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ABSTRACT. Velocity potentials describing the irrotational infinitesimal motion of two

superposed inviscid and incompressible fluids under gravity with a horizontal plane of

mean surface of separation, are derived due to a vertical line source present in

either of the fluids, whose strength, besides being harmonic in time, varies

sinusiodal[y along its length. The technique of deriving the potentials here is an

extension of the technique used for the case of only time harmonic vertical line

source. The present case is concerned with the two-dimensional modified Helmholtz’s

equation while the previous is concerned with the two-dimenslonal Laplace’s equation.
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[. INTRODUCTION.

Velocity potentials due to the presence of different types of singularities in an

incompressible and inviscid one-fluid medium, assuming irrotational motion of small

amplitudes, play an important role in dealing with problems involving radiation or

scattering of surface waves by obstacles present in the medium. These problems can be

reduced to equivalent problems of solving some singular integral equations of second

kind in general, by a suitable use of Green’s integral theorem in the fluid medium

with the help of these singular potentials (generally called Green’s function).

Thorne [I] gave a survey of the fundamental singularities submerged in an one-fluid

medium and Rhodes-Roblnson [2] modified it to include the effect of surface tension at

the free surface (FS). Gorgul and Kassem [3] considered a two-fluid medium and

obtained potentials due to oscillating line and point singularities submerged in

either of the fluids. The upper fluid of the two-fluid medium considered in [3] is

extended infinitely upwards and the lower fluid is of either infinite or finite depth

below the mean surface of separation (SS). Later the model is modified to include a

number of generalizations, e.g. presence of interracial surface tension in the SS (cf.

Rhodes-Robinson [4], Mandal [5]) upper fluid of finite depth with a free surface with

or without surface tension (cf. Chakrabarti and Mandal [6], Chakrabarti [7], Kassem [8]).

In problems dea[i,g with the scattering of obliquely incident surface waves in an

one-fl,lid medium by horizontal plane barriers (cf. Heins [9], Green and Helns [I0]
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etc.) or vertical plane barriers (el. Mandal and Goswaml [II], [12] [13]), half-

immersed or fully submerged infinitely long circular cylinder (cf. Mandal and Goswami

[14], Levine [15], by exploiting the geometry of the obstacles, the velocity potential

can be as:;umed to have a harmonic variation in the lateral (z) direction, same as the

incident wave field. Thus the potential function satisfies a two-dimensional reduced

Helmholtz’s equation. Hence the problems are essentially boundary value problems

(BVP) involving the He[mholtz’s equation, and the construction of a two-dimenslonal

source potential (the Green’s function) is necessary to reduce the BVP’s to equivalent

integral ,equations. Both for infinite and finite constant depth of fluid, this source

potential can be constructed by the method of Fourier transform (in x)(cf. Heins

[9], Levlne [15], Miles [16] etc.) or by the method of separation of variables (cf.

Rhodes-Roblnson [17] where the effect of surface tension of FS is included), thereby

obtaining a linear combination of potentials due to the source in an unbounded fluid

together with an ’image’ potential in the FS boundary condition.

In the present paper we consider a two-fluid medium and derive velocity

potential due to a vertical llne source present in either of the fluids whose

strength varies harmonically with time and also with the co-ordlnate measured along

its length. This is the same as deriving the source potentials in a two-fluld medium

for the reduced two dimensional Helmholtz’s equation. The corresponding problem for

the two-dimensional Laplace’s equation was considered in [4]. When the strength of

the llne source is made independent of the co-ordlnate along its length, known results

for a two-fluid medium are recovered. When the density of the upper fluid is made

zero, the results derived here reduce to corresponding known results for an on-fluld

medium.

2. STATEMENT OF THE PROBLEM.

We consider a two-fluid medium, both the fluids being incompressible and

inviscid. The mean SS is horizontal and taken as the xz-plane y-axis pointing

vertically downwards. A line source is assumed to be present in either of the fluids

and the y-axis is chosen to pass through the singular point so that the point of

singularity is situated either at (O,q) or (0,-) ( > 0). The strength of the

llne source is assumed to vary sinusoidally with time as well as with z. Let Pl, P2

be the densities of the lower and upper fluids respectively so that Pl > P2-

The motion is assumed to be irrotational and is of small amplitude, and can be

described, by velocity potentials Re {.(x,y,z) exp(-it} (j-l,2), where is
3

the circular frequency. ’s satisfy the three-dimensional Laplace’s equation in

respective fluid regions except at the point of singularity where it exists. The

linearized SS conditions are

K >I +-y s (K + 3--), y 0,

on y= 0,,3y y
2

where K /g, g being the gravity and s P2/Pl < I. If the lower fluid is of

depth ’h’ below the mean SS, then
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0 on y h,y

otherw[se,

grad iI 0 as y =.

