn”-glx € K) and

where uij has minimal value mn-lbn for all i and j. Therefore for
Z=(z, ) ek -ux) . m 5" Yz eKsothatasnaw Yz 0 for all
= (24 (U oy %) - ij A

i. Hence for any compact set K,

1m ket =0
n

and e, = 0. By a similar argument, if every entry of X € S” is contained in

[0.1/m). then ao =1,
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In order to state a more general result, it is necessary to define some

notation. Let 4, be the diagonal idempotent matrix of rank K. Let

Yy oYyt tey € sy. Then

gn...gldl= }WIJnO-..O
:. where Je(l.-'-.mn—l) and

Ew Q ¢+« O
mjn

ijn represents the product of n real numbers. We need to consider the

distribution of S_ = zu where j € (1,2.---.m" '). Let F_. be the
n 1)n 1Jn

1
J

distribution function of the random variable U”n. i=1.2,---.m

J = 1.2.'”.mn—1; n=1,2.--- . If we assume 1independence between the entries in

the matrices then we may apply the Lindberg-Feller Theorem [2] to the double

array (W for every 1.

1Jn)Jn

THEOREM 2, Suppose the (W def1lned above satisfy the following

1_|n)_]n
conditions for each i:
1. }Var(UiJn) = 1 for every n.
J

2. E(W ) = 0 for every j.n.

1jn
If 2 jgz deJn(g) - 0 where the 1integral is taken over the set Igz| > &6 for each

6>oasn-¢wtnena°=1.

PROOF: By the Lindberg-Feller Theorem, Sni converges in distribution to the

standard normal for every 1. Therefore for n and N sufficiently large.
P(|s ¢ N) =1 - € for all 1 where € » 0 as N + ». Therefore

nll -
H{X = (xij): xgl'”gn‘di € Kk = [_k’k])

H{X: |§ xljsni' < k for all j)
1

w

H(X: |§ %, IN <k for a1l gy(1 - )"
1

m
2 (1 - €) p(Kk,).
Note that k' depends only on the choice of N and K and not on the choice of n.

Therefore as Kk 1 S we may also let N increase so it becomes clear that

a, = sup lim pn(KAI-l) = 1. QED

It 1s clear that conditions (1) and (2) may be relaxed so that
}V‘”(ul_]n) < M for some M and E(uxjk) ¢ o for all j.k.
J
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Ve present an example. Suppose the support of the measure p.

= X : X €R . Then
sp X, X,  Xg 4 N
o o
o [
o 0
= € . = o [ o .
for any x L %, L3N LA Sp xdl L
o o
o [
o

Therefore we need only be concerned with the probability distribution of the

corner element. Suppose xij 1S a random variable such that
= 1/2) = P(X, = -1/2) = 1/2 for all i.].
P(X;, = 172) = P(X; ) )

= = . for any n, E(X X_.---X = 0 and
Then E(le) 0 and Var(xij) 1/4. Also for any ( 15%23 nj)

= 1/4. Define
Ver(x”.xz‘l an.) 1
= o 1
Yigp = Py 3
= i =1,2.3.4
uljz leszj. J 1.2
n-1
uljn = lesz_j"'xnj’ J=1.2,-.-.4 . Then }vgr(uljn) = 1 and
2 . .
E(ul_]n) = 0. Also ] y dF”n(g) = 0 if n 1s sufficiently large. By the
above theorem., a = 1.

(o]
4. The Case Where ao =1,

If ay = O then for all compact sets K, lim sup ;.ln(l(x-l) = 0 so that it 1s

clear that for any sequence (a ). A 5, converges vaguely to the zero measure.
n

Therefore we concentrate on the case where a, = 1. Let S be a locally compact,

second countable. Hausdorff semigroup satisfying condition (c).

LEMMA 2. If a, = 1 and S is abelian then there exists a sequence (xn) such
that for any O ¢ a ¢ 1 there exists a compact set K such that pn(l(axn-l) > a for

all n,

PROOF: For a = 1/2 there exists a Kz such that sup yn(sz-I) > 172 for all
X€S

n. Therefore there exists a sequence (xn) such that pn(xzxn-l) > 172 for all n.
Similarly. for each a > 1/2 there exists a ch and a sequence (xm) such that

Pk x !y > a. since a > 12, the sets K.x ! and K x_ "' cannot be disjoint
a’ na 2°n a’ na