Also grad #21 0 as y =.

Further, I, z satisfy the radiation condition that both represent outgoing waves

in the far fiels as Ixl .
Assuming the z-variation of the strength of the line source as exp(iz), it is

possible to extract the z-variation completely from the functions .(x,y,z). Thus we

can write

j (x,y,z) j (x,y) exp (iz) j 1,2

where now j’s satisfy the two-dimensional modified Helmholtz’s equation

2 2
(V j 0 in D.

3
(2.1)

except at a point of singularity, where DI,D2 denote respectively the regions occu-
2

pied by lower and upper fluids and V is the two-dimensional Laplacian operator.

Near a point of singularity the potential behave as K (UR) which is a typical singu-

lar solution of Helmholtz’s equation, K (z) being the modified Bessel function of

second kind and R being the distance from the poln.t. The boundary conditions are

Kgl + --- s (K2 + ,-17-) Y 0;

y y

(2.2)

2
y 0; (2.3)

0 y h (2.4a)y

when the lower fluid is of finite depth, otherwise,

IVII 0 as y (2.4b)

when the lower fluid is of infinite depth; also

IVY21 0 as y +-=; (2.5)

and finally, ’I’ 2 satisfy the radiation condition in the far field as

Thus I, 92 satisfy a boundary value problem (BVP) described by (2.1) to (2.6). In

section 3 we will decompose this BVP into two BVP’s by defining two sets of component

potentials where the first set accounts for the singularity in the medium but die out

in the far field while the second set is non-singular but accounts for the radiation

condition in the far field as Ix =. In sections 4 and 5 we will obtain solutions

to these BVP’s assuming the lower fluid to be of infinite and finite depth respect-

ively, thereby deriving the source potentials in the two fluids completely.
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3. DECOMPOSITION INTO TWO BOUNDARY VALUE PROBLEMS.

(x,y), A_. (x,y)(j--1.2) such thatWe define potentials 9j

@j j + j j-- 1,2

where @j satisfy

2 2
(v -v 9j --0 (3.2)

in D. except at a point of singularity, and near a singularity the appropriate

conditions are

Wj Ko(R) as R 0. (3.3)

91 s 92, y--O, (3.4)

3y 3y Y 0, (3.5)

2 2)I/291’ 2 0 as (x + y (3.6)

{n DI, D2 respectively. Thus @I, 9Z satisfy the BVP described by (3.2) to (3.6)

(hereinafter Pl). Then Xl, A2 satisfy the BVP (hereinafter P2) described by

(V2- 2) Xj 0 in Dj (j 1,2), (3.7)

g (I +-y (I + hl) s {Kx
2 +-y (W

2
+ X2)} y 0; (3.8)

i)X k2
}--- ---y, y 0 (3.9)

8X’I I y h (3.10a)y 3y

if there is a bottom to the lower fluid, otherwise,

IYXII 0 as y =, (3.10b)

IVX21 0 as y ", (3.11)

and finally, Xl, X2 satisfy the radiation condition in the far field as

In the conditions (3.8) and (3.10a), 91 and 2 are assumed to be known (solution of

pl).

4. LOR FLUID OF INF[NIT DEPTH.

(i) Wave Source in the Lower Fluid. In this case we seek a solution to the BVP

described by (2.1) to (2.6) where @i K0(r) as r {x2 + (y-B)2}I/2/ 0. Thus in PI

the precise form of (3.2) and the condition (3.3) are

2 2
(V - 91 0, y > 0 except at (O,Q), (4.1)

2 2
(V 2 0, y < 0,91 K0(r) as r 0 (4.2)
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Let i K0(vr) + cl K0(r*) @2 c2 K0(r)

z 2) }I/2where r* {x + (y + is the distance from the image point and cl, c2 are

unknom constants. Clearly @I, 2 as given above satisy the equations (4.1) and the

conditions (4.2) and (3.6). We choose cl and c2 such that the conditions (3.4) and

(3.5) are satisfied.

The following integral representations will be needed in our calculation

K0(vr) f k -1 cos x exp {+ k(y-n)} dk,Y

K0(r*) $ f k -I cos x exp { k(y-n)} dk,Y

where (k and the upper (lower) sign is for

Thus

K0(r)

Y K0(r,
=;f k4

-1

y= 0
cos x exp(-kh) dk,

y >(<)n.

K0(r)

Y K0 (r,)
f k-I

cos 4 exp {-k(hSn)} dk.
y= h

Conditions (3.4) and (3.5) give after making use of appropriate integral representa-

tions given above

+ Cl s c2, l-cl

from which we obtain

-I -Ic (l-s) (l+s) c2 2(l+s)

Hence

I--S
1 K0(r) K0(r*)

2
2 K0(r)

Again, let

/ A 4
-I

cos 4x exp(-ky)dk, y > 0,

(4.3)

(4.4)

K2 f B -I cos exp(ky) dk, y < 0,

where A,B are unknown functions of k. Clearly I, 2 given above satisfy (3.7),

(3.10b) and (3.11). The contour in the integrals is to be chosen in such a way that

the radiation condition is satisfied automatically. This will be shown in the

sequel. The conditions (3.8) and (3.9) lead to

-I(K-k) A- s(K+k) B 2(1-s)(l+s) exp(-k0),

A+B O.
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Thus

whe re

Hnce

-I -!
A, B +/- 2(l+s) k(k-M) exp (-kq)

M (l+s) (l-s)
-I

K. (4.5)

I-s 2 k
Pl K0(r) ls K0(vr*) + ls cosCx exp {-k(y+)} dk (4.6)

2 2 k
2 T K(r) - k--- cosx exp (k(y-q) dk (4.7)

where the contour is indented below the pole at k M to ensure the radiation condi-

tion at infinity. To establish this, we replace 2 cos Cx in the integrals by exp

(i [xl)+ exp (-i Ixl). The contour in the integral involving exp (i is de-

formed into a line from to X (where X is a large positive number) on the real

axis with an indentation below the pole at k M, the quarter of a circle of radius

X in the first quadrant, the imaginary axis from iX to 0 and a line from 0 to

just above the cut from k to in the complex k-plane. It is being assumed
inctat v < M. (In fact if we assume an incident wave field represented by I exp

{- My + i (M cos x + M sin z)}, y < 0 then M sin . However see section 6).

In this case there will be a contribution from the pole at k M. As X (R), the

contribution from the circular arc will be exponentially small. Similarly in the

(-i[x[) the contour is deformed into a llne from 0 tointegral involving exp

below the cut, a line from to X on the real line with an indentation below the

point k M, the quarter of a circle of radius X in the fourth quadrant, and the

imaginary axis from -iX to 0. In this case as the point k M lles outside the

closed contour, there will be no contribution to the integral from this. As X

the contribution from the circular arc will be exponentially small. The contribution

from the real line from 0 to above and below the cut from k - to will

cancel out. Comb-ining the two integrals we will finally obtain the alternative

representations (which account for the radiation condition in the far field as

ix for @I, 2 as

l-s
K0(r) --s K0(r*)

2 -I
[i M N exp {-M (y+) + i N ix[}+ I-s

f eXp
2 2)I/2 .!} dk] (4.8)k {k cosk(y+) M sin k(7+)} {-(k ++

0 (k2 + M2)(k2 + 2/2
and

2 -I
2 [i M N exp {M (y-) + i N Ixl}

2 2)1/2 ix+ / k{k cosk (y-n) M sin k(y-n)} exp {-k + n I}
dkl

0 k
2 + M2)(k2 + 2/2

where N (M

(4.9)

(4.o)
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(ii) Wave Source in the Upper Fluid. In this case

2 K0(r*) as r* 0 so that 2 K0(r*) as r* O.

By writing

WI cl K0(r*), 2 c2 K0(r) + K0(r*)

and AI, A2 the same integrals as in (4.4) (with different A and B) we will.slmilarly

obtain

2s k
41 l--s [K0(r*) (k-) cosx exp {-k(y+rl)} dk]

l-s 2s k
42 K0(r*) +s K0(r) + l--s ’(k-’M)’ cosx exp {k(y-)} de

(4.)

(4.12)

where the contour is indented below the pole at k M to ensure the radiation condi-

tion at infinity. Alternative representation for 91, 2 can be obtained following

the same method mentioned above as

2s
i l--s [K0(r*) the terms in the square bracket in (4.8)],

l-s 2s
2 K0(r*) + l--s K0(r) + l-s [the terms in the square bracket in (4.9)].

5. LOWER FLUID OF FINITE DEPTH.

(i) Wave Source in the Lower Fluid. In this case @l, 2 are the same as in

Section 4(i), while XI, xz satisfy P2 with the condition (3.10a) in place of (3.10b).

Le t

cos x {A cosh k(h-y) + B sinh ky} dk, 0 < y < h,

2 / C -I cos x exp (ky) dk, y < O.

XI, 2 given above obviously satisfy (3.7) and (3.11). The SS conditions (3.8),
(3.9) and the bottom condition (3.10a) yield the following three equations for the

derivation of A, B, C.