-1 -1
th € .
SO there must exist w (szn )y n (qu ) This 1mplies that
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-1 -1.-1 -1 -1, .-1
L € Kau [ Ka(szn ) . Therefore Kaxna < Ka(Ka(Kan )] °. Suppose
-1 -1, -1 -1 -
€ . € € h that
y Kaxna Then y Ka[Ka(szn )] so there exists z Ka(szn ) suc
-1.-1 . -1
€ ‘€
yz € Ka‘ Also z Ka(szn ) implies there exists z szn such that
2
2z' € KOl and z X, € K2 Therefore (yz)(zz')(z xn) Ka K2 Since S 1s abelian
2,-1,2 2,-1, 2 -1 .
yx € (Ka ) Kc KZ and y € ((Ka ) Ka Kx ). By redefining Ka to be
2.-1 2 n -1
(Ka ) ch Kz. H (Kaxn ) > a for all n.
QED
If S 1s a group we can define vo= & -y XH* 6x where the xn's are
n
n-1
defined 1n lemma 2. Then we can apply Csiszar [1] to
n n-k
= e = »* »* -
Yp = Vper X Vie2 * * v éx_l H 6xn. Unfortunately 6x 1 has no
K

meaning in a semigroup and the un's must be defined i1n some other way.

Suppose S 1s embeddable 1n an abelian group G. Then by Lemma 2 there exists
a sequence (xn) such that for any a there exists a l(Cl such that pn(xaxn_l) > a.
We may assume that p 1s a measure defined in G with support contained in S. Then
v = ] B 6x is well defined in G 1f we let L be the 1dentity element

X n

n

of G, If we write (l(x.l)$ and (l(x-l)G for the respective sets defined in S and G
then (Kx_l)s S (l(x_l)G However since the support of u 1s contained in S,

pn((l(x_l)s) = yn((l(x-l)c). Therefore a, = 1 with respect to G. Let

n n n -1

Y = Vpay % 700 v Then go(Ka) =M (Kaxn } > a for any a. Also, by lemma 1,
n -1 n K

qk(Ka Ku) > go(Kq) + go(l(a) - 1> 2a - 1. Therefore 1t 1s clear that any limt

point of g: must be a probabllity measure and Csiszar [1] can be applied to this
sequence. It is also clear that any limit point of g: must have support

contained in S and may therefore be considered a measure on S.

Next consider the case where S 1s an abelian inverse semigroup. S 1s a
semigroup of this type provided for any x € S there exists a unique x° € S such
that xx'x = x and x'Xxx* = x’. A natural ordering can be defined on the
idempotent elements of S: e ¢ f provided ef = fe = e. If S contains a minimal

ldempotent e then we can define v = 6 *pes with X, =e. Then
n-1 n

n
go(Ka U Kae) =y, * ... un(Ka U Kae)

1

W (kg Y K2 (%pe) )

n -1 11 n.
2P(chxn ) > « for a

Therefor n
€ all l1imt points of gk are probability measures.
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If S contains a finite number of idempotents. say e‘.ez. LN then the

product ee, ey is minimal in S. Therefore Csiszar [1] can be applied to any

abellan i1nverse semigroup with a finite number of 1idempotents.
Suppose 1nstead that S 1s an inverse semigroup such that the set of

idempotents can be ordered 1n the following manner: fo > fl > fz > -+ . That

is. suppose S 1s an w-semigroup. Let Xy = fo and consider the sequence (xn)

defined in lemma 4. Given any L elther

t=e_ > X

= e for all > nor
a. the idempotent xeJ ] n*n n J

b. there exists some ) > n such that eJ <e.

If there exists some n for which (a) is true then S has a minimal idempotent. If

not, there exists a subsequence x _.X. Xy e such that e, > e, if j > n.

o'
1 2 J n
‘et

Define v_ = 6 »* * .
n b x. e
1 i i

n-1 n n

THEOREM 3. If g;: = ul“1 R sequence of probabllity measures on

S satisfying the hypotheses of Csiszar [1] then there exists a sequence (wn) in s

n
such that for each K. y  * 8§ converges vaguely to a probability measure as
n

n -« %,

PROOF. By Csiszar [1] there exists a sequence of integers

n <(n_ ¢ +++ <n_ < +++ such that
1 2 ]
"
xzm y,~ = A, and x;m Ay = Ay

where the limits are defined with respect to the vague topology and Ak 1s a

probability measure for all k ( . Also A_ is idempotent and A * A = A  for

all K.
The support of any idempotent probabllity measure is completely simple. Let

H denote the support of A _. Since S 1s abelian. H 1s a group. Furthermore. A,

1S a Haar measure on H and H 1s a compact group.
The remainder of the proof., dealing with the choice of a suitable sequence

(un), 1s quite sumilar to the argument 1n Csiszar [4] and w1ll be omitted.

QED

We define an = ann where Xn 1s defined in lemma 2 and Hn 1s defined above.

If S 1s embeddable or an inverse semigroup with a minimal idempotent then

: . n .
lim gz * Gw = lim u = 6a = Ao which is a probability measure. In the other
n n

two cases, the same argument can be applied to an 1infinite subsequence.
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