-1A(Kcosh kh ksinh kh) + kB-s(K+k) C 2(l-s)(l+s) k exp(-k),

A sinh kh B + C 0,

B cosh kh exp {-k(h-)} -(l-s)(l+s)
-I

exp {k(y+)}.

Solving for A, B, C we obtain

l-s
41 K0(r) ls K0(r*)

2+ l--s j [----exp(-kh) {s(K+k)-k} (sinh kq + s cosh Kq) sech kh

(l-s) exp(-kq) cosh k(h-y)

cosx+ exp(-kh)(sinh kq+s cosh kq) sech kh sinh ky] dk (5.2)
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2
2 -i- K0(r)

2+ l--s f [(slnh ko + s cosh k0) sech kh exp {-k(h-y)}

{exp (-kh) {s(K+k)-k} (slnh kq + s cosh kq) sech kh
A

cosx(l-s)k exp(-kr)} sinh kh exp (ky)] dk, (5.3)

where A(k) K cosh kh + {s(K+k)-k} sinh kh, (5.4)

and the contour in the integrals is indented below the pole at k=k which is the

only real positive zero of g(k), to ensure the satisfaction of the radiation cond-

tion at infinity.
ni 3

Note that poles do not occur at kh +/----, +/- i, The only poles occur at

the zeros of a(k). a(k) has two real zeros, one is positive, k say, and the

other is negative. When s 0, magnitudes of these real zeros become the same. The

remaining zeros of a(k) are complex in general. When s O, the complex zeros

be.come purely imaginary (see Rhodes-Robinson [18] with surface tension put equal to

To ensure the radiation condition in the far field as Ixl , thezero). same

steps of section 4 (i) can be followed in the deformation of the contours tn the first

and fourth quadrants with the modification that the contours are indented below the

pole at k=k0, and the large radius of the circular arc in the first and fourth

quadrants is chosen in such a way that no complex zero of &(k) is crossed. The far

field behaviour will come only from the contribution to the integrals at k=k (when

the contour is deformed in the first quadrant), other contributions from the imaginary

axis, from the poles at complex zeros lying in the first and fourth quadrants will die

in the far field as Ixl =. The contribution from the real line fromout 0 to

above and below the cut from k v to v will cancel out. Thus as Ixl
cosh k (h-y) -I

WI+ D1 sinh k0h NO exp (i N Ixl),
(5.5)

Z DI exp (k0h) N0
-I

exp (i N Ixl),

where Nu (kO (5.6)

and
2

D1 l--s ni [exp(-k0h) {s(k0+ K) k0} (sinh k0q + s cosh k0q) sech k0h
sinh k0h

(l-s) k exp(-k0)] g,(k0)
(5.7)

d
where A’(k0) d--- A (k)

k=k

(ii) Wave Source Submerged in the Upper Fluid. In this case I, 2 are the

same as given in Section 4 (il) while i, X2 may be assumed to have the same type of

representation given in (5.1) (with different A, B, C). Then A, B, C satisfy
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A sinh kh- B + C O,

-I
B cosh kh 2s (l+s) exp {-k(h+n)}

Thus we will finally obtain

2s 2s (1-s)k+ {sK-(l+s)k} exp(-kh)sech kh

* Ko(r*) + -1-s {’
8

exp(-kn)cosh k(h-y) + exp {-k(h+n)} sech kh sinh ky} cosx
dk, (5.8)

l-s r+2s2 K0(r*) + 1--s K0( f [exp (-kh) sech kh

! {(l_s)k+ {sK-(l+s)k} ep(-kh)sech kh} sinh kh exp k (y-n)] cosx dk (5.9)

As Ixl
cosh k0(h-y)

91 D2 sinh k0h N01 exp (i NO Ixl),

-I
42 -D2 exp (k0Y) N exp (i N Ixl),

(5.10)

where

-I
D2 2s (l+s) i [(l-s) k + (sK-(l+s)k0} exp(-k0h) sech k0h]

sinh k0h
A’(k exp(-k0n) (5.1)

and N is given by (5.6).

6. CONCLUSION.

We have derived in the present paper source potentials for the two-dimenslonal

modified Helmholtz’s equation in a two-fluid medium. The parameter in the

Helmholtz’s equation has been assumed to be less than the wave parameter M (for

infinite depth of the lower fluid) or k (for finite depth of the lower fluid).

However, if u is greater than the wave parameter then the potentials will no longer

represent outgoing waves in the far field, rather they will die out in the far field

(see the corresponding one-fluid case with surface tension in the FS in [16]).

Making s 0 in the above results, source potentials in an one-fluid medium

([16] with surface tension put equal to zero) can be recovered. Making v O,

potentials due to only time-harmonic line source in a two-fluid medium [3] can be

recovered. One can also include the effect of surface tension of the SS in these

results.
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